CFB混燃煤矸石/煤层气的炉内流动特性数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矸石是目前排放量最大的工业固体废弃物之一,具有低挥发分、高灰分、低热值和难燃烧等特点。煤层气是煤炭开采活动中释放出的甲烷,温室效应很强,且易燃易爆,给煤炭开采活动带来隐患。煤矸石和煤层气的排放既污染环境,又浪费了资源。循环流化床燃烧技术现己被公认为一种清洁高效的燃烧技术,因此煤矸石和煤层气在循环流化床中混烧为综合利用煤矸石和煤层气提供了一种新途径,不仅能节约能源,还有利于环保,具有很高的经济和社会效益。
     本文以采用循环流化床锅炉燃烧技术改造的NG-35/3.82-M型35t/h链条锅炉在为研究对象,对流化床中煤层气燃烧器不同布置位置对炉内气固两相流的流动特性进行数值模拟以及优化设计,并探讨了煤矸石煤层气不同掺混比例对炉内流动特性的影响。
     通过改变煤层气入口位置和二次风速以及颗粒粒径研究了床内的流化特性,分析了不同设计方式下的流体动力特性。颗粒速度模拟结果表明,煤层气燃烧器布置位置的改变不影响炉内颗粒轴向的速度分布趋势,颗粒的运动形式为中心处向上、近壁面处向下的内循环流动结构。煤层气燃烧器四种不同的布置中,四角切圆布置在炉墙、高度为4m的方式中,在不同的炉膛高度下,颗粒速度波动最小,较其他相对比较平稳。且煤层气入口高度为4m时,可以使入口水平截面气相速度场形成涡流,加强了气固间的混合。因此此种煤层气燃烧器的布置方式为最佳。颗粒空隙率模拟结果表明,煤层气燃烧器布置方式和二次风速对炉膛内颗粒轴向浓度分布有重要的影响。煤层气入口位置为高4m、二次风速35m/s时,能够在密相区上方形成二次高浓度颗粒流。
     炉内煤矸石煤层气掺混比例对炉内流动特性有重要影响。加入煤层气的比例变大,会使炉内气相扰动变强,这样会加快颗粒的速度,从而缩短在炉内的停留时间,这样不利于炉膛颗粒的燃烧。故存在一个最佳的掺混比例,当掺混比例8/2时,床内颗粒的湍动能力强于其它掺混比例时的湍动能力,炉内速度场和浓度场分布最为合理。文中的研究结果为进一步研究开发煤矸石和煤层气循环流化床混烧技术打下基础,有重要的参考和应用价值。
Coal gangue with the characteristics of lower valotile, high ash, lower heat value and hard-to-burn is one of the most quantity industrial solid residues. Coal bed methane with the characteristics of strong greenhouse effect and easy-to-burn and explode, is released methane in the process of exploitation of coal, and it is harmful to the coal exploitation.Emission of coal residue and coal bed methane not only cause environmental pollution, but also waste the resources. The gas-solid combustion technology in the fluidized beds has been considered clean and efficient. So it is a new way for synthetically utilizing coal residue and coal bed methane. It has very high economic and social benefits.
     CFB combined combustion technology is adopted to retrofit NG-35/3.82-M chain grate stroke in the paper. The influence of the gas burner height to the flow characteristics in the CFB is simulated, and the mixed combustion ratio of the two fuels influence to flow characteristics in the CFB is also investigated. According to different entrance of coal bed methane, different velocity of the secondary air and different particle size, the flow characteristics are studied.
     According to changing different disposed position and different velocities of the secondary air, the flow characteristics are studied. Distribution of velocity field shows that different entrance of coal bed methane doesn’t influence axial velocity field, particles in the centre of the boiler move upward and particles near the wall move downward. Among four layout formations, when the gas burner layout corner tangentially and the height of the burner is 4m, fluctuations of the particles are the smallest in different height of the boiler, air vortex is formed in the level cross-section of gas entrance. This will strengthen the mixing between air and particle, so this layout formation is the best. Distribution of particle-concentration field shows that, layout formation of the gas burner and velocity of the secondary air will influence axial velocity field of the particles. When the height of the burner is 4m, the secondary air is about 35m/s, higher particle-concentration will be formed above the dense phase zone.
     The proportion of the two fuels influences flow characteristics in the boiler. When amount of coal bed methane increases, disturbance in the boiler increases and particle velocity increases, then stay time of the particles in CFB decreases. When the mixed proportion is 8:2, turbulent kinetic energy of the particles are the biggest, the distribution of velocity field and concentration field are the best. The study results in this paper have important reference and application value, and pave the way for exploring the mixed combustion technology of coal residue and coal bed methane in CFB.
引文
[1]成玉琪,俞珠峰.洁净煤技术是中国洁净能源新技术的重点领域洁净煤技术[J]. 2000,6 (2):22-25.
    [2]杜铭华,俞珠峰.发展洁净煤技术,缓减石油供需矛盾[J].2001,(1):15-16.
    [3]曾小梅.我国煤矸石的综合利用现状[J].山东煤炭科技,2005(2):8-10.
    [4]林宗虎,魏敦松,安恩科,李茂德.循环流化床锅炉[M].北京:化学工业出版社,2004.2.
    [5]朱皑强,芮新红编.循环流化床锅炉设备及系统[M],北京:中国电力出版社,2004,12.
    [6]冉景煜、张力、辛明道等.旋流气固分离器内气粒两相运动特性及分离效率[J].化工学报,2003,54(10),1391-1396.
    [7]刘德昌,循环流化床锅炉大型化中的问题[J],东方锅炉,1996 (4).
    [8]骆仲泱.燃烧循环流化床的燃烧技术[D].杭州:浙江大学,1990.
    [9] J.M.博特里尔等,流化床的燃烧和应用[M].科学出版社.
    [10]冯俊凯.根据烘煤性质论电站锅炉燃烧方法的发展[J].动力工程,1995,15(3):34-38.
    [11]徐秀清,徐向华,循环流化床锅炉原理及其设计和运行中的若干问题[J].动力工程,1995,15(1),40-45.
    [12]刘柏谦.煤矸石在流化床着火特性研究和百叶迷宫煤矸石循环流化床锅炉设计[J].燃烧科学与技术,2003,9(5):419-421.
    [13]冉景煜,牛奔,张力等.煤矸石综合燃烧性能及其燃烧动力学特性研究[J].中国电机工程学报,2006,26(15):58-62.
    [14] De S,Lal A K,Nag P K. An experiment investigation on pressure drop and collection efficiency of simple plate-type impact separator[J]. Power Technology, 1999(106):132-137. [15 ]冉景煜,牛奔,张力等.煤矸石热解特性及热解机理热重法研究[J].煤炭学报,2006,31(5):640-644.
    [16]牛奔,冉景煜,张力,蒲舸,唐强.煤矸石燃烧特性及动力学热重法研究[C].中国工程热物理学会第十一界年会论文集. 2005.11,187-193.
    [17]池涌,蒋旭光等.洗煤泥煤矸石流化床混燃过程研究[J].煤炭学报,2001,26(2):204-208.
    [18]岑可法,杨家林等.洗煤泥煤矸石流化床混烧技术工业应用研究[J].动力工程,1999,19(1):78-82.
    [19]池涌,严建华等.洗煤泥煤矸石流化床混烧过程基础研究与工业应用[J].洁净煤技术.2002,8(1):23-26.
    [20] Suksankraisorn,K,Patumsawad,S,Vallikul,P,Fungtammasan,B,Accary,A.Co-combustion of municipal solid waste and Thai lignite in a fluidized bed Energy Conversion andManagement[J], 2004,45(6): 947-962.
    [21]冉景煜,张力,辛明道.城市生活垃圾循环流化床垃圾颗粒三维运动特性[C].中国高等学校工程热物理学会年会论文集.2003.10.
    [22] Ran jingyu, Zhangli, Xin mingdao. 3-D simulation for motion character of MSW particles in CFB[C]. Proceedings of the 3rd International Conference on Combustion Incineration/ Pyrolysis and Emission Control. 2004.10.
    [23] Folgueras,M.Belén,María Díaz,R.,Xiberta,Jorge.Sulphur retention during co-combustion of coal and sewage sludge Fuel[J] . 2004,83(10) : 1315-1322.
    [24]冉景煜,张力,杨琳,辛明道.固态医疗垃圾循环流化床不同密相区形状对气固运动特性影响数值研究[J].中国电机工程学报,2006,26(14):86-92.
    [25]冉景煜.固态医疗垃圾循环流化床气固流动与燃烧特性数值分析及实验[D].重庆大学博士学位论文, 2003 .
    [26] Zhang Li, RAN Jingyu, et al Research on the characteristics of mixed municipal solid waste and its combustion products in Chongqing, Proceedings of International Conference on Energy and the Environment, 2003, Shanghai, China, 1708-1712.
    [27] Fang,M.;Yang,L.;Chen,G.;Shi,Z.;Luo,Z.;Cen,K. Experimental study on rice husk combustion in a circulating fluidized bed[J]. Fuel Processing Technology, 2004,85(11): 1273-1282
    [28] Hartge,E.-U.;Luecke,K.;Werther,J.The role of mixing in the performance of CFB reactors[C] .Chemical Engineering Science.1999,54(22): 5393-5407.
    [29]牛奔.煤矸石和煤层气循环流化床混烧特性试验研究[D].重庆:重庆大学,2005.
    [30]张子栋,吴文渊等气固双燃料流化床锅炉[J].节能技术,1994,(2):13-15.
    [31]王润君.高炉煤气的电站补燃措施的必要性分析及方案比较[J].动力工程,1998,(1):56-58.
    [32]马晓茜,黄文迪.低热值煤气燃烧技术的应用与分析[J].冶金能源,1994,13(5):34-35.
    [33]庄正宁,曹子栋等.50MW高压锅炉全燃高炉煤气的研究[J].热能动力工程,2001,16 (93):271-274.
    [34] Ren J X.Study of combustion stability of blast furnace gas for turbine proceeding of the 1999 international joint power generation conference.
    [35]任建新.低热值高炉煤气在发电设备中的应用[J].上海电力学院学报,2001,17(2):1-4.
    [36]裴振林,刘定平.高炉煤气与贫煤在电站锅炉中的混烧实践[J].湖北电力,2002,26(3):22-24.
    [37]裴振林,刘定平.自备电厂2号锅炉前屏过热器爆管原因分析[J].武钢技术,1999,221(3):52-54.
    [38]杨轶,陈刚.煤粉和高炉煤气混烧锅炉燃烧问题的分析及改造[J].电站系统工程,2003,19(2):36-38.
    [39]刘定平,陈红艳.低热值高炉煤气与煤粉混烧技术的探讨[J].锅炉技术,2003,34(6):44-48.
    [40]刘定平. SC-DF燃烧器节油稳燃机理及应用[J].武钢技术,2002,237(1):47-45.
    [41]雷正香.火炬气的回收利用[J].石油化工,1996,25(2):102-105.
    [42]张兰波.火炬气回收装置改造及运行状况分析[J].石化技术与应用,2000,18(6):156-157.
    [43]柴沁虎,丁艳军等.掺烧火炬气的燃煤锅炉热力特性研究[J].中国电力,2003,36(4):17-20.
    [44] Holdfond,MarkR.Evaluation of methods available for reducing solution gas flaring in Alberla[C].Proceeding of the Air & Waste Management Association’s Annual Meeting & Exhibition,1998.
    [45] Flaring Venting and other losses of natural gas in North African Countries annually 1975 to 1995[J],Energy Exploration & Exploitation,1997,15(12):171.
    [46] Milanesi Ines flare gas recovery, International Journal of Hydrocarbon Engineering, 1999,4 (6):79-80.
    [47] Tsuji Y,Tanaka T,Ishida T.Lagrangian numerical simulation of slug flow of cohesionless particles in a horizontal pipe.1992,71:239-250.
    [48] Grienberger J,Hofmann H.Investigation and modeling of bubble columns.Chemical Engineer Science,1992,47(9 11):2215-2220.
    [49] Kuipers,JAM. ANumerical model of gas-solid fluidized beds.Chemical Engineer Science,1992,47(8),1913-1924.
    [50] Gidaspow D.Multiphase Flow and Fluidization:Continuum and Kinetic Theory Description.Boston:Academic Press.
    [51] Tsuo Y D,Gidaspow D.Computation of flow patterns in circulating fluidized beds.AICHE J,1990,36(6):885-896.
    [52]洪若瑜,李洪钟,程圩,等.基于双流体模型的流化床的模拟[J],化工学报,1995,46(3):349-355.
    [53] Kuipers J A M,Prins W,Van Saij W P M.Numerical calculation of wall to bed transfer coefficients in gas fluidized beds.AICHE,1992,38:1079-1091.
    [54] Gelperin N E,Einstein V G.Heat transfer in fluidized bed.Davidson J F,Hamson D,Fluidization.New York:Academic Press,1971,471.
    [55] Li J,Doug Y,Kwauk M.Mathematical modeling of particle fluid two phase flow.Science China,1990,33(5):523-534.
    [56] Gao Jinsen, Xu Chunming,Yang Guanghua,et al.Numerical simulation on gas-solid two-phase turbulence flow in FCC riser reactor(Ⅰ)Turbulent gas-solid flow reaction model.Chinese Jue of Chemical Engineer,1998,6(1):12-20.
    [57]周力行著,湍流气粒两相流动和燃烧的理论与数值模拟[C],科学出版社,1994.
    [58]范维澄,万跃鹏编著,流动及燃烧的模型与计算[C],中国科学技术大学出版杜,1992
    [59]王应时,范维澄,周力行,徐绪常著,燃烧过程数值计算[C],1986.
    [60]岑可法,樊建人,数值试验((CAT)在大型电站锅炉设计和运行中的应用前景-(II)应用实例[J],浙江大学学报,1992,26(1).
    [61] Patankar. S. V.传热与流体流动的数值计算[C],科学出版社,1984.
    [62]岑可法,樊建人,工程气固多相流动的理论及计算[C],浙江大学出版社,1990.
    [63]刘柏谦,徐有宁.煤矸石在流化床燃烧器中着火特性的试验研究[J].东北电力学院学报,1996,16(1):24-26.
    [64]张全国.煤矸石型煤着火燃尽性能的实验研究[J].环境科学研究,1995,8(4):51-54.
    [65]袁竹林,徐益谦.用数值模拟对循环流化床颗粒分离特性的研究[J].工程热物理学报,2001,22:188.
    [66]刘阳,陆慧林,刘文铁.循环流化床多组分颗粒气固两相流动模型和数值模拟[J].化工学报,2003,54(8):1071.
    [67]冯俊凯,沈幼庭,杨瑞昌.锅炉原理及计算[M].第二版.北京:科学出版社.2000.
    [68]陆慧林,刘文铁.流化床内超细颗粒的流动[J].工程热物理学报,2003,24(3):536.
    [69]陆慧林.循环流化床多组分颗粒气固两相流动模型和数值模拟[J].化工学报,2003,54(8):1066.
    [70] Anderson T, Jackson R. A fluid mechanical description of fluid beds[J]. I&EC Foidam, 1967,6: 527-539.
    [71] Mikami T, Kamiya H, Horio M. Numerical simulation of cohesive powder behavior in a fluidized bed [J]. Chemical Engineer Science,1998,53(10):1927-1940.
    [72] Zhang D, Whiten W J. The calculation of contact forces between particles using spring and damping models [J]. Powder Technology,1996,88:59-64.
    [73] Hoomans B P B, Kuipers J A M, Briels W J, et al. Discrete particle simulation of bubble and slug formation in a two dimensional gas-solid fluidized bed: A hard-sphere approach[J]. Chemical Engineer Science,1996,51(1):99-118.
    [74] Delonij E, Kuipers J A M, Van Swaaij W P M. Dynamic simulation of gas-liquid two-phase flow: effect of column aspect ratio on the flow structure[J]. Chemical Engineer Science, 1997, 52(21/22):3759-3772.
    [75] Huber N, Sommerfeld M. Modeling and numerical calculation of dilute-phase pneumatic conveying in pipe systems [J]. Powder Technology,1998,99:90-101.
    [76] Crowe C J. The state-of-the-art in the development of numerical models for dispersed flows [C], Proc. Int. Conf.on Multiphase Flows, 91 Tsukuba,1991, 3:49-60.
    [77] Sommerfeed M and Qiu H H. Detailed measurements in a swirling particulate two-phase flow bya phase-Doppler anemometer [C],Proc.5th Workshop on Two-phase Flow Predictions, Erlangen, 1990, 15-32,78-86.
    [78]周力行,黄晓晴.三维湍流回流两相流动的k-e-kP模型.工程热物理学报[J].1991,12(4):428-433.
    [79] Simonin O. Prediction of the dispersed phase turbulence in particle-laden jets [C].Gas-Solid Flows. ASME FED-V.1991,121:197-206.
    [80]周力行.湍流两相流动和燃烧的统一关联矩阵封闭模型[C].中国工程热物理学会第七届年会论文集,四分册,南京:1990(亦现工程热物理学报,1991,12(2): 203-206.
    [81]廖昌明,林文漪,周力行.突扩燃烧室中气一固两相湍流相互作用与颗粒弥散的数值模拟[C].中国工程热物理学会第八届年会论文集,四分册I.54-59,北京,1999.
    [82]周一工.循环流化床锅炉设计中风机选型及气固分离器选择[J].热能动力工程,1997,12(6):968-972.
    [83]朱国桢,徐洋.循环流化床锅炉设计与计算[M].北京:清华大学出版社,2004.11.
    [84] Jenkins,J.T.,Savage,S.B.,A theory for the rapid flow of identical, smooth, nearly elastic spherical particles[J]. Fluid Mech.,1983,130,187-202.
    [85] Lun C.K.K.,Savage S.B.,Jerey D.J.,Chepurniy N.,Kinetic theories for granular flow: inelastic particles in Couette flow and‘slightly inelastic particles in a general flow field.[J] Fluid Mech.,1984,140,223-256.
    [86] Gidaspow D.,Multiphase flow and fluidization[C],Academic Press. 1994.
    [87] E.,Almstedt A.E.,Eulerian two-phase flow theory applied to J. Multiphase Flow[C],1996,22.Enwald H.,Peirano fluidization.Int.21-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700