II–VI族半导体量子点的合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶态半导体量子点由于其优异的随尺寸变化的光学性质和灵活的溶液处理化学在基础研究和应用研究中都具有重要的意义。本论文的主要工作是发展II–VI族半导体量子点材料的“绿色”低成本合成方法,探讨纳米晶的成核与生长机理,并研究量子点的光学及其他性质。
     (一)在多相体系中低温合成油溶性的CdS和CdSe量子点。利用吸收光谱,荧光光谱,透射电镜,X射线衍射的方法表征了所合成的CdS和CdSe量子点。另外,通过光谱分析,研究了两种吸收位置分别在359 nm和379 nm的CdS幻数团簇的光学性质。
     (二)在十八烯/甘油双液相体系中合成均匀的,发射强荧光的CdS量子点。此体系比通常用的甲苯/水双液相体系的优势在于其低毒性,而且在常压下还可用于较高温度(一般100~200°C)下的合成反应。另外,此体系也可用于Ag纳米晶的合成。所得的CdS和Ag纳米晶由于表面的憎水包覆层而分散在十八烯相。在同属的液体石蜡/甘油体系中也得到了类似的结果。
     (三)用紫外—可见吸收光谱方法研究了CdS幻数团簇的性质。近年来,半导体幻数团簇由于其独特的结构和稳定性而受到很多重视。一种吸收在约323 nm的幻数团簇作为中间产物,在合成CdS纳米晶的反应前期出现。他们具有极小的颗粒尺寸,但这种团簇胶体溶液的聚沉稳定性非常低。在醇分子的作用下,他们还可以转换成其他两种CdS颗粒,一种吸收在约309 nm,另外一种吸收在约348 nm。这两种CdS颗粒非常不稳定;当醇分子从体系中移除后,他们转化成另外一种吸收在约312 nm的幻数团簇。
     (四)研究了石蜡/甘油体系中CdS纳米晶的生长情况,提出了一种幻数团簇参与的CdS纳米晶成核与生长机理。我们跟踪了不同温度时,CdS纳米晶的紫外—可见吸收光谱、荧光光谱及浓度的变化情况。发现温度较低时,纳米晶的成核与生长交迭在一起,得到的纳米晶尺寸分布较宽;而在较高温度下,可以使成核在很短时间内完成,得到均匀的纳米晶。结合反应中间产物——幻数团簇的性质,我们提出了CdS纳米晶可能的成核与生长机理。
     (五)研究了醇分子对CdS量子点的荧光猝灭作用,提出了可能的猝灭机理。影响醇分子对CdS量子点荧光猝灭的主要因素为醇分子的空间位阻和浓度:醇分子的位阻越小,浓度越高,则其猝灭作用越强。这种荧光猝灭作用是可逆的;当醇分子从体系中移除后,CdS量子点的荧光可以完全恢复。醇分子对CdS量子点的带边荧光的猝灭能力远大于其对缺陷荧光的猝灭能力。我们提出了可能的静态猝灭机理。另外,我们还研究了醇加入前后的时间分辨荧光光谱。
Colloidal semiconductor quantum dots (QDs) are important in fundamental and application research, due to their size-dependent optical properties and excellent solution processing chemistry. In this dissertation, we mainly developed“greener”and cheaper synthesis methods for II–VI semiconductor quantum dots, discussed the nanocrystal (NC) nucleation and growth mechanism, and studied the optical and other properties of the QDs.
     (1) Oil-soluble CdS and CdSe QDs were prepared in multiphase systems at low temperatures. As-prepared CdS and CdSe QDs were characterized with ultraviolet–visible (UV–vis) absorption and photoluminescence (PL) spectra, transmission electron microscopy (TEM) and X-ray diffraction (XRD). In addition, the optical properties of two magic-size cluster (MSC) species, absorbing at 359 and 379 nm respectively, were studied by using spectral analysis methods.
     (2) Nearly monodisperse and fluorescent CdS QDs were prepared in a 1-octadecene (ODE)/glycerol biphasic system. Compared to toluene/water, the system is environmentally friendlier, and can be used for higher temperature (generally 100~200°C) synthesis. Besides, Ag NCs can also be prepared in this system. As-prepared CdS and Ag NCs were dispersed in the ODE phase due to their hydrophobic capping layers. In a congeneric system of liquid-paraffin/glycerol, similar experimental results were obtained.
     (3) The properties of a CdS MSC species were studied using a UV–vis spectroscopic technique. In recent years, semiconductor MSCs have been receiving much attention due to their special structure and stability. A 323-nm-absorbing MSC species, as intermediate, developed at an early stage of the synthesis of regular CdS NCs. The colloid solution of the MSCs was unstable with respect to aggregation in spite of the extremely small size. Induced by alcohol molecules, the MSCs would transform into other two CdS species, absorbing at ~309 and ~348 nm respectively. The two species were highly unstable; they would transform into a 312-nm-absorbing MSCs after the alcohol molecules were removed from the system.
     (4) The NC growth in liquid-paraffin/glycerol was studied, and a MSC-mediated nucleation–growth mechanism of CdS NCs was proposed. We followed the temporal evolution of the UV–vis absorption and PL spectra, and the particle concentration of CdS NCs at different synthesis temperatures. At low synthesis temperatures, the nucleation and growth stages were overlapped, which resulted in NC ensembles with broad size-distributions. At relatively high temperatures, the nucleation stage finished in a short time, which resulted in monodisperse NCs. Taking into consideration of the properties of the cluster intermediate, we proposed a plausible mechanism for CdS NC development.
     (5) Alcohol-induced PL quenching of CdS QDs was studied, and a plausible quenching mechanism was proposed. The quenching effect was mainly dependent on the steric hindrance and the concentration of the alcohol. Weaker hindrance and higher concentration of the alcohol made a stronger quenching effect. The quenching effect was reversible; the PL was totally recovered after the alcohol was removed from the system. The quenching effect was significantly stronger to the band-edge emission than the trap-emission. A possible static quenching mechanism was proposed. Besides, the time-resolved PL spectra before and after alcohol addition were studied.
引文
(1) Alivisatos, A. P. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals, J. Phys. Chem. 1996, 100, 13226–13239.
    (2) Rajeshwar, K.; de Tacconi, N. R.; Chenthamarakshan,C. R. Smiconductor-Based Composite Materials: Preparation, Properties, and Performance, Chem. Mater. 2001, 13, 2765–2782.
    (3) Klimov, V. I. Spectral and Dynamical Properties of Multiexcitons inSemiconductor Nanocrystals, Annu. Rev. Phys. Chem. 2007, 58, 635–673.
    (4) Brus, L. E. Electron–Electron and Electron–Hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State, J. Chem. Phys. 1984, 80, 4403–4409.
    (5) Brus, L. E. Electronic Wave Functions in Semiconductor Clusters Experiment and Theory, J. Phys. Chem. 1986, 90, 2555–2560.
    (6) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Annu. Rev. Mater. Sci. 2000, 30, 545–610.
    (7) Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites, J. Am. Chem. Soc. 1993, 115, 8706–8715.
    (8) Thessing, J.; Qian, J.; Chen, H.; Pradhan, N.; Peng, X. Interparticle Influence on Size/Size Distribution Evolution of Nanocrystals, J. Am. Chem. Soc. 2007, 129, 2736–2737.
    (9) Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals, Chem. Mater. 2003, 15, 2854–2860.
    (10) Cademartiri, L.; Montanari, E.; Calestani, G.; Migliori, A.; Guagliardi, A.; Ozin, G. A. Size-Dependent Extinction Coefficients of PbS Quantum Dots, J. Am. Chem. Soc. 2006, 128, 10337–10346.
    (11) Qu, L.; Yu, W. W.; Peng, X. G. In Situ Observation of the Nucleation and Growth of CdSe Nanocrystals, Nano Lett. 2004, 4, 465–469.
    (12) Bullen, C. R.; Mulvaney, P. Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene, Nano Lett. 2004, 4, 2303–2307.
    (13) van Embden, J.; Mulvaney, P. Nucleation and Growth of CdSe Nanocrystals in a Binary Ligand System, Langmuir 2005, 21, 10226–10233
    (14) Cao, Y. C.; Wang, J. One-Pot Synthesis of High-Quality Zinc-Blende CdS Nanocrystals, J. Am. Chem. Soc. 2004, 126, 14336–14337.
    (15) Yang, Y. A.; Wu, H.; Williams, K. R.; Cao, Y. C. Synthesis of CdSe and CdTeNanocrystals without Precursor Injection, Angew. Chem. Int. Ed. 2005, 44, 6712–6715.
    (16) Weller, H. Colloidal Semiconductor Q-Particles: Chemistry in the Transition Region Between Solid State and Molecules, Angew. Chem. Int. Ed. Engl. 1993, 32, 41–53.
    (17) Fernee, M. J.; Watt, A.; Warner, J.; Cooper, S.; Heckenberg, N.; Rubinsztein-Dunlop, H. Inorganic Surface Passivation of PbS Nanocrystals Resulting in Strong Photoluminescent Emission, Nanotechnology, 2003, 14, 991–997.
    (18) Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots, Nano Lett. 2005, 5, 865–871.
    (19) Koole, R.; Allan, G.; Delerue, C.; Meijerink, A.; Vanmaekelbergh, D.; Houtepen, A. J. Optical Investigation of Quantum Confinement in PbSe Nanocrystals at Different Points in the Brillouin Zone, Small 2008, 4, 127–133.
    (20) Wang, Q.; Pan, D. C.; Jiang, S. C.; Ji, X. L.; An, L. J.; Jiang, B. Z. A New Two-Phase Route to High-Quality CdS Nanocrystals, Chem.–Eur. J. 2005, 11, 3843–3848.
    (21) Qu, L.; Peng, X. G. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth,J. Am. Chem. Soc. 2002, 124, 2049–2055.
    (22) Cademartiri, L.; Bertolotti, J.; Sapienza, R.; Wiersma, D. S.; von Freymann, G.; Ozin, G. A. Multigram Scale, Solventless, and Diffusion-Controlled Route to Highly Monodisperse PbS Nanocrystals, J. Phys. Chem. B 2006, 110, 671–673.
    (23) Xie, R.; Peng, X. G. Synthetic Scheme for High-Quality InAs Nanocrystals Based on Self-Focusing and One-Pot Synthesis of InAs-Based Core-Shell Nanocrystals, Angew. Chem. Int. Ed. 2008, 47, 7677–7680.
    (24) Efros, A. L.; Rosen, M. The Electronic Structure of Semiconductor Nanocrystals, Annu. Rev. Mater. Sci. 2000, 30, 475–521.
    (25) Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of II–VI and III–V Colloidal Semiconductor Nanocrystal Growth“Focusing”of Size Distributions, J. Am. Chem. Soc. 1998, 120, 5343–5344.
    (26) Bawendi, M. G.; Carroll, P. J.; Wilson, W. L.; Brus, L. E. Luminescence Properties of CdSe Quantum Crystallites: Resonance between Interior and Surface Localized States, J. Chem. Phys. 1992, 96, 946–954.
    (27) Eychmüller, A. Structure and Photophysics of Semiconductor Nanocrystals, J. Phys. Chem. B 2000, 104, 6514–6528.
    (28) Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. Photochemistry of Colloidal Semiconductors. 20. Surface Modification and Stability of Strong Luminescing CdS Particles, J. Am. Chem. Soc. 1987, 109, 5649–5655.
    (29) Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine, A.; Eychmüller, A.; Weller, H. CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift, J. Phys. Chem. 1994, 98, 7665–7673.
    (30) Mews, A.; Eychmüller, A.; Giersig, M.; Schooss, D.; Weller, H. Preparation, Characterization, and Photophysics of the Quantum Dot Quantum Well System CdS/HgS/CdS, J. Phys. Chem. 1994, 98, 934–941.
    (31) Haaset, M.; Alivisatos, A. P. Arrested Solid–Solid Phase Transition in 4-nm-Diameter CdS Nanocrystals, J . Phys. Chem. 1992, 96, 6756–6762.
    (32) Chen, Y.; Rosenzweig Z. Luminescent CdS Quantum Dots as Selective Ion Probes, Anal. Chem. 2002, 74, 5132–5138.
    (33) Rogach, A. L.; Kornowski, A.; Gao, M.; Eychmüller, A.; Weller, H. Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals, J. Phys. Chem. B 1999, 103, 3065–3069.
    (34) Gao, M.; Kirstein, S.; M?hwald, H.; Rogach, A. L.; Kornowski, A.; Eychmüller, A.; Weller, H. Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification, J. Phys. Chem. B 1998, 102, 8360–8363.
    (35) Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Eychmüller, A.; Weller, H. Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals: from Water to Nonpolar Organic Solvents, Nano Lett. 2002, 2, 803–806.
    (36) Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.;Kornowski, A.; Eychmüller, A.; Weller, H. Thiol-Capping of CdTe Nanocrystals: an Alternative to Organometallic Synthetic Routes, J. Phys. Chem. B 2002, 106, 7177–7185.
    (37) Peng, Z. A.; Peng, X. Formation of High Quality CdSe and CdS Nanocrystals Using CdO as Precursor, J. Am. Chem. Soc. 2001, 123, 183–184.
    (38) Qu, L.; Peng, A.; Peng, X. Alternative Routes towards High Quality CdSe Nanocrystals, Nano Lett. 2001, 1, 333–337.
    (39) Yu, W.; Peng, X. Formation of High-Quality CdS and Other II–VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers, Angew. Chem., Int. Ed. 2002, 41, 2368–2371.
    (40) Deng, Z.; Cao, L.; Tang, F.; Zou, B. A New Route to Zinc-Blende CdSe Nanocrystals: Mechanism and Synthesis, J. Phys. Chem. B 2005, 109, 16671–16675.
    (41) Jasieniak, J.; Bullen, C.; van Embden, J.; Mulvaney, P. Phosphine-Free Synthesis of CdSe Nanocrystals, J. Phys. Chem. B 2005, 109, 20665–20668.
    (42) Sapra, S.; Rogach, A. L.; Feldmann, J. Phosphine-Free Synthesis of Monodisperse CdSe Nanocrystals in Olive Oil, J. Mater. Chem. 2006, 16, 3391–3395.
    (43) Chen, O.; Chen, X.; Yang, Y.; Lynch, J.; Wu, H.; Zhuang, J.; Cao, Y. C. Synthesis of Metal-Selenide Nanocrystals Using Selenium Dioxide as the Selenium Precursor, Angew. Chem. Int. Ed. 2008, 47, 8638–8641.
    (44) Hines, M. A.; Guyot-Sionnest, P. Strongly Luminescing ZnS-Capped CdSe Nanocrystals, J. Phys. Chem. 1996, 100, 468–470.
    (45) Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. Epitaxial Growth of Highly Luminescent CdSe–CdS Core–Shell Nanocrystals with Photostability and Electronic Accessibility, J. Am. Chem. Soc. 1997, 119, 7019–7029.
    (46) Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS Core–Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites, J. Phys. Chem. B 1997, 101, 9463–9475.
    (47) Micic, O. I.; Smith, B. B.; Nozik, A. J. Core–Shell Quantum Dots of Lattice-Matched ZnCdSe2 Shells on InP Cores: Experiment and Theory, J. Phys.Chem. B 2000, 104, 12149–12156.
    (48) Cao, Y.; Banin, U. Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores, J. Am. Chem. Soc. 2000, 122, 9692–9702.
    (49) Manna, L.; Scher, E. C.; Li, L.-S.; Alivisatos, A. P. Epitaxial Growth and Photochemical Annealing of Graded CdS/ZnS Shells on Colloidal CdSe Nanorods, J. Am. Chem. Soc. 2002, 124, 7136–7145.
    (50) Cumberland, S. L.; Hanif, K. M.; Javier, A.; Khitrov, G. A.; Strouse, G. F.; Woessner, S. M.; Yun, C. S. Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials, Chem. Mater. 2002, 14, 1576–1584.
    (51) Reiss, P.; Bleuse, J.; Pron, A. Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion, Nano Lett. 2002, 2, 781–784.
    (52) Li, J. J.; Wang, Y. A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction, J. Am. Chem. Soc. 2003, 125, 12567–12575.
    (53) Erwin, S. C.; Zu, L.; Haftel, M. I.; Efros, A. L.; Kennedy, T. A.; Norris, D. J. Doping Semiconductor Nanocrystals, Nature 2005, 436, 91–94.
    (54) Norris, D. J.; Efros, A. L.; Steven C. Erwin, S. C. Doped Nanocrystals, Science 2008, 319, 1776–1779.
    (55) Yang, Y.; Chen, O.; Angerhofer, A.; Cao, Y. Radial-Position-Controlled Doping in CdS/ZnS Core/Shell Nanocrystals, J. Am. Chem. Soc. 2006, 128, 12428–12429.
    (56) Pradhan, N.; Goorskey, D.; Thessing, J.; Peng, X. An Alternative of CdSe Nanocrystal Emitters Pure and Tunable Impurity Emissions in ZnSe Nanocrystals, J. Am. Chem. Soc. 2005, 127, 17586–17587.
    (57) Pradhan, N.; Peng, X. Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters: Control of Optical Performance via Greener Synthetic Chemistry, J. Am. Chem. Soc. 2007, 129, 3339–3347.
    (58) Pradhan, N.; Battaglia, D. M.; Liu, Y. C.; Peng, X. Efficient, Stable, Small, and Water-Soluble Doped ZnSe Nanocrystal Emitters as Non-Cadmium BiomedicalLabels, Nano Lett. 2007, 7, 312–317.
    (59) Mikulec, F. V.; Kuno, M.; Bennati, M.; Hall, D. A.; Griffin, R. G.; Bawendi, M. G. Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals, J. Am. Chem. Soc. 2000, 122, 2532–2540.
    (60) Norris, D. J.; Yao, N.; Charnock, F. T.; Kennedy, T. A. High-Quality Manganese-Doped ZnSe Nanocrystals, Nano Lett. 2001, 1, 3–7.
    (61) Suyver, J. F.; Wuister, S. F.; Kelly, J. J.; Meijerink, A. Synthesis and Photoluminescence of Nanocrystalline ZnS:Mn2+, Nano Lett. 2001, 1, 429–433.
    (62) Yang, H.; Holloway, P. H. Enhanced Photoluminescence from CdS:Mn/ZnS Core/Shell Quantum Dots, Appl. Phys. Lett. 2003, 82, 1965–1967.
    (63) Yang, H.; Holloway, P. H. Efficient and Photostable ZnS-Passivated CdS:Mn Luminescent Nanocrystals, Adv. Funct. Mater. 2004, 14, 152–156.
    (64) Santra, S.; Yang, H.; Holloway, P. H.; Stanley, J. T.; Mericle, R. A. Synthesis of Water-Dispersible Fluorescent, Radio-Opaque, and Paramagnetic CdS:Mn/ZnS Quantum Dots: A Multifunctional Probe for Bioimaging, J. Am. Chem. Soc. 2005, 127, 1656–1657.
    (65) Nag, A.; Sarma D. D. White Light from Mn2+-Doped CdS Nanocrystals: A New Approach, J. Phys. Chem. C 2007, 111, 13641–13644.
    (66) Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A General Strategy for Nanocrystal Synthesis, Nature 2005, 437, 121–124.
    (67) Ge, J. P.; Chen, W.; Liu, L. P.; Li, Y. D. Formation of Disperse Nanoparticles at the Oil/Water Interface in Normal Microemulsions, Chem.–Eur. J. 2006, 12, 6552–6558.
    (68) Pan, D. C.; Jiang, S. C.; An, L. J.; Jiang, B. Z. Controllable Synthesis of Highly Luminescent and Monodisperse CdS Nanocrystals by a Two-Phase Approach under Mild Conditions, Adv. Mater. 2004, 16, 982–985.
    (69) Pan, D. C.; Wang, Q.; Jiang, S. C.; Ji, X. L.; An, L. J. Synthesis of Extremely Small CdSe and Highly Luminescent CdSe/CdS Core–Shell Nanocrystals via a Novel Two-Phase Thermal Approach, Adv. Mater. 2005, 17, 176–179.
    (70) Pan, D. C.; Wang, Q.; Pang, J. B.; Jiang, S. C.; Ji, X. L.; An, L. J. Semiconductor“Nano-Onions”with Multifold Alternating CdS/CdSe or CdSe/CdS Structure, Chem. Mater. 2006, 18, 4253–4258.
    (71) Pan, D. C.; Wang, Q.; Jiang, S. C.; Ji, X. L.; An, L. J. Low-Temperature Synthesis of Oil-Soluble CdSe, CdS, and CdSe/CdS Core–Shell Nanocrystals by Using Various Water-Soluble Anion Precursors, J. Phys. Chem. C 2007, 111, 5661–5666.
    (72) Wang, Q.; Pan, D. C.; Jiang, S. C.; Ji, X. L.; An, L. J.; Jiang, B. Z. Luminescent CdSe and CdSe/CdS Core–Shell Nanocrystals Synthesized via a Combination of Solvothermal and Two-Phase Thermal Routes, J. Lumin. 2006, 118, 91–98.
    (73) Dance, I. G.; Choy, A.; Scudder, M. L. Syntheses, Properties, and Molecular and Crystal Structures of (Me4N)4[E4M10(SPh)16] (E = Sulfur or Selenium; M = Zinc or Cadmium): Molecular Supertetrahedral Fragments of the Cubic Metal Chalcogenide Lattice, J. Am. Chem. Soc. 1984, 106, 6285–6295.
    (74) Herron, N.; Calabrese, J. C.; Farneth, W. E.; Wang, Y. Crystal Structure and Optical Properties of Cd32S14(SC6H5)36·DMF4, a Cluster with a 15 Angstrom CdS Core, Science 1993, 259, 1426–1428.
    (75) Vossmeyer, T.; Reck, G.; Katsikas, L.; Haupt, E. T. K.; Schulz, B.; Weller, H. A "Double-Diamond Superlattice" Built Up of Cd17S4(SCH2CH2OH)26 Clusters, Science 1995, 267, 1476–1479.
    (76) Soloviev, V.; Eichofer, A.; Fenske, D.; Banin, U. Molecular Limit of a Bulk Semiconductor Size Dependence of the Band Gap in CdSe Cluster Molecules, J. Am. Chem. Soc. 2000, 122, 2673–2674.
    (77) Soloviev, V. N.; Eichhofer, A.; Fenske, D.; Banin, U. Size-Dependent Optical Spectroscopy of a Homologous Series of CdSe Cluster Molecules, J. Am. Chem. Soc. 2001, 123, 2354–2364.
    (78) Kasuya, A.; Sivamohan, R.; Barnakov, Y. A.; Dmitruk, I. M.; Nirasawa, T.; Romanyuk, V. R.; Kumar, V.; Mamykin, S. V.; Tohji, K.; Jeyadevan, B.; Shinoda, K.; Kudo, T.; Terasaki, O.; Liu, Z.; Belosludov, R. V.; Sundararajan, V.; Kawazoe, Y.Ultra-Stable Nanoparticles of CdSe Revealed from Mass Spectrometry, Nat. Mater. 2004, 3, 99–102.
    (79) Kudera, S.; Zanella, M.; Giannini, C.; Rizzo, A.; Li, Y.; Gigli, G.; Cingolani, R.; Ciccarella, G.; Spahl, W.; Parak, W. J.; Manna, L. Sequential Growth of Magic-Size CdSe Nanocrystals, Adv. Mater. 2007, 19, 548–552.
    (80) Ku?ur, E.; Ziegler, J.; Nann, T. Synthesis and Spectroscopic Characterization of Fluorescent Blue-Emitting Ultrastable CdSe Clusters, Small 2008, 4, 883–887.
    (81) Ouyang, J.; Zaman, Md. B.; Yan, F. J.; Johnston, D.; Li, G.; Wu, X.; Leek, D.; Ratcliffe, C. I.; Ripmeester, J. A.; Yu, K. Multiple Families of Magic-Sized CdSe Nanocrystals with Strong Bandgap Photoluminescence via Noninjection One-Pot Syntheses, J. Phys. Chem. C 2008, 112, 13805–13811.
    (82) Evans, C. M.; Guo, L.; Peterson, J. J.; Maccagnano-Zacher, S.; Krauss, T. D. Ultrabright PbSe Magic-sized Clusters, Nano Lett. 2008, 8, 2896–2899.
    (83) Brennan, J. G.; Siegrist, T.; Carroll, P. J.; Stuczynski, S. M.; Brus, L. E.; Reynders, P.; Steigerwald, M. L. Bulk and Nanostructure Group II-VI Compounds from Molecular Organometallic Precursors, Chem. Mater. 1990, 2, 403–409.
    (84) Dagtepe, P.; Chikan, V.; Jasinski, J.; Leppert, V. J. Quantized Growth of CdTe Quantum Dots; Observation of Magic-Sized CdTe Quantum Dots, J. Phys. Chem. C 2007, 111, 14977–14983.
    (85) Peng, Z. A.; Peng, X. Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes: Nucleation and Growth, J. Am. Chem. Soc. 2002, 124, 3343–3353.
    (86) Pradhan, N.; Xu, H. F.; Peng, X. G. Colloidal CdSe Quantum Wires by Oriented Attachment, Nano Lett. 2006, 6, 720–724.
    (87) Pan, D.; Ji, X.; An, L.; Lu, Y. Observation of Nucleation and Growth of CdS Nanocrystals in a Two-Phase System, Chem. Mater. 2008, 20, 3560–3566.
    (88)Yu, Q. Y.; Liu, C. Y.; Zhang, Z. Y.; Liu, Y. Facile Synthesis of Semiconductor and Noble Metal Nanocrystals in High-Boiling Two-Phase Liquid/Liquid Systems, J. Phys. Chem. C 2008, 112, 2266–2270.
    (89) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-Organization of CdSeNanocrystallites into Three-Dimensional Quantum Dot Superlattices, Science 1995, 270, 1335–1338.
    (90) Bai, F.; Wang, D. S.; Huo , Z. Y.; Chen, W.; Liu, L. P.; Liang , X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. D. A Versatile Bottom-up Assembly Approach to Colloidal Spheres from Nanocrystals, Angew. Chem. Int. Ed. 2007, 46, 6650–6653.
    (91) Wang, D. S.; Xie, T.; Peng, Q.; Li, Y. D. Ag, Ag2S, and Ag2Se Nanocrystals: Synthesis, Assembly, and Construction of Mesoporous Structures, J. Am. Chem. Soc. 2008, 130, 4016–4022.
    (92) Zhuang, Z. B.; Peng, Q.; Wang, X.; Li, Y. D. Tetrahedral Colloidal Crystals of Ag2S Nanocrystals, Angew. Chem. Int. Ed. 2007, 46, 8174–8177.
    (93) Zhuang, J.; Wu, H.; Yang, Y.; Cao, Y. C. Supercrystalline Colloidal Particles from Artificial Atoms, J. Am. Chem. Soc. 2007, 129, 14166–14167.
    (94) Zhuang, J.; Wu, H.; Yang, Y.; Cao, Y. C. Controlling Colloidal Superparticle Growth Through Solvophobic Interactions, Angew. Chem. Int. Ed. 2008, 47, 2208–2212.
    (95) Redl, F. X.; Cho, K. S.; Murray, C. B.; O’Brien, S. Three-Dimensional Binary Superlattices of Magnetic Nanocrystals and Semiconductor Quantum Dots. Nature 2003, 423, 968–971.
    (96) Shevchenko, E. V.; Talapin, D. V.; O’Brien, S.; Murray, C. B. Polymorphism in AB13 Nanoparticle Superlattices: An Example of Semiconductor–Metal Metamaterials. J. Am. Chem. Soc. 2005, 127, 8741–8747.
    (97) Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O’Brien, S.; Murray, C. B. Structural Diversity in Binary Nanoparticle Superlattices. Nature 2006, 439, 55–59.
    (98) Shevchenko, E. V.; Talapin, D. V.; Murray, C. B.; O’Brien, S. Structural Characterization of Self-Assembled Multifunctional Binary Nanoparticle Superlattices. J. Am. Chem. Soc. 2006, 128, 3620–3637.
    (99) Chen, Z.; Moore, J.; Radtke, G.; Sirringhaus, H.; O’Brien, S. Binary Nanoparticle Superlattices in the Semiconductor–Semiconductor System: CdTe and CdSe. J. Am. Chem. Soc. 2007, 129, 15702–15709.
    (100) Chen, Z.; O’Brien, S. Structure Direction of II–VI Semiconductor Quantum DotBinary Nanoparticle Superlattices by Tuning Radius Ratio, ACS Nano 2008, 2, 1219–1229.
    (101) Lu, C.; Chen, Z.; O’Brien, S. Optimized Conditions for the Self-Organization of CdSe–Au and CdSe–CdSe Binary Nanoparticle Superlattices, Chem. Mater. 2008, 20, 3594–3600.
    (102) Overgaag, K.; Evers, W.; de Nijs, B.; Koole, R.; Meeldijk, J.; Vanmaekelbergh, D. Binary Superlattices of PbSe and CdSe Nanocrystals, J. Am. Chem. Soc. 2008, 130, 7833–7835.
    (103) Vlasov, Y, A,; Nan, Y.; Norris, D. J.; Chemical Approaches to Three-Dimensional Semiconductor Photonic Crystals, Adv. Mater. 1999, 11, 165–169.
    (104) Braun, P. V.; Wiltzius, P. Electrochemically Grown Photonic Crystals, Nature, 1999, 402, 603–604.
    (105) Braun, P. V.; Wiltzius, P. Electrochemical Fabrication of 3D Microperiodic Porous Materials, Adv. Mater. 2001, 13, 482–485.
    (106) Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S. Three-Dimensionally Ordered Array of Air Bubbles in a Polymer Film, Science 2001, 292, 79–83.
    (107) Song, L. L.; Bly, R. K.; Wilson, J. N.; Bakbak, S.; Park, J. O.; Srinivasarao, M.; Bunz, U. H. F. Facile Microstructuring of Organic Semiconducting Polymers by the Breath Figure Method: Hexagonally Ordered Bubble Arrays in Rigid Rod-Polymers, Adv. Mater. 2004, 16, 115–118.
    (108) Boker, A.; Lin, Y.; Chiapperini, K.; Horowitz, R.; Thompson, M.; Carreon, V.; Xu, T.; Abetz, C.; Skaff, H.; Dinsmore, A. D.; Emrick, T.; Russell, T. P. Hierarchical Nanoparticle Assemblies Formed by Decorating Breath Figures, Nat. Mater. 2004, 3, 302–306.
    (109) Xu, X. X.; Wang, X.; Nisar, A.; Liang, X.; Zhuang, J.; Hu, S.; Zhuang, Y. Combinatorial Hierarchically Ordered 2D Architectures, Adv. Mater. 2008, 20, 3702–3708.
    (110) Xu, X. X.; Zhuang, J,; Wang X. SnO2 Quantum Dots and Quantum Wires Controllable Synthesis, Self-Assembled 2D Architectures, and Gas-Sensing Properties,J. Am. Chem. Soc. 2008, 130, 12527–12535.
    (111) Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor Nanocrystals as Fluorescent Biological Labels, Science 1998, 281, 2013–2016.
    (112) Chan, W. C. W.; Nie, S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science 1998, 281, 2016–2018.
    (113) Wang, Y.; Wong, J. F.; Teng, X.; Lin, X. Z.; Yang, H.“Pulling”Nanoparticles into Water Phase Transfer of Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions ofα-Cyclodextrin, Nano Lett. 2003, 3, 1555–1559.
    (114) Pellegrino, T.; Manna, L.; Kudera, S.; Liedl, T.; Koktysh, D.; Rogach, A. L.; Keller, S.; Rdler, J.; Natile, G.; Parak, W. J. Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell: A General Route to Water Soluble Nanocrystals, Nano Lett. 2004, 4, 703–707.
    (115) Yu, W. W.; Chang, E.; Falkner, J. C.; Zhang, J.; Al-Somali, A. M.; Sayes, C. M.; Johns, J.; Drezek, R.; Colvin, V. L. Forming Biocompatible and Nonaggregated Nanocrystals in Water Using Amphiphilic Polymers, J. Am. Chem. Soc. 2007, 129, 2871–2879.
    (116) Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles, Science 2002, 298, 1759–1762.
    (117) Fan, H. Y.; Yang, K.; Boye, D. M.; Sigmon, T.; Malloy, K. J.; Xu, H. F.; Lopez, G. P.; Brinker, C. J. Self-Assembly of Ordered, Robust, Three-Dimensional Gold NanocrystalSilica Arrays, Science 2004, 304, 567–571.
    (118) Fan, H. Y.; Leve, E. W.; Scullin, C.; Gabaldon, J.; Tallant, D.; Bunge, S.; Boyle, T.; Wilson, M. C.; Brinker, C. J. Surfactant-Assisted Synthesis of Water-Soluble and Biocompatible Semiconductor Quantum Dot Micelles, Nano Lett. 2005, 5, 645–648.
    (119) Fan, H. Y.; Chen, Z.; Brinker, C. J.; Clawson, J.; Alam, T. Synthesis of Organo-Silane Functionalized Nanocrystal Micelles and Their Self-Assembly, J. Am. Chem. Soc. 2005, 127, 13746–13747.
    (120) Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.;Alivisatos, A. P. Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots, J. Phys. Chem. B 2001, 105, 8861–8871.
    (121) Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. Self-assembly of CdSe–ZnS Quantum Dots Bioconjugates Using an Engineered Recombinant Protein, J. Am. Chem. Soc. 2000, 122, 12142–12150.
    (122) Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics, Science 2005, 307, 538–544.
    (123) Chan, W. C. W.; Maxwell, D. J.; Gao, X. H.; Bailey, R. E.; Han, M. Y.; Nie, S. M. Luminescent Quantum Dots for Multiplexed Biological Detection and Imaging, Curr. Opin. Biotechnol. 2002, 13, 40–46.
    (124) Wu, X.; Liu, H.; Liu, J.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N.; Peale, F.; Bruchez, M. P. Immunofluorescent Labeling of Cancer Marker Her2 and Other Cellular Targets with Semiconductor Quantum Dots, Nat. Biotechnol. 2003, 21, 41–46.
    (125) Han, M.; Gao, X.; Su, J. Z.; Nie, S. Quantum-Dot-Tagged Microbeads f?or Multiplexed Optical Coding of Biomolecules, Nat. Biotechnol. 2001, 19, 631–635.
    (126) Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo, Science 2003, 300, 1434–1437.
    (127) Dahan, M.; Laurence, T.; Pinaud, F.; Chemla, D. S.; Alivisatos, A. P.; Sauer, M.; Weiss, S. Time-Gated Biological Imaging by Use of Colloidal Quantum Dots, Optics Lett. 2001, 26, 825–827.
    (128) Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the Cytotoxicity of Semiconductor Quantum Dots, Nano Lett. 2004, 4, 11–18.
    (129) Kirchner, C.; Liedl, T.; Kudera, S.; Pellegrino, T.; Javier, A. M.; Gaub, H. E.; Stolzle, S.; Fertig, N.; Parak, W. J. Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles, Nano Lett. 2005, 5, 331–338.
    (130) Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing, Nat. Mater. 2005, 4, 435–446.
    (131) Gattás-Asfura, K. M.; Leblanc, R. M.Peptide-Coated CdS Quantum Dots for the Optical Detection of Copper(II) and Silver(I), Chem. Commun. 2003, 2684–2685.
    (132) Fernández-Argüelles, M. T.; Jin, W. J.; Costa-Fernández, J. M.; Pereiro, R.; Sanz-Medel, A. Surface-Modified CdSe Quantum Dots for the Sensitive and Selective Determination of Cu(II) in Aqueous Solutions by Luminescent Measurements, Analytica Chimica Acta, 2005, 549, 20–25.
    (133) Ali, E. M.; Zheng, Y.; Yu, H.; Ying, J. Y. Ultrasensitive Pb2+ Detection by Glutathione-Capped Quantum Dots, Anal. Chem. 2007, 9, 9452–9458.
    (134) Li, H. B.; Zhang, Y.; Wang, X. Q.; Xiong, D. J.; Bai, Y. Q. Calixarene Capped Quantum Dots as Luminescent Probes for Hg2+ Ions, Mater. Lett. 2007, 61, 1474–1477.
    (135) Jin, W. J.; Costa-Fernández, J. M.; Pereiro, R.; Sanz-Medel, A. Surface-Modified CdSe Quantum Dots as Luminescent Probes for Cyanide Determination, Analytica Chimica Acta, 2004, 522, 1–8.
    (136) Jin, W. J.; Fernández-Argüelles, M. T.; Costa-Fernández, J. M.; Pereiro, R.; Sanz-Medel, A. Photoactivated Luminescent CdSe Quantum Dots as Sensitive Cyanide Probes in Aqueous Solutions, Chem. Commun. 2005, 883–885.
    (137) Lakowicz, J. R.; Gryczynski, I.; Gryczynski, Z.; Murphy, C. J. Luminescence Spectral Properties of CdS Nanoparticles, J. Phys. Chem. B 1999, 103, 7613–7620.
    (138)Tomasulo, M.; Yildiz, I.; Raymo, F. M. pH–Sensitive Quantum Dots, J. Phys. Chem. B 2006, 110, 3853–3855.
    (139) Ji, X.; Zheng, J.; Xu, J.; Rastogi, V. K.; Cheng, T. C.; DeFrank, J. J.; Leblanc, R. M. (CdSe)ZnS Quantum Dots and Organophosphorus Hydrolase Bioconjugate as Biosensors for Detection of Paraoxon, J. Phys. Chem. B 2005, 109, 3793–3799.
    (140) Liang, J.; Huang, S.; Zeng, D.; He, Z.; Ji, X.; Ai, X.; Yang, H. CdSe Quantum Dots as Luminescent Probes for Spironolactone Determination, Talanta 2006, 69, 126–130.
    (141) Lin. Y. F.; Hsu, Y. J.; Cheng, W. Y.; Lu, S. Y. Differential Sensing of Serineand Tyrosine with Aligned CdS Nanowire Arrays Based on pH-Dependent Photoluminescence Behavior, ChemPhysChem 2009, 10, 711–714.
    (142) Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M. Self-Assembled Nanoscale Biosensors Based on Quantum Dot FRET Donors, Nat. Mater. 2003, 2, 630–638.
    (143) Goldman, E. R.; Medintz, I. L.; Whitley, J. L.; Hayhurst, A.; Clapp, A. R.; Uyeda, H. T.; Deschamps, J. R.; Lassman, M. E.; Mattoussi, H. A Hybrid Quantum Dot–Antibody Fragment Fluorescence Resonance Energy Transfer–Based TNT Sensor, J. Am. Chem. Soc. 2005, 127, 674–6751.
    (144) Nazzal, A. Y.; Qu, L.; Peng, X.; Xiao, M. Photoactivated CdSe Nanocrystals as Nanosensors for Gases, Nano Lett. 2003, 3, 819–822.
    (145) Myung, N.; Bae, Y.; Bard, A. J. Enhancement of the Photoluminescence of CdSe Nanocrystals Dispersed in CHCl3 by Oxygen Passivation of Surface States, Nano Lett. 2003, 3, 747–749.
    (146) Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid Nanorod-Polymer Solar Cells, Science 2002, 295, 2425–2427.
    (147) Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled Growth of Tetrapod-Branched Inorganic Nanocrystals, Nat. Mater. 2003, 2, 382–385.
    (148) Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J.; Wang, L.-W.; Alivisatos, A. P. Colloidal Nanocrystal Heterostructures with Linear and Branched Topology, Nature 2004, 430, 190–195.
    (149) Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution, Science 2005, 310, 462–465.
    (150) Shockley, W.; Queisser, H. J. Detailed Balance Limit of Efficiency of p–n Junction Solar Cells, J. Appl. Phys. 1961, 32, 510–519.
    (151) Nozik, A. J. Quantum Dot Solar Cells, Physica E 2002, 14, 115–120.
    (152) Nozik, A. J. Spectroscopy and Hot Electron Relaxation Dynamics in Semiconductor Quantum Wells and Quantum Dots, Annu. Rev. Phys. Chem. 2001, 52, 193–231.
    (153) Schaller, R. D.; Klimov, V. I. High Efficiency Carrier Multiplication in PbSeNanocrystals Implications for Solar Energy Conversion, Phys. Rev. Lett. 2004, 92, 186601.
    (154) Ellingson, R.; Beard, M. C.; Johnson, J. C.; Yu, P.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots, Nano Lett. 2005, 5, 865–871.
    (155) Schaller, R. D.; Sykora, M.; Pietryga, J. M.; Klimov, V. I. Seven Excitons at a Cost of One Redefining the Limits for Conversion Efficiency of Photons into Charge Carriers, Nano Lett. 2006, 6, 424–429.
    (156) Murphy, J. E.; Beard, M. C.; Norman, A. G.; Ahrenkiev, S. P.; Johnson, J. C.; Yu, P.; Micic, O. I.; Ellingson, R. J.; Nozik, A. J. PbTe Colloidal Nanocrystals Synthesis, Characterization, and Multiple Exciton Generation, J. Am. Chem. Soc. 2006, 128, 3241–3247.
    (157) Shabaev, A.; Efros, Al. L.; Nozik, A. J. Multiexciton Generation by a Single Photon in Nanocrystals, Nano Lett. 2006, 6, 2856–2863.
    (158) Klimov, V. I. Mechanisms for Photogeneration and Recombination of Multiexcitons in Semiconductor Nanocrystals: Implications for Lasing and Solar Energy Conversion, J. Phys. Chem. B 2006, 110, 16827–16845.
    (159) Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.; Reese, M. O.; Ellingson, R. J.; Nozik, A. J. Schottky Solar Cells Based on Colloidal Nanocrystal Films, Nano Lett. 2008, 8, 3488–3492.
    (160) Law, M.; Beard, M. C.; Choi, S.; Luther, J. M.; Hanna, M. C.; Nozik, A. J. Determining the Internal Quantum Efficiency of PbSe Nanocrystal Solar Cells with the Aid of an Optical Model, Nano Lett. 2008, 8, 3904–3910.
    (161) Beard, M. C.; Knutsen, K. P.; Yu, P. R.; Luther, J. M.; Song, Q.; Metzger, W. K.; Ellingson, R. J.; Nozik, A. J. Multiple Exciton Generation in Colloidal Silicon Nanocrystals, Nano Lett. 2007, 7, 2506–2512.
    (162) Robel, I.; Bunker, B.; Kamat, P. V. SWCNT–CdS Nanocomposite as Light Harvesting Assembly, Photoinduced Charge Transfer Interactions. Adv. Mater. 2005, 17, 2458–2463.
    (163) Kongkanand, A.; Kamat, P. V. Electron Storage in Single Wall CarbonNanotubes. Fermi Level Equilibration in Semiconductor–SWCNT Suspensions, ACS Nano 2007, 1, 13–21.
    (164) Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films, J. Am. Chem. Soc. 2006, 128, 2385–2393.
    (165) Robel, I.; Kuno, M.; Kamat, P. V. Size-Dependent Electron Injection from Excited CdSe Quantum Dots into TiO2 Nanoparticles, J. Am. Chem. Soc. 2007, 129, 4136–4137.
    (166) Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe?TiO2 Architecture, J. Am. Chem. Soc. 2008, 130, 4007–4015.
    (167) Brown, P.; Kamat, P. V. Quantum Dot Solar Cells. Electrophoretic Deposition of CdSe–C60 Composite Films and Capture of Photogenerated Electrons with nC60 Cluster Shell, J. Am. Chem. Soc. 2008, 130, 8890–8891.
    (168) Kamat, P. V. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion, J. Phys. Chem. C 2007, 111, 2834–2860.
    (169) Kamat, P. V. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters, J. Phys. Chem. C 2008, 112, 18737–18753.
    (170) Nairn, J. J.; Shapiro, P. J.; Twamley, B.; Pounds, T.; von Wandruszka, R.; Fletcher, T. R.; Williams, M.; Wang, C.; Norton, M. G. Preparation of Ultrafine Chalcopyrite Nanoparticles via the Photochemical Decomposition of Molecular Single-Source Precursors, Nano Lett. 2006, 6, 1218–1223.
    (171) Choi, S. H.; Kim, E. G.; Hyeon, T. One-Pot Synthesis of Copper-Indium Sulfide Nanocrystal Heterostructures with Acorn, Bottle, and Larva Shapes, J. Am. Chem. Soc. 2006, 128, 2520–2521.
    (172) Peng, H.; Schoen, D. T.; Meister, S.; Zhang, X. F.; Cui, Y. Synthesis and Phase Transformation of In2Se3 and CuInSe2 Nanowires, J. Am. Chem. Soc. 2007, 129, 34–35.
    (173) Pan, D.; An, L.; Sun, Z.; Hou, W.; Yang, Y.; Yang, Z.; Lu, Y. Synthesis of Cu–In–S Ternary Nanocrystals with Tunable Structure and Composition, J. Am. Chem.Soc. 2008, 130, 5620–5621.
    (174) Allen, P. M.; Bawendi, M. G. Ternary I–III–VI Quantum Dots Luminescent in the Red to Near-Infrared, J. Am. Chem. Soc. 2008, 130, 9240–9241.
    (175) Guo, Q.; Kim, S. J.; Kar, M.; Shafarman, W. N.; Birkmire, R. W.; Stach, E. A.; Agrawal, R.; Hillhouse, H. W. Development of CuInSe2 Nanocrystal and Nanoring Inks for Low-Cost Solar Cells, Nano Lett. 2008, 8, 2982–2987.
    (176) Koo, B.; Patel, R. N.; Korgel, B. A. Synthesis of CuInSe2 Nanocrystals with Trigonal Pyramidal Shape, J. Am. Chem. Soc. 2009, 131, 3134–3135.
    (177) Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-Emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer, Nature 1994, 370, 354–357.
    (178) Schlamp, M. C.; Peng, X. G.; Alivisatos, A. P. Improved Efficiencies in Light Emitting Diodes Made with CdSe(CdS) Core/Shell Type Nanocrystals and a Semiconducting Polymer. J. Appl. Phys. 1997, 82, 5837–5842.
    (179) Coe, S.; Woo, W.-K.; Bawendi, M.; Bulovi?, V. Electroluminescence from Single Monolayers of Nanocrystals in Molecular Organic Devices, Nature 2002, 420, 800–803.
    (180) Coe-Sullivan, S.; Woo, W.-K.; Steckel, J. S.; Bawendi, M.; Bulovi?, V. Tuning the Performance of Hybrid Organic/Inorganic Quantum Dot Light-Emitting Devices, Org. Electron. 2003, 4, 123–130.
    (181) Coe-Sullivan, S.; Steckel, J. S.; Woo, W.-K.; Bawendi, M. G.; Bulovi?, V. Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-Casting, Adv. Funct. Mater. 2005, 15, 1117–1124.
    (182) Tesster, N.; Medvedev, V.; Kazes, M.; Kan, S.; Banin, U. Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes, Science 2002, 295, 1506–1508.
    (183) Mueller, A. H.; Petruska, M. A.; Achermann, M.; Werder, D. J.; Akhadov, E. A.; Koleske, D. D.; Hoffbauer, M. A.; Klimov, V. I. Multicolor Light-Emitting Diodes Based on Semiconductor Nanocrystals Encapsulated in GaN Charge Injection Layers, Nano Lett. 2005, 5, 1039–1044.
    (184) Zhao, J. L.; Bardecker, J. A.; Munro, A. M.; Liu, M. S.; Niu, Y. H.; Ding, I. K.;Luo, J. D.; Chen, B. Q.; Jen, A. K. Y.; Ginger, D. S. Efficient CdSe/CdS Quantum Dot Light-Emitting Diodes Using a Thermally Polymerized Hole Transport Layer, Nano Lett. 2006, 6, 463–467.
    (185) Niu, Y. H.; Munro, A. M.; Cheng, Y. J.; Tian, Y.; Liu, M. S.; Zhao, J.; Bardecker, J. A.; Jen-La Plante, I.; Ginger D. S.; Jen, A. K. Y. Improved Performance Light-Emitting Diodes Quantum Dot Layer, Adv. Mater. 2007, 19, 3371–3376.
    (186) Sun, Q.; Wang, Y. A.; Li, L. S.; Wang, D.; Zhu, T.; Xu, J.; Yang, C.; Li, Y. Bright, Multicoloured Light-Emitting Diodes Based on Quantum Dots, Nature Photon. 2007, 1, 717–722.
    (187) Caruge, J. M.; Halpert, J. E.; Wood, V.; Bulovi?, V.; Bawendi, M. G. Colloidal Quantum-Dot Light-Emitting Diodes with Metal-Oxide Charge Transport Layers, Nature Photon. 2008, 2, 247–250.
    (188) Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi, M. G. Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots, Science 2000, 290, 314–317.
    (189) Eisler, H. J.; Sundar, V. C.; Bawendi, M. G.; Walsh, M.; Smith, H. I.; Klimov, V. Color-Selective Semiconductor Nanocrystal Laser, Appl. Phys. Lett. 2002, 80, 4614–4616.
    (190) Chan, Y.; Steckel, J. S.; Snee, P. T.; Caruge, J. M.; Hodgkiss, J. M.; Nocera, D. G.; Bawendi, M. G. Blue Semiconductor Nanocrystal Laser, Appl. Phys. Lett. 2005, 86, 073102.
    (191) Klimov, V. I.; Ivanov, S. A.; Nanda, J.; Achermann, M.; Bezel, I.; McGuire, J. A.; Piryatinski, A. Single-Exciton Optical Gain in Semiconductor Nanocrystals, Nature 2007, 447, 441–446.
    (192) Doose, S. Optical Amplification from Single Excitons in Colloidal Quantum Dots, Small 2007, 11, 1856–1858.
    (1) Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science 1996, 271, 933–937.
    (2) Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P.; Semiconductor Nanocrystals as Fluorescent Biological Labels, Science 1998, 281, 2013–2016.
    (3) Chan, W. C. W.; Nie, S. M. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science 1998, 281, 2016–2018.
    (4) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Ann. Rev. Mater. Sci. 2000, 30, 545–610.
    (5) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and Properties of Nanocrystals of Different Shapes, Chem. Rev. 2005, 105, 1025–1102.
    (6) Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites, J. Am. Chem. Soc. 1993, 115, 8706–8715.
    (7) Peng, Z. A.; Peng, X. Formation of High Quality CdSe and CdS Nanocrystals Using CdO as Precursor, J. Am. Chem. Soc. 2001, 123, 183–184.
    (8) Yu, W.; Peng, X. Formation of High-Quality CdS and Other II–VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers, Angew. Chem., Int. Ed. 2002, 41, 2368–2371.
    (9) Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F. X.; Zhang, J. Z.; Hyeon, T. Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals, J.Am. Chem. Soc. 2003, 125, 11100–11105.
    (10) Michalet , X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics, Science 2005, 307, 538–544.
    (11) Coe-Sullivan, S.; Woo, W.–K.; Steckel, J. S.; Bawendi, M.; Bulovi?, V. Tuning the Performance of Hybrid Organic/Inorganic Quantum Dot Light-Emitting Devices, Org. Electron. 2003, 4, 123–130.
    (12) Kamat, P. V. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters, J. Phys. Chem. C 2008, 112, 18737–18753.
    (13) Cao, Y. C.; Wang, J. One-Pot Synthesis of High-Quality Zinc-Blende CdS Nanocrystals, J. Am. Chem. Soc. 2004, 126, 14336–14337.
    (14) Yang, Y. A.; Wu, H.; Williams, K. R.; Cao, Y. C. Synthesis of CdSe and CdTe Nanocrystals without Precursor Injection, Angew. Chem. Int. Ed. 2005, 44, 6712–6715.
    (15) Chen, O.; Chen, X.; Yang, Y.; Lynch, J.; Wu, H.; Zhuang, J.; Cao, Y. C. Synthesis of Metal-Selenide Nanocrystals Using Selenium Dioxide as the Selenium Precursor, Angew. Chem. Int. Ed. 2008, 47, 8638–8641.
    (16) Deng, Z.; Cao, L.; Tang, F.; Zou, B. A New Route to Zinc-Blende CdSe Nanocrystals: Mechanism and Synthesis, J. Phys. Chem. B 2005, 109, 16671–16675.
    (17) Jasieniak, J.; Bullen, C.; van Embden, J.; Mulvaney, P. Phosphine-Free Synthesis of CdSe Nanocrystals, J. Phys. Chem. B 2005, 109, 20665–20668.
    (18) Sapra, S.; Rogach, A. L.; Feldmann, J. Phosphine-Free Synthesis of Monodisperse CdSe Nanocrystals in Olive Oil, J. Mater. Chem. 2006, 16, 3391–3395.
    (19) Ouyang, J.; Zaman, Md. B.; Yan, F. J.; Johnston, D.; Li, G.; Wu, X.; Leek, D.; Ratcliffe, C. I.; Ripmeester, J. A.; Yu, K. Multiple Families of Magic-Sized CdSe Nanocrystals with Strong Bandgap Photoluminescence via Noninjection One-Pot Syntheses, J. Phys. Chem. C 2008, 112, 13805–13811.
    (20) Pan, D. C.; Jiang, S. C.; An, L. J.; Jiang, B. Z. Controllable Synthesis of Highly Luminescent and Monodisperse CdS Nanocrystals by a Two-Phase Approach under Mild Conditions, Adv. Mater. 2004, 16, 982–985.
    (21) Pan, D. C.; Wang, Q.; Jiang, S. C.; Ji, X. L.; An, L. J. Synthesis of Extremely Small CdSe and Highly Luminescent CdSe/CdS Core–Shell Nanocrystals via a Novel Two-Phase Thermal Approach, Adv. Mater. 2005, 17, 176–179.
    (22) Pan, D. C.; Wang, Q.; Pang, J. B.; Jiang, S. C.; Ji, X. L.; An, L. J. Semiconductor“Nano-Onions”with Multifold Alternating CdS/CdSe or CdSe/CdS Structure, Chem. Mater. 2006, 18, 4253–4258.
    (23) Pan, D. C.; Wang, Q.; Jiang, S. C.; Ji, X. L.; An, L. J. Low-Temperature Synthesis of Oil-Soluble CdSe, CdS, and CdSe/CdS Core–Shell Nanocrystals by Using Various Water-Soluble Anion Precursors, J. Phys. Chem. C 2007, 111, 5661–5666.
    (24) Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A General Strategy for Nanocrystal Synthesis, Nature 2005, 437, 121–124.
    (25) Cademartiri, L.; Bertolotti, J.; Sapienza, R.; Wiersma, D. S.; von Freymann, G.; Ozin, G. A. Multigram Scale, Solventless, and Diffusion-Controlled Route to Highly Monodisperse PbS Nanocrystals, J. Phys. Chem. B 2006, 110, 671–673.
    (26) Yu, Q. Y.; Liu, C. Y.; Zhang, Z. Y.; Liu, Y. Facile Synthesis of Semiconductor and Noble Metal Nanocrystals in High-Boiling Two-Phase Liquid/Liquid Systems, J. Phys. Chem. C 2008, 112, 2266–2270.
    (27) Pan, D.; Ji, X.; An, L.; Lu, Y. Observation of Nucleation and Growth of CdS Nanocrystals in a Two-Phase System, Chem. Mater. 2008, 20, 3560–3566.
    (28) Demas, J. N.; Crosby, G. A. Measurement of Photoluminescence Quantum Yields. A Review, J. Phys. Chem. 1971, 75, 991–1024.
    (29) Kudera, S.; Zanella, M.; Giannini, C.; Rizzo, A.; Li, Y.; Gigli, G.; Cingolani, R.; Ciccarella, G.; Spahl, W.; Parak, W. J.; Manna, L. Sequential Growth of Magic-Size CdSe Nanocrystals, Adv. Mater. 2007, 19, 548–552.
    (30) Weller, H. Colloidal Semiconductor Q-Particles: Chemistry in the Transition Region Between Solid State and Molecules, Angew. Chem. Int. Ed. Engl. 1993, 32, 41–53.
    (31) Fernee, M. J.; Watt, A.; Warner, J.; Cooper, S.; Heckenberg, N.; Rubinsztein-Dunlop, H. Inorganic Surface Passivation of PbS Nanocrystals Resultingin Strong Photoluminescent Emission, Nanotechnology, 2003, 14, 991–997.
    (32) Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots, Nano Lett. 2005, 5, 865–871.
    (33) Cademartiri, L.; Montanari, E.; Calestani, G.; Migliori, A.; Guagliardi, A.; Ozin, G. A. Size-Dependent Extinction Coefficients of PbS Quantum Dots, J. Am. Chem. Soc. 2006, 128, 10337–10346.
    (34) Koole, R.; Allan, G.; Delerue, C.; Meijerink, A.; Vanmaekelbergh, D.; Houtepen, A. J. Optical Investigation of Quantum Confinement in PbSe Nanocrystals at Different Points in the Brillouin Zone, Small 2008, 4, 127–133.
    (35) Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals, Chem. Mater. 2003, 15, 2854–2860.
    (36) Efros, Al. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; Bawendi, M. G. Band-edge Exciton in Quantum Dots of Semiconductors with a Degenerate Valence Band: Dark and Bright Exciton States, Phys. Rev. B 1996, 54, 4843–4856.
    (37) Kuno, M.; Lee, J. K.; Babbousi, B. O.; Mikulec, F. V.; Bawendi, M. G. The Band Edge Luminescence of Surface Modified CdSe Nanocrystallites: Probing the Luminescing State, J. Chem. Phys. 1997, 106, 9869–9882.
    (38) Yu, Z.; Li, J.; O'Connor, D. B.; Wang, L.–W.; Barbara, P. F. Large Resonant Stokes Shift in CdS Nanocrystals, J. Phys. Chem. B 2003, 107, 5670–5674.
    (39) Bawendi, M. G.; Wilson, W. L.; Rothberg, L.; Carroll, P. J.; Jedju, T. M.; Steigerwald, M. L.; Brus, L. E. Electronic Structure and Photoexcited-Carrier Dynamics in Nanometer-Size CdSe Clusters, Phys. Rev. Lett. 1990, 65, 1623–1626.
    (40) Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of II–VI and III–V Colloidal Semiconductor Nanocrystal Growth“Focusing”of Size Distributions, J. Am. Chem. Soc. 1998, 120, 5343–5344.
    (41) Chen, X.; Samia, A. C. S.; Lou, Y.; Burda, C. Investigation of the Crystallization Process in 2 nm CdSe Quantum Dots, J. Am. Chem. Soc. 2005, 127, 4372–4375.
    (1) Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of Thiol-Derivatised Gold Nanoparticles in a Two-Phase Liquid–Liquid System, J. Chem. Soc., Chem. Commun. 1994, 7, 801–802.
    (2) Horswell, S. L.; Kiely, C. J.; O'Neil, I. A.; David, J.; Schiffrin, D. J. Alkyl Isocyanide-Derivatized Platinum Nanoparticles, J. Am. Chem. Soc. 1999, 121, 5573–5574.
    (3) Chen, S. W.; Huang, K.; Stearns, J. A. Alkanethiolate-Protected Palladium Nanoparticles, Chem. Mater. 2000, 12, 540–547.
    (4) Kang, S. Y.; Kim, K. Comparative Study of Dodecanethiol-Derivatized Silver Nanoparticles Prepared in One-Phase and Two-Phase Systems, Langmuir 1998, 14, 226–230.
    (5) Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A General Strategy for Nanocrystal Synthesis, Nature 2005, 437, 121–124.
    (6) Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Agarwal, V. V.; Saravanan, P. Films of Metal Nanocrystals Formed at Aqueous–Organic Interfaces, J. Phys. Chem. B 2003, 107, 7391–7395.
    (7) Kumar, A.; Mandal, S.; Mathew, S. P.; Selvakannan, P. R.; Mandale, A. B.; Chaudhari, R. V.; Sastry, M. Benzene- and Anthracene-Mediated Assembly of Gold Nanoparticles at the Liquid–Liquid Interface, Langmuir 2002, 18, 6478–6483.
    (8) Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A. D.; Russell, T. P. Nanoparticle Assembly and Transport at Liquid–Liquid Interfaces, Science 2003, 299, 226–229.
    (9) Duan, H.; Wang, D.; Kurth, D. G.; M?hwald, H. Directing Self-Assembly of Nanoparticles at Water/Oil Interfaces, Angew. Chem. Int. Ed. 2004, 43, 5639–5642.
    (10) Li, Y. J.; Huang, W. J.; Sun, S. G. A Universal Approach for the Self-Assembly of Hydrophilic Nanoparticles into Ordered Monolayer Films at a Toluene–Water Interface, Angew. Chem. Int. Ed. 2006, 45, 2537–2539.
    (11) Pan, D. C.; Jiang, S. C.; An, L. J.; Jiang, B. Z. Controllable Synthesis of Highly Luminescent and Monodisperse CdS Nanocrystals by a Two-Phase Approach under Mild Conditions, Adv. Mater. 2004, 16, 982–985.
    (12) Wang, Q.; Pan, D. C.; Jiang, S. C.; Ji, X. L.; An, L. J.; Jiang, B. Z. A New Two-Phase Route to High-Quality CdS Nanocrystals, Chem.–Eur. J. 2005, 11, 3843–3848.
    (13) Pan, D. C.; Wang, Q.; Jiang, S. C.; Ji, X. L.; An, L. J. Low-Temperature Synthesis of Oil-Soluble CdSe, CdS, and CdSe/CdS Core–Shell Nanocrystals by Using Various Water-Soluble Anion Precursors, J. Phys. Chem. C 2007, 111, 5661–5666.
    (14) Pan, D. C.; Wang, Q.; Jiang, S. C.; Ji, X. L.; An, L. J. Synthesis of Extremely Small CdSe and Highly Luminescent CdSe/CdS Core–Shell Nanocrystals via a Novel Two-Phase Thermal Approach, Adv. Mater. 2005, 17, 176–179.
    (15) Pan, D. C.; Wang, Q.; Pang, J. B.; Jiang, S. C.; Ji, X. L.; An, L. J. Semiconductor“nano-onions”with multifold alternating CdS/CdSe or CdSe/CdS structure, Chem. Mater. 2006, 18, 4253–4258.
    (16) Wang, Q.; Pan, D. C.; Jiang, S. C.; Ji, X. L.; An, L. J.; Jiang, B. Z. Luminescent CdSe and CdSe/CdS Core–Shell Nanocrystals Synthesized via a Combination of Solvothermal and Two-Phase Thermal Routes, J. Lumin. 2006, 118, 91–98.
    (17) Pan, D. C.; Zhao, N. N.; Wang, Q.; Jiang, S. C.; Ji, X. L.; An, L. J. Facile Synthesis and Characterization of Luminescent TiO2 Nanocrystals, Adv. Mater. 2005, 17, 1991–1995.
    (18) Zhao, N. N.; Pan, D. C.; Nie, W.; Ji, X. L. Two-Phase Synthesis of Shape-Controlled Colloidal Zirconia Nanocrystals and Their Characterization, J. Am. Chem. Soc. 2006, 128, 10118–10124.
    (19)Zhao, N. N.; Nie, W.; Liu, X. B.; Tian S. Z.; Zhang Y,; Ji, X. L. Shape- and Size-Controlled Synthesis and Dependent Magnetic Properties of NearlyMonodisperse Mn3O4 Nanocrystals, Small, 2008, 4, 77–81.
    (20) Swami, A.; Kumar, A.; D'Costa, M.; Pasricha, R.; Sastry, M. Variation in Morphology of Gold Nanoparticles Synthesized by the Spontaneous Reduction of Aqueous Chloroaurate Ions by Alkylated Tyrosine at a Liquid–Liquid and Air–Water Interface, J. Mater. Chem. 2004, 14, 2696–2702.
    (21) Jian, D. L.; Gao, Q. M. Synthesis of CdS Nanocrystals and Au/CdS Nanocomposites through Ultrasound Activation Liquid–Liquid Two-Phase Approach at Room Temperature, Chem. Eng. J. 2006, 121, 9–16.
    (22) Wan, J. X.; Chen, X. Y.; Wang, Z. H.; Yu, W. C.; Qian, Y. T. Synthesis of Uniform PbS Nanorod Bundles via a Surfactant-Assisted Interface Reaction Route, Mater. Chem. Phys. 2004, 88, 217–220.
    (23) Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites, J. Am. Chem. Soc. 1993, 115, 8706–8715.
    (24) Peng, Z. A.; Peng, X. G. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor, J. Am. Chem. Soc. 2001, 123, 183–184.
    (25) Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F. X.; Zhang, J. Z.; Hyeon, T. Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals, J. Am. Chem. Soc. 2003, 125, 11100–11105.
    (26) Jana, N. R.; Chen, Y. F.; Peng, X. G. Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach, Chem. Mater. 2004, 16, 3931–3935.
    (27) Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine, A.; Eychmüller, A.; Weller, H. CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift, J. Phys. Chem. 1994, 98, 7665–7673.
    (28) Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals, Chem. Mater. 2003, 15, 2854–2860.
    (29) Demas, J. N.; Crosby, G. A. Measurement of Photoluminescence Quantum Yields. A Review, J. Phys. Chem. 1971, 75, 991–1024.
    (30) Qu, L. H.; Peng, X. G. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth, J. Am. Chem. Soc. 2002, 124, 2049–2055.
    (31) Yu, W. W.; Peng, X. G. Formation of High-Quality CdS and Other II–VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers, Angew. Chem. Int. Ed. 2002, 41, 2368–2371.
    (32) Peng, Z. A.; Peng, X. G. Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes: Nucleation and Growth, J. Am. Chem. Soc. 2002, 124, 3343–3353.
    (33) Pradhan, N.; Efrima, S. Single-Precursor, One-Pot Versatile Synthesis under near Ambient Conditions of Tunable, Single and Dual Band Fluorescing Metal Sulfide Nanoparticles, J. Am. Chem. Soc. 2003, 125, 2050–2051.
    (34) Cao, Y. C.; Wang, J. H. One-Pot Synthesis of High-Quality Zinc-Blende CdS Nanocrystals, J. Am. Chem. Soc. 2004, 126, 14336–14337.
    (35) Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of II–VI and III–V Colloidal Semiconductor Nanocrystal Growth:“Focusing”of Size Distributions, J. Am. Chem. Soc. 1998, 120, 5343–5344.
    (36) Lou, X. W.; Yuan, C. l.; Archer L. A. An Unusual Example of Hyperbranched Metal Nanocrystals and Their Shape Evolution, Chem. Mater. 2006, 18, 3921–3923.
    (37) Song, J. H.; Kim, F.; Kim, D.; Yang, P. D. Crystal Overgrowth on Gold Nanorods: Tuning the Shape, Facet, Aspect Ratio, and Composition of the Nanorods, Chem.–Eur. J. 2005, 11, 910–916.
    (38) Hiramatsu, H.; Osterloh, F. E. A Simple Large Scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants, Chem. Mater. 2004, 16, 2509–2511.
    (39) Chen, M.; Feng, Y. G.; Wang, X.; Li, T. C.; Zhang, J. Y.; Qian, D. J. Silver Nanoparticles Capped by Oleylamine: Formation, Growth, and Self-Organization, Langmuir 2007, 23, 5296–5304.
    (40) Wiley, B.; Herricks, T.; Sun, Y. G.; Xia, Y. N. Polyol Synthesis of Silver Nanoparticles: Use of Chloride and Oxygen to Promote the Formation of Single-Crystal, Truncated Cubes and Tetrahedrons, Nano Lett. 2004, 4, 1733–1739.
    (41) Dahl, J. A.; Smith, B. L.; Hutchison, J. E. Toward Greener Nanosynthesis, Chem. Rev. 2007, 107, 2228–2269.
    (42) Michaels, A. M.; Nirmal, M.; Brus, L. E. Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals, J. Am. Chem. Soc. 1999, 121, 9932–9939.
    (43) Lin, X. Z.; Teng, X.; Yang, H. Direct Synthesis of Narrowly Dispersed Silver Nanoparticles Using a Single-Source Precursor, Langmuir 2003, 19, 10081–10085.
    (44) Jana, N. R.; Peng, X. G. Single-Phase and Gram-Scale Routes toward Nearly Monodisperse Au and Other Noble Metal Nanocrystals, J. Am. Chem. Soc. 2003, 125, 14280–14281.
    (45) Qu, L. H.; Peng, Z. A.; Peng, X. G. Alternative Routes toward High Quality CdSe Nanocrystals, Nano Lett. 2001, 1, 333–337.
    (46) Zaitseva, N.; Dai, Z. R.; Leon, F. R.; Krol, D. Optical Properties of CdSe Superlattices, J. Am. Chem. Soc. 2005, 127, 10221–10226.
    (47) Yang, Y.; Wu, H.; Williams, K.; Cao, Y. C. Synthesis of CdSe and CdTe Nanocrystals without Precursor Injection, Angew. Chem. Int. Ed. 2005, 44, 6712–6715.
    (48) Chen, O.; Chen, X.; Yang, Y.; Lynch, J.; Wu, H.; Zhuang, J.; Cao, Y. C. Synthesis of Metal–Selenide Nanocrystals Using Selenium Dioxide as the Selenium Precursor, Angew. Chem. Int. Ed. 2008, 47, 8638–8641.
    (49) Peng, X. G. Green Chemical Approaches toward High-Quality Semiconductor Nanocrystals, Chem.–Eur. J. 2002, 8, 335–339.
    (1) Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science 1996, 271, 933–937.
    (2) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Annu. Rev. Mater. Sci. 2000, 30, 545–610.
    (3) Peng, Z. A.; Peng, X. Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes: Nucleation and Growth, J. Am. Chem. Soc. 2002, 124, 3343–3353.
    (4) Cumberland, S. L.; Hanif, K. M.; Javier, A.; Khitrov, G. A.; Strouse, G. F.; Woessner, S. M.; Yun, C. S. Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials, Chem. Mater. 2002, 14, 1576–1584.
    (5) Herron, N.; Calabrese, J. C.; Farneth, W. E.; Wang, Y. Crystal Structure and Optical Properties of Cd32S14(SC6H5)36·DMF4, a Cluster with a 15 Angstrom CdS Core, Science 1993, 259, 1426–1428.
    (6) Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine, A.; Eychmüller, A.; Weller, H. CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift, J. Phys. Chem. 1994, 98, 7665–7673.
    (7) Kasuya, A.; Sivamohan, R.; Barnakov, Y. A.; Dmitruk, I. M.; Nirasawa, T.; Romanyuk, V. R.; Kumar, V.; Mamykin, S. V.; Tohji, K.; Jeyadevan, B.; Shinoda, K.; Kudo, T.; Terasaki, O.; Liu, Z.; Belosludov, R. V.; Sundararajan, V.; Kawazoe, Y. Ultra-Stable Nanoparticles of CdSe Revealed from Mass Spectrometry, Nat. Mater. 2004, 3, 99–102.
    (8) Kudera, S.; Zanella, M.; Giannini, C.; Rizzo, A.; Li, Y.; Gigli, G.; Cingolani, R.; Ciccarella, G.; Spahl, W.; Parak, W. J.; Manna, L. Sequential Growth of Magic-Size CdSe Nanocrystals, Adv. Mater. 2007, 19, 548–552.
    (9) Ouyang, J.; Zaman, Md. B.; Yan, F. J.; Johnston, D.; Li, G.; Wu, X.; Leek, D.; Ratcliffe, C. I.; Ripmeester, J. A.; Yu, K. Multiple Families of Magic-Sized CdSe Nanocrystals with Strong Bandgap Photoluminescence via Noninjection One-Pot Syntheses, J. Phys. Chem. C 2008, 112, 13805–13811.
    (10) Ku?ur, E.; Ziegler, J.; Nann, T. Synthesis and Spectroscopic Characterization of Fluorescent Blue-Emitting Ultrastable CdSe Clusters, Small 2008, 4, 883–887.
    (11) Chen, H. S.; Kumar, R. V. Discontinuous Growth of Colloidal CdSe Nanocrystals in the Magic Structure, J. Phys. Chem. C 2009, 113, 31–36.
    (12) Evans, C. M.; Guo, L.; Peterson, J. J.; Maccagnano-Zacher, S.; Krauss, T. D. Ultrabright PbSe Magic-sized Clusters, Nano Lett. 2008, 8, 2896–2899.
    (13) Brennan, J. G.; Siegrist, T.; Carroll, P. J.; Stuczynski, S. M.; Brus, L. E.; Reynders, P.; Steigerwald, M. L. Bulk and Nanostructure Group II-VI Compounds from Molecular Organometallic Precursors, Chem. Mater. 1990, 2, 403–409.
    (14) Dagtepe, P.; Chikan, V.; Jasinski, J.; Leppert, V. J. Quantized Growth of CdTe Quantum Dots; Observation of Magic-Sized CdTe Quantum Dots, J. Phys. Chem. C 2007, 111, 14977–14983.
    (15) Pradhan, N.; Xu, H. F.; Peng, X. G. Colloidal CdSe Quantum Wires by Oriented Attachment, Nano Lett. 2006, 6, 720–724.
    (16) Yu, W. W.; Peng, X. Formation of High-Quality CdS and Other II–VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers, Angew. Chem. Int. Ed. 2002, 41, 2368–2371.
    (17) Pan, D. C.; Jiang, S. C.; An, L. J.; Jiang, B. Z. Controllable Synthesis of Highly Luminescent and Monodisperse CdS Nanocrystals by a Two-Phase Approach under Mild Conditions, Adv. Mater. 2004, 16, 982–985.
    (18) Pan, D.; Ji, X.; An, L.; Lu, Y. Observation of Nucleation and Growth of CdS Nanocrystals in a Two-Phase System, Chem. Mater. 2008, 20, 3560–3566.
    (19)Yu, Q. Y.; Liu, C. Y.; Zhang, Z. Y.; Liu, Y. Facile Synthesis of Semiconductor and Noble Metal Nanocrystals in High-Boiling Two-Phase Liquid/Liquid Systems, J. Phys. Chem. C 2008, 112, 2266–2270.
    (20) Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites, J. Am. Chem. Soc. 1993, 115, 8706–8715.
    (21) Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of II–VI and III–V Colloidal Semiconductor Nanocrystal Growth:“Focusing”of Size Distributions, J. Am. Chem. Soc. 1998, 120, 5343–5344.
    (22) Peng, X. G. Green Chemical Approaches toward High-Quality Semiconductor Nanocrystals, Chem.–Eur. J. 2002, 8, 335–339.
    (23) Qu, L.; Yu, W. W.; Peng, X. G. In Situ Observation of the Nucleation and Growth of CdSe Nanocrystals, Nano Lett. 2004, 4, 465–469.
    (24) Weller, H. Colloidal Semiconductor Q-Particles: Chemistry in the Transition Region between Solid State and Molecules, Angew. Chem. Int. Ed. Engl. 1993, 32, 41–53.
    (25) Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals, Chem. Mater. 2003, 15, 2854–2860.
    (26) Landes, C.; Braun, M.; Burda, C.; El-Sayed, M. A. Observation of Large Changes in the Band Gap Absorption Energy of Small CdSe Nanoparticles Induced by the Adsorption of a Strong Hole Acceptor, Nano Lett. 2001, 1, 667–670.
    (27) Chemseddine, A.; Weller, H. Highly Monodisperse Quantum Sized CdS Particles by Size Selective Precipitation, Ber. Bunsenges. Phys. Chem. 1993, 97, 636–637.
    (28) Aldana, J.; Wang, Y.; Peng, X. Photochemical Instability of CdSe Nanocrystals Nanocrystals Coated by Hydrophilic Thiols, J. Am. Chem. Soc. 2001, 123, 8844–8850.
    (29) Tang, Z.; Kotov, N. A.; Giersig, M. Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires, Science 2002, 297, 237–240.
    (1) Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-Emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer, Nature 1994, 370, 354–357.
    (2) Coe, S.; Woo, W.-K.; Bawendi, M.; Bulovi?, V. Electroluminescence from Single Monolayers of Nanocrystals in Molecular Organic Devices, Nature 2002, 420, 800–803.
    (3) Tesster, N.; Medvedev, V.; Kazes, M.; Kan, S.; Banin, U. Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes, Science 2002, 295, 1506–1508.
    (4) Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid Nanorod-Polymer Solar Cells, Science 2002, 295, 2425–2427.
    (5) Nozik, A. J. Quantum Dot Solar Cells, Physica E 2002, 14, 115–120.
    (6) Kamat, P. V. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters, J. Phys. Chem. C 2008, 112, 18737–18753.
    (7) Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor Nanocrystals as Fluorescent Biological Labels, Science 1998, 281, 2013–2016.
    (8) Chan, W. C. W.; Nie, S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science 1998, 281, 2016–2018.
    (9) O'Neil, M.; Marohn, J.; McLendon, G. Dynamics of Electron–Hole pair Recombination in Semiconductor Clusters J. Phys. Chem. 1990, 94, 4356–4363.
    (10) Eychmüller, A. H?sselbarth, A.; Katsikas, L.; Weller, H. Fluorescence Mechanism of Highly Monodisperse Q-Sized CdS Colloids, J. Lumin. 1991, 48, 745–749.
    (11) Bawendi, M. G.; Carroll, P. J.; Wilson, W. L.; Brus, L. E. Luminescence Properties of CdSe Quantum Crystallites: Resonance between Interior and Surface Localized States, J. Chem. Phys. 1992, 96, 946–954.
    (12) Resch, U.; Eychmüller, A.; Haase, M.; Weller, H. Absorption and Fluorescence Behavior of Redispersible CdS Colloids in Various Organic Solvents, Langmuir 1992, 8, 2215–2218.
    (13) Myung, N.; Bae, Y.; Bard, A. J. Enhancement of the Photoluminescence of CdSe Nanocrystals Dispersed in CHCl3 by Oxygen Passivation of Surface States, Nano Lett.2003, 3, 747–749.
    (14) Yu, K.; Singh, S.; Patrito, N.; Chu, V. Effect of Reaction Media on the Growth and Photoluminescence of Colloidal CdSe Nanocrystals, Langmuir 2004, 20, 11161–11168.
    (15) Yu, K.; Zaman, B.; Singh, S.; Wang, D.; Ripmeester J. A. The Effect of Dispersion Media on Photoluminescence of Colloidal CdSe Nanocrystals Synthesized from TOP, Chem. Mater. 2005, 17, 2552–2561.
    (16) Pons, T.; Medintz, I. L.; Sapsford, K. E.; Higashiya, S.; Grimes, A. F.; English, D. S.; Mattoussi, H. On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles, Nano Lett. 2007, 7, 3157–3164.
    (17) Kondon, M.; Kim, J.; Udawatte, N.; Lee D. Origin of Size-Dependent Energy Transfer from Photoexcited CdSe Quantum Dots to Gold Nanoparticles, J. Phys. Chem. C 2008, 112, 6695–6699.
    (18) Hines, M. A.; Guyot-Sionnest, P. Strongly Luminescing ZnS-Capped CdSe Nanocrystals, J. Phys. Chem. 1996, 100, 468–470.
    (19) Danek, M.; Jensen, K. F.; Murray, C. B.; Bawendi, M. G. Synthesis of Luminescent Thin-Film CdSeZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe, Chem. Mater. 1996, 8, 173–180.
    (20) Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. Epitaxial Growth of Highly Luminescent CdSe–CdS Core–Shell Nanocrystals with Photostability and Electronic Accessibility, J. Am. Chem. Soc. 1997, 119, 7019–7029.
    (21) Hohng, S.; Ha, T. Near-Complete Suppression of Quantum Dot Blinking in Ambient Conditions, J. Am. Chem. Soc. 2004, 126, 1324–1325.
    (22) Jeong, S.; Achermann, M.; Nanda, J.; Ivanov, S.; Klimov, V. I.; Hollingsworth, J. A. Effect of the Thiol–Thiolate Equilibrium on the Photophysical Properties of Aqueous CdSe/ZnS Nanocrystal Quantum Dots, J. Am. Chem. Soc. 2005, 127, 10126–10127.
    (23) Liu, Y. S.; Sun, Y.; Vernier, P. T.; Liang, C. H.; Chong, S. Y. C.; Gundersen M. A. pH-Sensitive Photoluminescence of CdSe/ZnSe/ZnS Quantum Dots in Human Ovarian Cancer Cells, J. Phys. Chem. C 2007, 111, 2872–2878.
    (24) Fomenko, V.; Nesbitt, D. J. Solution Control of Radiative and Nonradiative Lifetimes: A Novel Contribution to Quantum Dot Blinking Suppression, Nano Lett. 2008, 8, 287–293.
    (25) Chen, Y.; Rosenzweig Z. Luminescent CdS Quantum Dots as Selective Ion Probes, Anal. Chem. 2002, 74, 5132–5138.
    (26) Ali, E. M.; Zheng, Y.; Yu, H.; Ying, J. Y. Ultrasensitive Pb2+ Detection by Glutathione-Capped Quantum Dots, Anal. Chem. 2007, 9, 9452–9458.
    (27) Jin, W. J.; Fernández-Argüelles, M. T.; Costa-Fernández, J. M.; Pereiro, R.; Sanz-Medel, A. Photoactivated Luminescent CdSe Quantum Dots as Sensitive Cyanide Probes in Aqueous Solutions, Chem. Commun. 2005, 883–885.
    (28) Goldman, E. R.; Medintz, I. L.; Whitley, J. L.; Hayhurst, A.; Clapp, A. R.; Uyeda, H. T.; Deschamps, J. R.; Lassman, M. E.; Mattoussi, H. A Hybrid Quantum Dot–Antibody Fragment Fluorescence Resonance Energy Transfer–Based TNT Sensor, J. Am. Chem. Soc. 2005, 127, 674–6751.
    (29) Nazzal, A. Y.; Qu, L.; Peng, X.; Xiao, M. Photoactivated CdSe Nanocrystals as Nanosensors for Gases, Nano Lett. 2003, 3, 819–822.
    (30) Li, H. B.; Qu, F. G. Synthesis of CdTe Quantum Dots in Sol–Gel-Derived Composite Silica Spheres Coated with Calix[4]arene as Luminescent Probes for Pesticides, Chem. Mater. 2007, 19, 4148–4154.
    (31) Li, H. B.; Han, C. P. Sonochemical Synthesis of Cyclodextrin-Coated Quantum Dots for Optical Detection of Pollutant Phenols in Water, Chem. Mater. 2008, 20, 6053–6059.
    (32) Cordeo, S. R.; Carson, P. J.; Estabrook, R. A.; Strouse, G. F.; Buratto, S. K. Photo-Activated Luminescence of CdSe Quantum Dot Monolayers, J. Phys. Chem. B 2000, 104, 12137–12142.
    (33) Mahtab, R.; Rogers, J, P.; Murphy, C. J. Protein-Sized Quantum Dot Luminescence Can Distinguish between“Straight”,“Bent”, and“Kinked”Oligonucleotides, J. Am. Chem. Soc. 1995, 117, 9099–9100.
    (34) Lakowicz, J. R.; Gryczynski, I.; Gryczynski, Z.; Nowaczyk, K.; Murphy, C. J. Time-Resolved Spectral Observations of Cadmium-Enriched Cadmium SulfideNanoparticles and the Effects of DNA Oligomer Binding, Anal. Biochem. 2000, 280, 128–136.
    (35) Nikoobakht, B.; Burda, C.; Braun, M.; Hun M.; El-Sayed, M.A. The Quenching of CdSe Quantum Dots Photoluminescence by Gold Nanoparticles in Solution, Photochem. Photobiol .2002, 75, 591–597.
    (36) Kumar, A.; Janata, E.; Henglein, A. Photochemistry of Colloidal Semiconductors. 25. Quenching of CdS Fluorescence by Excess Positive Holes, J. Phys. Chem. 1988, 92, 2587–2591.
    (37) Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. Photochemistry of Colloidal Semiconductors. 20. Surface Modification and Stability of Strong Luminescing CdS Particles, J. Am. Chem. Soc. 1987, 109, 5649–5655.
    (38) Li, X.; Coffer, J. L. Effect of Pressure on the Photoluminescence of Polynucleotide-Stabilized Cadmium Sulfide Nanocrystals, Chem. Mater. 1999, 11, 2326–2330.
    (39) Moore, D. E.; Patel, K. Q-CdS Photoluminescence Activation on Zn2+ and Cd2+ Salt Introduction, Langmuir 2001, 17, 2541–2544.
    (40) Wang, C.-W.; Moffitt, M. G. Surface-Tunable Photoluminescence from Block Copolymer-Stabilized Cadmium Sulfide Quantum Dots, Langmuir 2004, 20, 11784–11796.
    (41) Matsumoto, H.; Uchida, H.; Matsunaga, T.; Tanaka, K.; Sakata, T.; Mori, H.; Yoneyama, H. Photoinduced Reduction of Viologens on Size-Separated CdS Nanocrystals, J. Phys. Chem. 1994, 98, 11549–11556.
    (42) Wu, F.; Zhang, J. Z.; Kho, R.; Mehra, R. K. Radiative and Nonradiative Lifetimes of Band Edge States and Deep Trap States of CdS Nanoparticles Determined by Time-Correlated Single Photon Counting, Chem. Phys. Lett. 2000, 330, 237–242.
    (43) Misawa, K.; Yao, H.; Hayashi, T.; Kobayashi, T. Superradiance Quenching by Confined Acoustic Phonons in Chemically Prepared CdS Microcrystallites, J. Chem. Phys. 1991, 94, 4131–4140.
    (44) Garrett, M. D.; Dukes III, A. D.; McBride, J. R.; Smith, N. J.; Pennycook, S. J.;Rosenthal, S. J. Band Edge Recombination in CdSe, CdS and CdSxSe1-x Alloy Nanocrystals Observed by Ultrafast Fluorescence Upconversion: The Effect of Surface Trap States, J. Phys. Chem. C 2008, 112, 12736–12746.
    (45) Nirmal, M.; Norris, D. J.; Kuno, M.; Bawendi, M. Observation of the“Dark Exciton”in CdSe Quantum Dots, Phys. Rev. Lett. 1995, 75, 3728–3731.
    (46) Efros, A. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; Bawendi, M. Band-Edge Exciton in Quantum Dots of Semiconductors with a Degenerate Valence Band: Dark and Bright Exciton States, Phys. Rev. B 1996, 54, 4843–4856.
    (47)Underwood, D. F.; Kippeny, T.; and Rosenthal, S. J. Ultrafast Carrier Dynamics in CdSe Nanocrystals Determined by Femtosecond Fluorescence Upconversion Spectroscopy, J. Phys. Chem. B 2001, 105, 436–443.
    (48) Kim, D.; Mishima, T.; Tomihira, K.; Nakayama, M. Temperature Dependence of Photoluminescence Dynamics in Colloidal CdS Quantum Dots, J. Phys. Chem. C 2008, 112, 10668–10673.
    (49) Li, J.; Xia, J. Hole Levels and Exciton States in CdS Nanocrystals, Phys. Rev. B 2000, 62, 12613–12616.
    (50) Yu, Z.; Li, J.; O’Connor, D. B.; Wang, L. W.; Barbara, P. F. Large Resonant Stokes Shift in CdS Nanocrystals, J. Phys. Chem. B 2003, 107, 5670–5674.
    (51) Besombes, L.; Marsal, L.; Kheng, K.; Charvolin, T.; Dang, L. S.; Wasiela, A.; Mariette, H. Fine Structure of the Exciton in a Single Asymmetric CdTe Quantum Dot, J. Cryst. Growth 2000, 214, 742–746.
    (52) Demas, J. N. In Excited-State Lifetime Measurements; Academic Press: New York, 1983; pp 34–39.
    (53) Landes, C.; Burda, C.; Braun, M.; El-Sayed, M. A. Photoluminescence of CdSe Nanoparticles in the Presence of a Hole Acceptor: n-Butylamine, J. Phys. Chem. B 2001, 105, 2981–2986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700