基于伏安型两电极体系的新型检测仪器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是人类的生命之源,是人类社会稳定发展的基本要素。因此对水体质量乃至功效的检测要求越来越高,研究开发先进可靠、快速灵敏、小型价廉的水质检测仪器是相关领域的热门课题。
     基于电化学伏安法的检测仪器,不仅灵敏度高、结构简单、性能稳定,而且具有较好的灵活性,可通过施加不同激励,更换不同材料的电极实现多种参数的检测,在水质检测分析中具有较好的优势。本课题在研究电化学三电极体系检测原理及常规伏安型检测仪器的基础上,设计了伏安型两电极体系检测系统。该系统采用比表面积大、电位稳定的固态电极为对电极,摒弃了传统三电极体系中需要内参比溶液的玻璃参比电极。运用该系统开展了水体pH、钙离子、氯离子、双氧水、铅离子以及咖啡溶液中咖啡因含量的检测研究。
     主要研究内容及成果包括以下几个方面:
     (1)在研究三电极体系的检测原理和仪器结构基础上,分析两电极体系的检测原理并提出两电极体系中对电极应具备的特性:电位稳定、化学惰性强、导电性好、机械强度高、免维护且成本低。先后设计研制了大面积不锈钢和活性炭两种对电极,并对它们的电极特性进行了深入研究。
     (2)开展两电极体系离子选择性检测研究。以全固态离子选择性电极和活性炭电极做为工作电极和对电极构成两电极体系检测系统。分别采用脉冲计时电流法和循环伏安法对水中pH值、钙离子和氯离子进行检测实验。实验结果表明,两种检测方法的响应与待测离子浓度的对数呈线性关系,r>0.997,RSD<1.05%。与传统电位分析方法相比,这两种方法不受工作电极中积累电荷的干扰,对于水体离子的实时在线监测具有较好的应用前景。
     (3)开发研制了一台使用方便、小型化的伏安型两电极体系检测仪器。该仪器由电极探头单元、MCU控制单元和软件处理单元组成。MCU控制单元具有切换工作电极、输出多种激励信号和实时采集电流响应信号的功能。软件处理单元具有工作方式选择、参数设置、与MCU通信、响应信号实时显示、数据分析处理以及根据算法模型获得检测结果等功能,实现了检测过程的自动化与智能化。(4)开展伏安型两电极体系检测仪器的应用研究,分别对双氧水、铅离子以及咖啡因小分子进行分析检测。对双氧水的检测采用脉冲计时电流法,响应电流与双氧水浓度呈线性关系,r=0.9970,RSD<2.10%。对铅离子的检测采用溶出伏安法,溶出峰电流与铅离子浓度呈线性关系,r=0.9996,检出限为1.69ppb。结果表明,该检测仪器的灵敏度、检测范围以及检测限均达到了传统三电极体系检测系统的结果。为扩展该仪器的应用领域,将其用于咖啡溶液中咖啡因小分子的检测。引入强碱型离子交换树脂对咖啡溶液进行预处理,去除干扰物质,增大咖啡因氧化峰响应,提高检测灵敏度。预处理后咖啡溶液中咖啡因的检测灵敏度为44μA/g,r=0.999。
     研究结果表明,以自制的伏安型两电极体系检测仪器为平台,通过选用不同的电极探头、结合多种检测方法,可实现水中pH值、矿物质离子与小分子的检测。该仪器具有检测精度高、性能稳定、电极结构简单、价格低、寿命长、易于维护及小型化、检测过程自动化与智能化等特点,在水质的实时在线监测中具有较好的应用前景。
Water is the source of life, it is the basic element of stable development of human society. The detection of water quality and property are more demanding than ever before. As a result, developing an advanced, reliable, quick, sensitive and cheap small size water quality detecting instrument is a hot topic in the related fields.
     The detecting instrument based on voltammetric technique has a good advantage in water quality testing and analysis. It has not only high sensitivity, simple structure and stable performance, but also own good flexibility. Various species can be detected by applying different potentials and alter different kinds of electrode. In this subject, on the basis of study of three-electrode system detection's principle and conventional voltammetric detecting instruments, a two-electrode voltammetric detection system has been designed. In this system, a solid electrode with large surface area and stable electrode potential is acted as counter electrode and the glass reference electrode with inner solution commonly used in three-electrode system has been eliminated. In this study,a serious dxperiment such as the detection of pH value,Ca2+,Cr,H2O2,pb2+ions and caffeine in coffee solution has been carried out by using this two-electrode detecting system.
     The main study contents and results of this study include some following aspects:
     (1) On the basis of study of three-electrode system detecting principle and its instrument structure, the characterization of counter electrode in two-electrode system has been proposed, which is stable electrode potential, chemical inert, good conductivity, high mechanical strength, maintainance free and low costs. The two kinds of counter electrode:large surface area stainless steel electrode and active carbon electrode have been designed and fabricated and their characteristics have been studied.
     (2) A two-electrode system has been developed with a solid ion-selective working electrode and an active carbon counter electrode. pH value and Ca2+and Cl-ions in water can be selective detected via this two-electrode system by using pulse amperometric and cyclic voltammetric detection methods, respectively. The results indicated that, the relationship between the responses of the two detection methods and the testing ion concentrations are linear, with r>0.9970, RSD<1.05%. Comparing with potentiometric detection method, they are both free from charge accumulation interference which is promising in on-line monitoring applications.
     (3) A miniaturization voltammetric two-electrode detecting instrument has been developed which is composed by electrode probe unit, MCU control unit and software processing unit. MCU control unit has the function of working electrode changing, various potential output, and current responses collecting. Software processing unit has the function of working pattern selection, parameter setting, communication with MCU, current signal display, data analyze and processing, and results displaying according to the algorithm model, This detecting instrument has realized the detection process automation and intellectualization.
     (4) The application studies of this two-electrode voltammetric detecting instrument have been carried out. Hydrogen peroxide, lead ion and caffeine have been detected. In pulse amperometric hydrogen peroxide determination, the current response is linear with the concentration with r=0.9970, RSD<2.10%. In stripping voltammetric lead ion determination, the stripping peak current is linear with lead ion concentration with r=0.9996, detection limit of1.69ppb. The detecting results indicated that, the sensitivity, detection range and detection limit are all comparable with that of conventional three-electrode detection system. In order to expand the application areas of this two-electrode voltammetric detection system, it has been used in caffeine detection in coffee solution. Strong alkali type ion exchange resin pretreatment has been introduced to eliminated the interference species, enlarge the oxidation peak response of caffeine, increasing the detection sensitivity. The detection sensitivity of caffeine in pretreated coffee solution is44uA/g with r=0.9990.
     The research result shows that, by the use of the two-electrode voltammetric detecting instrument, combine with different detection methods and different electrode probe, various species such as pH value, mineral ions and micromolecules can be detected. This detecting instrument has high detection accuracy, good stabilization, simple structure, low cost, long lifespan, maintenance-free, easy tominiaturization, automation and intellectualization, which are turns out promising on water property monitoring in domestic applications.
引文
[1]李新武.酸性氧化电位水研究及在医疗领域的应用.中国护理管理.2008,8(4):12-17.
    [2]李玉萍,喻小念,周春丽,et al碱性电解功能水对动物细胞的调控及其在医疗中的应用.食品科学.2006,27(11):532-535.
    [3]张雷,刘慧.中国国家资源环境安全问题初探.中国人口.资源与环境.2002,12(1):41-46.
    [4]韦进宝,钱沙华.环境分析化学:2002化学工业出版社.
    [5]张中林.优先污染物优先监测的环境要素研究.上海环境科学.1994,13(2):28-30.
    [6]但德忠.我国环境监测技术的现状与发展.中国测试技术.2005,31(5):1-5.
    [7]于世林.高效液相色谱方法及应用:2000化学工业出版社.
    [8]沈小婉,李明元.色谱法在食品分析中的应用vol.57:1992北京大学出版社.
    [9]丁明玉,田松柏.离子色谱原理与应用:2001清华大学出版社.
    [10]邓延倬,于沛,何金兰.高效毛细管电泳.分析化学.1992,20(10):1214-1221.
    [11]徐大光,阴志刚,侯晓强,et al.紫外-可见分光光度法在药物分析中的应用及进展.中国医学物理学杂志.2006,23(6):432-433.
    [12]Sanchez Rojas F., Bosch Ojeda C. Recent development in derivative ultraviolet/visible absorption spectrophotometry:2004-2008:A review. Analytica chimica acta.2009,635(1):22-44.
    [13]徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用进展.光谱学与光谱分析.2000,20(2):134-142.
    [14]万益群,潘凤琴,柳英霞,et al电感耦合等离子体原子发射光谱法测定白酒中23种微量元素[J].光谱学与光谱分析.2009,29(2):499-503.
    [15]邓勃.原子吸收光谱分析的原理,技术和应用:2004清华大学出版社有限 公司.
    [16]李启隆,胡劲波,电分析化学vol.462:1995北京师范大学出版社.
    [17]Wilke S., Wang H. Transfer of heavy metal ions across the water | nitrobenzene microinterface facilitated by the cadmium selective ionophore ETH1062. Journal of Electroanalytical Chemistry.1999,475(1):9-19.
    [18]董绍俊.薄层光谱电化学.1985,
    [19]张宗贵,蒋季春.光谱电化学法测定水果中抗坏血酸的研究.分析试验室.1997,16(1):19-21.
    [20]杨红兵,张成孝,洪成林.高效液相色谱电化学发光法检测抗坏血酸.理化检验:化学分册.2006,42(7):526-528.
    [21]董绍俊,车广礼,谢远武,et al.,化学修饰电极vol.338:1995科学出版社.
    [22]Bakker E., Pretsch E. Peer Reviewed:The new wave of ion-selective electrodes. Analytical chemistry.2002,74(15):420 A-426 A.
    [23]Bakker E., Buhlmann P., Pretsch E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes.1. General Characteristics. Chemical reviews.1997,97(8): 3083.
    [24]Belli S. L., Zirino A. Behavior and calibration of the copper (Ⅱ) ion-selective electrode in high chloride media and marine waters. Analytical Chemistry. 1993,65(19):2583-2589.
    [25]Zirino A., A Vanderweele D., Belli S. L., et al. Direct measurement of Cu (Ⅱ) in seawater at pH 8 with the jalpaite ion-selective electrode. Marine chemistry. 1998,61(3):173-184.
    [26]Eriksen R. S., Mackey D. J., Van Dam R., et al. Copper speciation and toxicity in Macquarie Harbour, Tasmania:an investigation using a copper ion selective electrode. Marine Chemistry.2001,74(2):99-113.
    [27]De Marco R., Pejcic B., Wang X. D. Continuous flow analysis of iron (Ⅲ) in seawater using a chalcogenide glass ion - selective electrode. Laboratory Robotics and Automation.1999,11(5):284-288.
    [28]Trojanowicz M., Alexander P. W., Brynn Hibbert D. Flow-injection potentiometric determination of free cadmium ions with a cadmium ion-selective electrode. Analytica chimica acta.1998,370(2):267-278.
    [29]Sherman R. E., Gloss S. P., Lion L. W. A. comparison of toxicity tests conducted in the laboratory and in experimental ponds using cadmium and the fathead minnow. Water Research.1987,21(3):317-323.
    [30]Ceresa A., Bakker E., Hattendorf B., et al. Potentiometric polymeric membrane electrodes for measurement of environmental samples at trace levels:new requirements for selectivities and measuring protocols, and comparison with ICPMS. Analytical chemistry.2001,73(2):343-351.
    [31]Slaveykova V. I., Wilkinson K. J., Ceresa A., et al. Role of fulvic acid on lead bioaccumulation by Chlorella kesslerii. Environmental science & technology. 2003,37(6):1114-1121.
    [32]Abbaspour A., Izadyar A. Chromium (III) ion-selective electrode based on 4-dimethylaminoazobenzene. Talanta.2001,53(5):1009-1013.
    [33]Gholivand M., Sharifpour F. Chromium (III) ion selective electrode based on glyoxal bis (2-hydroxyanil). Talanta.2003,60(4):707-713.
    [34]Metilda P., Prasad K., Kala R., et al. Ion imprinted polymer based sensor for monitoring toxic uranium in environmental samples. Analytica chimica acta. 2007,582(1):147-153.
    [35]Altura B., Shirey T., Young C., et al. Characterization of a new ion selective electrode for ionized magnesium in whole blood, plasma, serum, and aqueous samples. Scandinavian Journal of Clinical & Laboratory Investigation.1994, 54(S217):21-36.
    [36]Munier G., Psota L., Reagor B., et al. Contamination of electronic equipment after an extended urban exposure. Journal of The Electrochemical Society. 1980,127(2):265-272.
    [37]Montemor M., Alves J., Simoes A., et al. Multiprobe chloride sensor for in situ monitoring of reinforced concrete structures. Cement and Concrete Composites. 2006,28(3):233-236.
    [38]周明军,尤佳,秦浩,etal电导率传感器发展概况.传感器与微系统.2010,004):9-11.
    [39]Delahay P., Mamantov G. Voltammetry at Constant Current: Review of Theoretical Principles. Analytical Chemistry.1955,27(4):478-483.
    [40]刘永辉.电化学测试技术:1987北京航空学院出版社.
    [41]Kissinger P. T., Heineman W. R. Cyclic voltammetry. Journal of Chemical Education.1983,60(9):702.
    [42]Zen J.-M., Ting Y. S. Simultaneous determination of caffeine and acetaminophen in drug formulations by square-wave voltammetry using a chemically modified electrode. Analytica chimica acta.1997,342(2):175-180.
    [43]杨晓云,莫金垣,詹淳.现代方波伏安法.分析测试学报.1998,17(3):80-85.
    [44]Kefala G., Economou A. Polymer-coated bismuth film electrodes for the determination of trace metals by sequential-injection analysis/anodic stripping voltammetry. Analytica chimica acta.2006,576(2):283-289.
    [45]Wang J. Stripping analysis at bismuth electrodes:a review. Electroanalysis. 2005,17(15-16):1341-1346.
    [46]Van Den Berg C. M., Murphy K., Riley J. P. The determination of aluminium in seawater and freshwater by cathodic stripping voltammetry. Analytica Chimica Acta.1986,188:177-185.
    [47]Van Leeuwen H. P., Town R. M. Kinetic limitations in measuring stabilities of metal complexes by competitive ligand exchange-adsorptive stripping voltammetry (CLE-AdSV). Environmental science & technology.2005,39(18): 7217-7225.
    [48]Lee H. J., Lagger G., Pereira C. M., et al. Amperometric tape ion sensors for cadmium (Ⅱ) ion analysis. Talanta.2009,78(1):66-70.
    [49]Huang H., Dasgupta P. K., Genfa Z., et al. A pulse amperometric sensor for the measurement of atmospheric hydrogen peroxide. Analytical chemistry.1996, 68(13):2062-2066.
    [50]Sawada S., Torii H., Osakai T., et al. Pulse amperometric detection of lithium in artificial serum using a flow injection system with a liquid/liquid-type ion-selective electrode. Analytical chemistry.1998,70(20):4286-4290.
    [51]Wen J., Cassidy R. M. Anodic and cathodic pulse amperometric detection of metal ions separated by capillary electrophoresis. Analytical chemistry.1996, 68(6):1047-1053.
    [52]Tianyao X., Qiwen L., Fengping L., et al. Determination of Ephedrine in Collunarium by Capillary Electrophoresis with Square Wave Amperometric Detection. Chinese Journal of Analytical Chemistry.2004,32(7):943-945.
    [53]Ortuno J., Gil A., Sanchez-Pedreno C. Flow-injection pulse amperometric detection based on ion transfer across a water-plasticized polymeric membrane interface for the determination of imipramine. Sensors and Actuators B: Chemical.2007,122(2):369-374.
    [54]Bindra D. S., Wilson G. S. Pulsed amperometric detection of glucose in biological fluids at a surface-modified gold electrode. Analytical chemistry. 1989,61(22):2566-2570.
    [55]Lee H. L., Chen S. C. Microchip capillary electrophoresis with amperometric detection for several carbohydrates. Talanta.2004,64(1):210-216.
    [56]Rueda M., Sarabia L., Herrero A., et al. Optimisation of a flow injection system with electrochemical detection using the desirability function:application to the determination of hydroquinone in cosmetics. Analytica Chimica Acta.2003, 479(2):173-184.
    [57]胡深,庞代文,李培标,et al.毛细管电泳电化学检测.分析测试学报.1997,16(6):70-75.
    [58]Pedrotti J. J., Gutz I. G. Ultra-simple adaptor to convert batch cells with mercury drop electrodes in voltammetric detectors for flow analysis. Talanta. 2003,60(4):695-705.
    [59]Van Staden J., Matoetoe M. Simultaneous determination of copper, lead, cadmium and zinc using differential pulse anodic stripping voltammetry in a flow system. Analytica chimica acta.2000,411(1):201-207.
    [60]Korolczuk M., Rutyna I. New methodology for anodic stripping voltammetric determination of methylmercury. Electrochemistry Communications.2008, 10(7):1024-1026.
    [61]Siriangkhawut W., Pencharee S., Grudpan K., et al. Sequential injection monosegmented flow voltammetric determination of cadmium and lead using a bismuth film working electrode. Talanta.2009,79(4):1118-1124.
    [62]Guzsvany V., Nakajima H., Soh N., et al. Antimony-film electrode for the determination of trace metals by sequential-injection analysis/anodic stripping voltammetry. Analytica chimica acta.2010,658(1):12-17.
    [63]Svancara I., Vytfas K., Barek J., et al. Carbon paste electrodes in modern electroanalysis. Critical Reviews in Analytical Chemistry.2001,31(4): 311-345.
    [64]Redha Z. M, Baldock S., Fielden P. R., et al. Hybrid Microfluidic Sensors Fabricated by Screen Printing and Injection Molding for Electrochemical and Electrochemiluminescence Detection. Electroanalysis.2009,21(3-5): 422-430.
    [65]Wang J., Polsky R., Tian B., et al. Voltammetry on microfluidic chip platforms. Analytical chemistry.2000,72(21):5285-5289.
    [66]Chuanuwatanakul S., Dungchai W., Chailapakul O., et al. Determination of trace heavy Metals by Sequential Injection-Anodic Stripping Voltammetry Using Bismuth Film Screen-printed Printed Carbon Electrode. Analytical Sciences.2008,24(5):589-594.
    [67]Masawat P., Liawruangrath S., Slater J. Flow injection measurement of lead using mercury-free disposable gold-sputtered screen-printed carbon electrodes (SPCE). Sensors and Actuators B:Chemical.2003,91(1):52-59.
    [68]Adam V., Huska D., Hubalek J., et al. Easy to use and rapid isolation and detection of a viral nucleic acid by using paramagnetic microparticles and carbon nanotubes-based screen-printed electrodes. Microfluidics and nanofluidics.2010,8(3):329-339.
    [69]Daneshgar P., Norouzi P., Moosavi-Movahedi A. A., et al. Fabrication of carbon nanotube and dysprosium nanowire modified electrodes as a sensor for determination of curcumin. Journal of applied electrochemistry.2009,39(10): 1983-1992.
    [70]Injang U., Noyrod P., Siangproh W., et al. Determination of trace heavy metals in herbs by sequential injection analysis-anodic stripping voltammetry using screen-printed carbon nanotubes electrodes. Analytica chimica acta.2010, 668(1):54-60.
    [71]Beinrohr E., Dzurov J., Annus J., et al. Flow-through stripping chronopotentiometry for the monitoring of mercury in waste waters. Fresenius' journal of analytical chemistry.1998,362(2):201-204.
    [72]Hazelton S. G., Pierce D. T. Ultratrace determination of inorganic Selenium without signal calibration. Analytical chemistry.2007,79(12):4558-4563.
    [73]Santos J. R., Lima J. L., Quinaz M. B., et al. Construction and evaluation of a gold tubular electrode for flow analysis:Application to speciation of antimony in water samples. Electroanalysis.2007,19(6):723-730.
    [74]Beni V., Arrigan D. W. Microelectrode arrays and microfabricated devices in electrochemical stripping analysis. Current Analytical Chemistry.2008,4(3): 229-241.
    [75]Daniele S., Baldo M. A., Bragato C. Recent developments in stripping analysis on microelectrodes. Current Analytical Chemistry.2008,4(3):215-228.
    [76]Gun J., Salaiin P., Van Den Berg C. M. Advantages of using a mercury coated, micro-wire, electrode in adsorptive cathodic stripping voltammetry. Analytica chimica acta.2006,571(1):86-92.
    [77]Nasraoui R., Floner D., Paul-Roth C., et al. Flow electroanalytical system based on cyclam-modified graphite felt electrodes for lead detection. Journal of Electroanalytical Chemistry.2010,638(1):9-14.
    [78]Korolczuk M., Surmacz W., Tyszczuk K. Determination of Thallium in a Flow System by Anodic Stripping Voltammetry at a Bismuth Film Electrode. Electroanalysis.2007,19(21):2217-2221.
    [79]Wang Y., Liu Z., Yao G., et al. Determination of cadmium with a sequential injection lab-on-valve by anodic stripping voltammetry using a nafion coated bismuth film electrode. Talanta.2010,80(5):1959-1963.
    [80]Osipova E., Shishmarev D., Zaitsev N. Comparative characterization of two techniques for selenium (IV) preconcentration on a film mercury electrode with the use of an automated solution replacement system without circuit disconnection. Moscow University Chemistry Bulletin.2007,62(6):330-334.
    [81]Khoo S. B., Ye R. Differential pulse voltammetric determination of trace Te (IV) at a poly (3,3'-diaminobenzidine) film modified gold electrode in flow systems. Analytica chimica acta.2002,453(2):209-220.
    [82]Korolczuk M., Grabarczyk M. Determination of Cr (VI) in the presence of Cr (III) and humic acid by cathodic stripping voltammetry. Microchemical journal. 2002,72(1):103-109.
    [83]Grabarczyk M., Korolczuk M. Determination of Labile Chromium in Water Samples by Catalytic Adsorptive Stripping Voltammetry in On-Line System. Electroanalysis.2003,15(5-6):524-528.
    [84]Guo S. X., Khoo S. B. Highly Selective and Sensitive Determination of Silver (I) at a Poly (8 - mercaptoquinoline) Film Modified Glassy Carbon Electrode. Electroanalysis.1999,11(12):891-898.
    [85]Volikakis G. J., Efstathiou C. E. Fast screening of total flavonols in wines, tea-infusions and tomato juice by flow injection/adsorptive stripping voltammetry. Analytica chimica acta.2005,551(1):124-131.
    [86]Chomoucka J., Drbohlavova J., Huska D., et al. Magnetic nanoparticles and targeted drug delivering. Pharmacological research.2010,62(2):144-149.
    [87]Rodrigues J., Barros A., Almeida P., et al. Flow injection square wave cathodic stripping voltammetric determination at a hanging mercury drop electrode of rapidly reduced compounds:Determination of diacetyl in wine as 2, 3-dimethylquinoxaline. Analytica chimica acta.2001,449(1):119-127.
    [88]Rodrigues P. G., Rodrigues J. A., Barros A. A., et al. Automatic flow system with voltammetric detection for diacetyl monitoring during brewing process. Journal of agricultural and food chemistry.2002,50(13):3647-3653.
    [89]Schwake A., Ross B., Cammann K. Chrono amperometric determination of hydrogen peroxide in swimming pool water using an ultramicroelectrode array. Sensors and Actuators B:Chemical.1998,46(3):242-248.
    [90]Ordeig O., Mas R., Gonzalo J., et al. Continuous detection of hypochlorous acid/hypochlorite for water quality monitoring and control. Electroanalysis. 2005,17(18):1641-1648.
    [91]Oliveira P. R. D., Oliveira M. M., Zarbin A. J., et al. Flow injection amperometric determination of Isoniazid using a screen-printed carbon electrode modified with Silver Hexacyanoferrates nanoparticles. Sensors and Actuators B:Chemical.2012,
    [92]Walcarius A., Vromman V., Bessiere J. Flow injection indirect amperometric detection of ammonium ions using a clinoptilolite-modified electrode. Sensors and Actuators B:Chemical.1999,56(1):136-143.
    [93]Wooster T. J., Bond A. M., Honeychurch M. J. An analogy of an ion-selective electrode sensor based on the voltammetry of microcrystals of tetracyanoquinodimethane or tetrathiafulvalene adhered to an electrode surface. Analytical chemistry.2003,75(3):586-592.
    [94]Cano M., Palenzuela B., Rodr i guez - Amaro R. A TTF - TCNQ Electrode as a Voltammetric Analogue of an Ion - Selective Electrode. Electroanalysis.2006, 18(11):1068-1074.
    [95]Marken F., Compton R. G., Goeting C. H., et al. Anion Detection by Electro-Insertion into N, N, N', N' - Tetrahexyl - Phenylenediamine (THPD) Microdroplets Studied by Voltammetry, EQCM, and SEM Techniques. Electroanalysis.1998,10(12):821-826.
    [96]Dussel H., Dostal A., Scholz F. Hexacyanoferrate-based composite ion-sensitive electrodes for voltammetry. Fresenius' journal of analytical chemistry.1996,355(1):21-28.
    [97]Scholz F., Gulaboski R., Caban K. The determination of standard Gibbs energies of transfer of cations across the nitrobenzene| water interface using a three-phase electrode. Electrochemistry communications.2003,5(11):929-934.
    [98]Bouchard G., Galland A., Carrupt P.-A., et al. Standard partition coefficients of anionic drugs in the n-octanol/water system determined by voltammetry at three-phase electrodes. Physical Chemistry Chemical Physics.2003,5(17): 3748-3751.
    [99]Gulaboski R., Riedl K., Scholz F. Standard Gibbs energies of transfer of halogenate and pseudohalogenate ions, halogen substituted acetates, and cycloalkyl carboxylate anions at the water| nitrobenzene interface. Physical Chemistry Chemical Physics.2003,5(6):1284-1289.
    [100]Ulmeanu S., Lee H. J., Fermin D. J., et al. Voltammetry at a liquid-liquid interface supported on a metallic electrode. Electrochemistry communications. 2001,3(5):219-223.
    [101]Zhang J., Harris A. R., Cattrall R. W., et al. Voltammetric ion-selective electrodes for the selective determination of cations and anions. Analytical chemistry.2010,82(5):1624-1633.
    [102]赖家平,何锡文,郭洪声,et al.分子印迹技术的回顾,现状与展望.分析化学.2001,29(7):
    [103]Alizadeh T., Ganjali M. R., Zare M., et al. Development of a voltammetric sensor based on a molecularly imprinted polymer (MIP) for caffeine measurement. Electrochimica Acta.2010.55(5):1568-1574.
    [104]Alizadeh T., Zare M., Ganjali M. R., et al. A new molecularly imprinted polymer (MlP)-based electrochemical sensor for monitoring 2,4, 6-trinitrotoluene (TNT) in natural waters and soil samples. Biosensors and Bioelectronics.2010,25(5):1166-1172.
    [105]Alizadeh T., Ganjali M. R., Nourozi P., et al. Multivariate optimization of molecularly imprinted polymer solid-phase extraction applied to parathion determination in different water samples. Analytica chimica acta.2009,638(2): 154-161.
    [106]Economou A. Recent developments in on-line electrochemical stripping analysis—an overview of the last 12 years. Analytica chimica acta.2010, 683(1):38-51.
    [107]Ghilane J., Hapiot P., Bard A. J. Metal/polypyrrole quasi-reference electrode for voltammetry in nonaqueous and aqueous solutions. Analytical chemistry. 2006,78(19):6868-6872.
    [108]Winquist F., Bjorklund R., Krantz-Rulcker C., et al. An electronic tongue in the dairy industry. Sensors and Actuators B:Chemical.2005,111(299-304.
    [109]Gutes A., Cespedes F., Del Valle M., et al. A flow injection voltammetric electronic tongue applied to paper mill industrial waters. Sensors and Actuators B:Chemical.2006,115(1):390-395.
    [110]Olsson J., Winquist F., Lundstrom I. A self polishing electronic tongue. Sensors and Actuators B:Chemical.2006,118(1):461-465.
    [111]Winquist F., Krantz-Rulcker C., Lundstrom I. A miniaturized voltammetric electronic tongue. Analytical Letters.2008,41(5):917-924.
    [112]Winquist F., Krantz-Rulcker C., Olsson T., et al. Measurements of cadmium in soil extracts using multi-variate data analysis and electrochemical sensors. Precision Agriculture.2009,10(3):231-246.
    [113]Winquist F., Olsson J., Eriksson M. Multicomponent analysis of drinking water by a voltammetric electronic tongue. Analytica chimica acta.2011,683(2): 192-197.
    [114]Ruch P., Cericola D., Hahn M., et al. On the use of activated carbon as a quasi-reference electrode in non-aqueous electrolyte solutions. Journal of Electroanalytical Chemistry.2009,636(1):128-131.
    [115]胡会利,李宁,电化学测量:2007国防工业出版社.
    [116]甘琦,周昕,赵斌元,et al成型活性炭的制备研究进展.材料导报.2006,20(1):61-63.
    [117]Pell W., Conway B. Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour. Journal of Electroanalytical Chemistry.2001,500(1):121-133.
    [118]Lindner E., Cosofret V. V., Ufer S., et al. In vivo and in vitro testing of microelectronically fabricated planar sensors designed for applications in cardiology. Fresenius' journal of analytical chemistry.1993,346(6-9):584-588.
    [119]Bobacka J. Conducting Polymer - Based Solid - State Ion - Selective Electrodes. Electroanalysis.2006,18(1):7-18.
    [120]Jadhav S., Bakker E. Selectivity behavior and multianalyte detection capability of voltammetric ionophore-based plasticized polymeric membrane sensors. Analytical chemistry.2001,73(1):80-90.
    [121]Long R., Bakker E. Spectral Imaging and Electrochemical Study on the Response Mechanism of Ionophore - Based Polymeric Membrane Amperometric pH Sensors. Electroanalysis.2003,15(15-16):1261-1269.
    [122]Powley C. R., Geiger Jr R. F., Nieman T. A. Bipolar pulse conductance measurements with a calcium ion-selective electrode. Analytical chemistry. 1980,52(4):705-709.
    [123]Cadogan A., Gao Z., Lewenstam A., et al. All-solid-state sodium-selective electrode based on a calixarene ionophore in a poly (vinyl chloride) membrane with a polypyrrole solid contact. Analytical Chemistry.1992,64(21): 2496-2501.
    [124]于春梅,顾海鹰.电化学预处理玻碳电极示差脉冲伏安法测定水中痕量铅.理化检验(化学分册).2010,5.
    [125]Sanghavi B. J., Srivastava A. K. Simultaneous voltammetric determination of
    acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled
    carbon nanotube paste electrode. Electrochimica Acta.2010,55(28):8638-8648.
    [126]Louren O B. C., Medeiros R. A.. Rocha-Filho R. C., et al. Simultaneous voltammetric determination of paracetamol and caffeine in pharmaceutical formulations using a boron-doped diamond electrode. Talanta.2009,78(3): 748-752.
    [127]Aklilu M., Tessema M., Redi-Abshiro M. Indirect voltammetric determination of caffeine content in coffee using 1,4-benzoquinone modified carbon paste electrode. Talanta.2008,76(4):742-746.
    [128]Akyilmaz E., Turemis M. An inhibition type alkaline phosphatase biosensor for amperometric determination of caffeine. Electrochimica Acta.2010,55(18): 5195-5199.
    [129]Li M., Zhou J., Gu X., et al. Quantitative capillary electrophoresis and its application in analysis of alkaloids in tea, coffee, coca cola, and theophylline tablets. Journal of separation science.2009,32(2):267-274.
    [130]王元凤,金征宇.茶多糖脱色的研究.食品与发酵工业.2004,30(12):60-65.
    [131]陈荣义,张新申,申金山,et al茶多酚、茶氨酸联合分离提取的研究.林产化学与工业.2005,25(1):99-101.
    [132]Wang L., Gong L. H., Chen C. J., et al. Column-chromatographic extraction and separation of polyphenols, caffeine and theanine from green tea. Food Chemistry.2012,131(4):1539-1545.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700