搅拌罐内稠密液—固两相混合过程分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固井是石油开采的重要环节。考虑油井使用寿命等问题,工程上对固井水泥浆有严格的混配要求。固井水泥浆混配过程是水泥灰颗粒在液体介质中均匀混合的过程。属于固液悬浮。搅拌是实现固液悬浮的操作之一。
     本文以固井水泥浆混配过程为背景。以“Eurlian-Eurlian双流体”模型为基础,建立搅拌罐内稠密-液固混合的数学模型。针对高浓度颗粒装载的特点,在运动方程中加入“拟温度”项来表示颗粒之间的相互碰撞及湍流脉动;通过标准k ?ε模型表示液体的湍流运动;根据Tchen理论表述颗粒的湍流运动。建立相应的数值计算模型并求解搅拌罐内的流场信息。
     与以往搅拌罐内的研究多集中在固相颗粒离底悬浮上不同,本文考虑搅拌过程中的能耗,分析搅拌桨桨型对罐内固相颗粒均匀悬浮的影响。引入悬浮均匀度和搅拌功率作为判据。经计算对比,高效桨采用向下泵送时,固体颗粒悬浮效果好,搅拌功率较小,适合应用到固井水泥的混配方案中。
Stirring operation is widely used in many fields of industry, such as chemical process and mining. Solid suspension in stirred tank is an important and difficult problem of two phase flow. Some scholars have studied on the dilute solid suspension in stirred tank. With the increasing of solid concentration, the collision between particles and turbulent fluctuation intensify the research of dense solid suspension become difficult. The background of this article is Water and ash mixture in cementing truck. This article researches the dense liquid-solid mixture in stirred tank; it analyses the influence of the impellers’type which affects the result of solid suspension.
     According to the mathematical modeling and numerical simulation, this article analyses the dense liquid-solid mixture in stirred tank. In mathematical modeling, The Eulerian-Eulerian two fluid model is used as the foundation. According to the dynamic of particle, the collision between dense particles and turbulence fluctuation are described using‘pseudo-temperature’. The liquid’s turbulent movement is expressed with stand k ?εmodel. for the particles’turbulent movement,‘Tchen’theory is adopted. In simulation processes, For the dense liquid-solid mixture, Eurlian model is adopted; for the turbulent fluctuation, the stand k ?εmodel id adopted; the stand wall function is chosen to treat the tank wall, the stress caused by particle collision and turbulent fluctuation is solved by particle differential equation; the drag force between phases is solved by syamlal and O’brien equation; the SIMPLE arithmetic is chosen to solve the coupling between velocity and pressure. Momentum equation, continuous equation, turbulent kinetic energy equation and turbulent energy dissipation rate equation are dispersed by first order upwind method; the multiple reference frames is used to simulate the rotating impeller and the stock-still stirred tank.
     An experiment is used here to justify the validity of model selected. From the simulation the axial concentration profile of simulation is consistent with the data from experiment. That is, the model selected can describe the fluid field in stirred tank and the movement of dense solid particles.
     Cementing slurry requires the degree of solid-liquid mixture to be uniform suspension. At first, the just off-bottom suspension’s rotate speed is analyzed. Further, the degree of uniform suspension is introduced to judge the quality of suspension. In simulation, we output concentration of solid at 20 points to calculate the degree of uniform suspension. The interval of quality of uniform suspension divides the quality to three situations, namely: incomplete suspension, just off bottom suspension and uniform suspension. Comparing the degrees of uniform suspension in different processes, we can judge whose suspension is more uniform.
     Uniform suspension is the target that requires. We want to arrive to the target with less power consuming. That’s why we introduce the judgment of power-agitation power. Agitation power is the function of impeller’s type, stirred tank’s type, mixture’s property, and rotate speed. There are two ways to calculate the agitation power, one is the nomographic method, and the other is the formula of the agitation power. Considering the types we choose in this article, we select the nomographic method to calculate the different impellers’agitation power.
     In stirred system, the liquid phase is water; the solid phase is the glass beam. We force on the influence of impellers type to solid suspension. The type used including: rushton turbine, pitch blade turbine and high efficiency impeller. In simulation’s process, we monitor the area average concentration of different height, when the area average concentration is consistent, the flow field is sufficiency developed, namely increasing the stirred time can’t change the flow field. The concentration distribution and velocity distribution in flow field are analyzed to find that the solid phase and the liquid phase have the same velocity distribution, and the concentration distribution is consistent with the change of velocity. No matter which type is used, it can’t get to the degree of ideal suspension. Below the impeller, at the bottom and near the tank wall, the solid concentration is usually high; in the center of the vortex, near the shaft and near the top of stirred tank, the concentration is usually low.
     In order to describe the influence of the impeller, we use the same condition,at a rated speed, comparing the degree of uniform suspension.The high efficiency impeller is the best for suspension, the rushton impeller can arrive to the uniform suspension, but the pitch blade turbine can’t satisfy uniform suspension.
     When using pitch blade turbine and high efficiency impeller, it has different suspension quality with clockwise and anticlockwise Operation. Clockwise operation forms the up-pump and sheer flow; anticlockwise impeller forms the down-pump and the axial flow. The axial flow is suitable for suspension. Namely, anticlockwise impeller can get a better suspension quality.
     When using the anticlockwise pitch blade turbine, the degree of uniform suspension decrease with the speed increased, and it satisfy the requirement of uniform suspension at a certain speed. For the high efficiency impeller, when the rotate speed decreases, the degree of uniform suspension increases. To some degree, it doesn’t satisfy the requirement any longer. Therefore the rotate speed is one of the key factors for suspension.
     Among the impellers that satisfy the uniform suspension, we calculate the agitation power of them. High efficiency impeller’s power is the smallest, the Ruston turbine’s is the biggest; although 45 pitch blade turbine can reach the degree of uniform suspension by increasing speed, it is uneconomical.
     As we analyze above, high efficiency with anticlockwise operation is suitable for the cementing truck. That can satisfy the requirement of uniform suspension with low power consuming.
引文
[1]刘大为,田锡君,廖润康.现代固井技术[M].辽宁:辽宁科学技术出版,1994.
    [2]赵殿甲.两相流体力学研究综述[J].煤炭技术,2006(7),113-114.
    [3]陈之航.气液双相流动和传热[M].北京:机械工业出版社1983.
    [4]陈学俊.两相流传热——原理与应用[M].北京:原子能出版社,1991.
    [5]林宗虎.气液固多相流测量[M].北京:中国计量出版社,1988.
    [6]张远君校编.流体力学大全[M].北京:北京航空航天大学出版社,1991.
    [7] M.Assirell, W.Bujalski, A.W.Nienow. Study of micromixing in a stirred vessels and its significance for different mixing tanks[J].Chemialc Engineering: 1984(28)855-863.
    [8] M.Micheletti,S.Baldi,S.L.Yeoh. On spatial and temporal variations and estimates of energy dissipation in stirred reactors[J].CHemE:2007(82)1188-1198.
    [9] A.Brucato,F.Grisafi,G.montante. Particle drag coefficients in turbulent fluids[J]. Chemical Engineering Science:1998 (53)3295-3314.
    [10] Giuseppina Montante, Davide Pinelli, Franco Magelli. Scale-up criteria for the solids distribution in slurry reactors stirred with multiple impellers[J]. Chemical Engineering Science: 2003(58) 5363-5372.
    [11] D. Pinelli, G. Montante, F. Magelli. Dispersion coefficients and settling velocities of solids in slurry vessels stirred with different types of multiple impellers[J]. Chemical Engineering Science: 2004(59) 3081-3089.
    [12] Aoyi Ochieng, Alison E. Lewis. Nickel solids concentration distribution in a stirred tank[J]. Minerals Engineering:2006(19)180-189.
    [13] Aoyi Ochieng, Maurice S.Onyango. Drag model, solids concentration and velocity distribution in a stirred tank[J]. Powder Technology 2008(181)1-8.
    [14] Aoyi Ochieng, Maurice S.Onyango, et al. Mixing in a tank stirred by a Rushton turbine at a low clearance[J]. Chemiacl Engineering and Processing: 2008(47)842-851.
    [15] Wang Feng, Wang Weijing, Mao Zaisha. Numerical sthdy of solid-liquid two-phase Flow in stirred tanks with Rushton impellers[J]. Chemical Engineering:2004 12(5)599-609.
    [16] Lanre M.Oshiinowo, Andre Bakker. CFD modeling of solids suspension in stirred tanks[C]. Computational Modeling of Metals, Minerals and Materials, TMS annual meting, Febrary 17-21 2002. seattle.
    [17] R.Angst, M.Kraume. Experiment investigations of stirred solid/liquid systems in three different scales: Particle distribution and power consumption[J]. Chemical Engineering Science:2006(61)2864-2870.
    [18] Fluent.Inc.Tutorial Guide[EB/OL]. February 2003.
    [19] Gidaspow.Dimitri, Bezburuah.Rukmini, Ding.J. Hydrodynamics of circulationgfluidized beds kinetic theory approach[C]. 7th fluidization conference,1992.
    [20] Syamlal M and O'Brien T J. Computer simulation of bubbles in a fluidized bed[J]. AIChE, 1989(85): 22-31.
    [21] Peirano E, Palchonok G, Johnsson Estimates of turbulence mechanisms in circulating fluidized bed combustors[J]. Powder Technology, 1998(96):90-105.
    [22] Clayton T Crowe. On models for turbulence modulation in fluid-particle flows[J]. International Journal of Multiphase Flow, 2000(26):719-727.
    [23] P.Armand, Boulaud D, Pourprix M, Vendel J. Two-fluid modeling of aerosol transport in laminar and turbulent flows[J]. Aerosol Sci. 1998 29(8) 961-983.
    [24]李勇,刘志友,安亦然.介绍计算流体力学通用软件——Fluent[J].水动力学研究与进展,2001(16)254-258.
    [25]王瑞金,张凯,王刚. Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.
    [26] Fluent全攻略[EB/OL].流体中文网,2005.
    [27]王凯,虞军.化工设备设计全书:搅拌设备[M].北京:化学工业出版社,2003.
    [28]陈志平,章序文,林兴华.搅拌与混合设备设计选用手册[M].北京:化学工业出版社,2004.
    [29]永田进治编,马继舜译.混合原理与应用[M].北京:化学工业出版社,1975.
    [30] T.N.Zwietering. Suspending solid particles in liquid by agitators[J].Chemical Engineering,1958(8)244-253..
    [31] J.C.Godfrey, Z.M.Zhu. measurement of particle-liquid profiles in agitated tanks[J]. AIChE Symposium Series,1994(299)181-185.
    [32]周云龙,洪文鹏,孙斌.多相流体力学理论及其应用[M].北京:科学出版社,2008.
    [33] Andre Bakker, Julian B.Fasano, Kevin J.Myers. Effects of Flow Pattern on the Solids Distribution in Stirred Tank [J/OL]. The online CFM book.
    [34]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [35]赵玉新. Fluent中文全教程[EB/OL]. Simwe仿真论坛.
    [36]张也影.流体力学[M].北京:高等教育出版社,2000.
    [37]洪厚胜,张庆文,万红贵,欧阳平凯. CFD用于机械搅拌生化反应器液固两相混合的研究[J].化学反应工程与工艺,2004(20)249-254.
    [38]徐魁.斜叶桨在气液固三相搅拌反应釜中的混合性能研究[J].广东机械学院学报,1996(14)44-51.
    [39]刘小兵,梁柱,程良骏.高浓度固液混合流的湍流模型[J].水力水运科学研究,1996(3)15-23.
    [40]高殿荣,王益群. Rushton桨搅拌槽内平均流场的二维PIV试验研究[J].机械工程学报,2004(12)192-198.
    [41]樊建华,饶麒,王运东.涡轮桨搅拌槽内流场的数字PIV测量[J].清华大学学报,2003(12)1605-1608.
    [42] G.Micale, G.Montante, F.Frisafi,A.Brucato,. CFD simulation of particle distribution in stirred vessels[J]. Chemical engineering , 2000(78)435-444.
    [43] Nicholas C.S.Kee, Reginald B.H.Tan.CFD simulation of solid suspension in mixing vessels[J]. Chemical Engineering, 2002(80)1-6.
    [44] P.Guirand,J.Costes, J.Bertrand.Local measurement of fluid and particle velocities in a stirred suspension[J].Chemical Engineering ,1997(68)75-86.
    [45] D.Fajner,D.pinelli,R.S.Ghadge,G.Montante,A.Paglianti,F.Magelli.Solid distribution and rising velocity of buoyant solid particles in a vessel stirred with multiple impellers[J].2008(63),5876-5882.
    [46] S.S.Alves,J.M.T.Vasconcelos, J.Barata. Alternative compartment models of mixing in tall tanks agitated by muli-tushton turbines[J]. Chemical engineering, 1997(75)334-339.
    [47] J.Aubin, P.Mavros, D.F.Fletcher,J.Bertrand,C.XUereb. Effect of axial agitator configuration(up-pumping, down-pumping, reverse rotation )on flow patterns generated in stirred vessels[J]. Chemical engineering, 2001(79)845-857.
    [48] F.Scargiali, F.Grisafi, J.Cermakova,. Residence time distribution of solid particles in a continuous,high-aspect-ratio multiple-impeller stirred vessel[J]. Chemical Engineering Science, 2004(59)3601-3618.
    [49] F.Kerdouss, A.Bannari, P.Proulx. Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model[J]. Computers and Chemical Engineering,2008(32)1943-1955.
    [50] M.Ljungqvist, A.Rasmuson. Numerical simulation of the two-phase flow in an axially stirred vessel[J].Chemical Engineering,2001(79)553-547.
    [51] R.Angst, M.Kraume. Experiment investigations of stirred solid/liquid systems in three different scales: particle distribution and power consumption[J].Chemical Engineering Science,2006(61)2864-2870.
    [52] Mirsolav Soos, Amgad S.Moussa,Lyonel Ehrl,Jan Sefcik, Hua wu, Massimo Morbidelli. Effect of shear rate on aggregate size and morphology investigated under turbulent conditions in stirred tank[J]. Colloid and interface Science,2008(319)577-589.
    [53] V.Mathiesen, T.Solberg, B.H.Hjertager. An experimental and computational study of multiphase flow behavior in a circulating fluidized bed[J].Multiphase flow,2000(26)387-419.
    [54] Dimitri Gidaspow, Jonghwun Jung, Raj K.Singh. Hydrodynamics of Fluidization using kinetic theory: an emerging paradigm 2002 Flour-Daniel lecture[J].Power Technology, 2004(148)123-141.
    [55] Veeraya Jiradilok,Dimitri Gidaspow, Somsak Damronglerd,William J.Koves, Reza Mostofi.Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser[J].Chemical Engineering Scaence,2006(61)5544-5559.
    [56] Ramon Gonzalez, Juan C.Gentina, Fernando Acevedo. Optimisation of the solids suspension conditions in a continuous stirred tank reactor for the biooxidation of refractory gold concentrates[J]. Electronic journal of biotechnology, 2003(6)233-240.
    [57]陈道芳,徐雷兴.固、液机械搅拌槽中颗粒悬浮特性的研究[J].化学反应过程与工艺,1992(8)44-53.
    [58]魏新利,任杰,王定标,孟祥睿.搅拌反应器流场的数值模拟[J].郑州大学学报,2006(27)52-55.
    [59]朱向哲,苗一,谢禹钧.双层涡轮搅拌桨三维流场数值模拟[J].石油化工设备,2005(34)26-29.
    [60]郭仕剑,邱志模,陆静芳. MATLAB入门与实践[M].北京:人民邮电出版社,2008.
    [61]章本照,印建安,张宏碁.流体力学数值方法[M].北京:机械工业出版社,2003
    [62] S.Ibrahim, A.W.Nienow. Suspension of microcarriers for cell culture with axial flow impellers[J]. Chemical Engineering Research and Design, 2004(82)1082-1088.
    [63] Kopko.R.J, Barton.P, McCormick.R.H. Hydrodynamics of vertical liquid-solids tansport[J]. Ind.Eng.Chem process, 1975(14)264-267.
    [64] Peirano E, Palchonok G, Johnsson F, Leckner B. Estimates of turbulence mechanisms in circulating fluidized bed combustors[J]. Powder Technology, 1998(96):90-105.
    [65] Wen C Y, Yu Y H. Mechanics of fluidization [J]. AIChE, 1966(62):100-111.
    [66] Enwald H, Peirano E, Almstedt A E, Leckner B. Simulation of the fluid dynamics of a bubbling fluidized bed[J]. Chemical Engineering Science, 1999(54):311-328.
    [67] Roy Shantanu, Dudukovic M P. Flow Mapping and Modeling of Liquid-Solid Risers[J]. Ind. Eng. Chem,. Res. 2001(40): 5440-5454.
    [68] Roy Shantanu, Kemoun Abdenour, Al-Dahhan M H et al. Experimental Investigation of the Hydrodynamics in a Liquid–Solid Riser[J]. AIChE Journal, 2005, 51(3 ) :802-835.
    [69] J.Wu, Y.Zhu, P.C.Bandopadhayay. Solid suspension with axial-flow impellers[J]. AICHE Journal, 2000(46)647-650.
    [70] O.Molerus, W.Latzel. Suspension of solid particles in agitated vessel-I.Archimedes numbers≤40[J]. Chemical Engineering Science,1987(42)423-430.
    [71]徐魁.搅拌反应器中颗粒完全离底悬浮的临界转速[J].化工时刊,1995(5)8-12.
    [72]包雨云,黄雄斌,施力田.搅拌槽内固体颗粒对液相速度影响的研究[J].化学工程,2002(30)29-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700