生物碳对酸性土壤中有害金属植物毒性缓解及阻控机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物碳(Biochar)是生物质在缺氧或无氧条件下低温裂解制备的富碳固体。生物碳具有特殊的结构和性质,在酸性土壤改良和污染土壤修复中具有巨大的应用潜力,引起了国际土壤和环境领域的极大关注。论文介绍了生物碳的制备及结构特征,重点评述了生物碳在退化土壤改良和重金属污染土壤修复中应用的研究进展。针对生物碳在酸性土壤改良中作用机理尚未阐明,生物碳对土壤中有毒金属Al和重金属毒性缓解和阻控作用的机理不清等问题,选择水稻秸秆、牛粪等为代表,制备了不同炭化温度的生物碳,通过元素分析、FTIR、XRD、SEM、Zeta电位等手段表征了生物碳的结构组成和表面性质;研究了生物碳对Al的吸附作用机理,探讨水培体系下对生物碳缓解植物Al毒的作用机理;在此基础上,揭示了生物碳对酸性土壤中Al毒缓解机制;并进一步采用酸氧化法模拟了生物碳老化过程,探明了其在增强Al和Cd吸附中的作用机理;最后对生物碳在土壤酸化和暖化效应耦合下重金属Cd阻控机理进行了探索。研究结果为酸性土壤改良和污染土壤修复提供理论基础与技术支撑。论文的主要结论及创新点如下:
     (1)揭示了生物碳与Al相互作用的机制及其构-效关系,发现生物碳上的有机组分和硅颗粒是吸附Al的两个主要区域。有机组分上的羟基和羧基对Al的表面络合作用、硅颗粒对Al的沉淀作用是生物碳吸附Al的两个重要途径。Al负载生物碳FTIR上的羧基非对称峰和对称峰的差值显著增加,表明羧基对A1产生了表面络合作用。同时,吸附Al之后,生物碳和灰分的表面负电荷在pH3-8之间出现了逆转,正电荷在pH4.5时达到最大,与硅的最大正电荷所在的pH一致,电荷转变主要是由羟基Al与硅表面的双电层氢键作用引起的。
     (2)发现生物碳能高效缓解Al的植物毒性,其作用机制包括生物碳的石灰效应(碱性)改变Al的存在形态、吸附作用降低Al的有效浓度、生物碳溶出硅在植物体内与A1形成铝硅化合物。水培实验表明,仅添加0.02%(极少量)生物碳到溶液中后,Al对植物生长的抑制作用得到显著的缓解,毒性阀值从3μmol/LA13+上升到95μmol/L Al3+。同时通过溶液pH的调整和生物碳碱性矿物水洗去除的方法,探明了石灰效应和吸附作用在生物碳缓解植物Al毒中的贡献,生物碳的石灰效应使Al的形态被转变成可被生物碳高效吸附的形态Al(OH)2+和Al(OH)2+的同时,从高毒性Al3+转化为低毒性的Al(OH)3和Al(OH)4-。然而,石灰效应是一个短暂的过程,吸附作用在植物Al毒缓解中具有更重要的作用。进一步将生物碳应用于酸性土壤中,探明了生物碳在酸性土壤Al毒的缓解中具有双重功能。土壤交换性Al、根尖Al浓度以及苏木精染色结果表明,生物碳在植物外部降低土壤交换性Al,减少Al向植物的迁移:同时,Morin荧光染色和SEM-EDS表征结果表明,生物碳溶出的硅可以进入植物体内,与Al在小麦根系的表皮中形成铝硅化合物,在植物体内缓解Al的毒害。
     (3)探明了酸化土壤中生物碳老化过程的结构演变以及对土壤有毒金属Al和Cd的吸附作用及阻控机理。模拟酸化土壤中生物碳老化过程,发现老化生物碳的盐基离子(Na+、K+、Ca2+、Mg2+)淋失,表面含氧官能团羧基和羟基增加。新增加的羧基和羟基为生物碳负载Al和Cd提供新的位点,从而促进了生物碳对Al和Cd的吸附固定,表明生物碳对酸性土壤有害金属有长期吸附固定作用。进一步研究发现土壤酸化和暖化效应对Cd植物毒性的增强具有协同效应,而生物碳在土壤酸化和暖化效应协同效应下对植物Cd毒性的具有很强的缓解作用。
Biochar is a carbon-rich material that is produced during the pyrolysis of biomass, and it has received increasing attention as an effective approach to acidic soil amelioration and contaminated soil remediation. This paper introduced the structure and composition of biochar, and focused on the progress of acidic soil improvement and heavy metal contaminated soil remediation. Until now, the mechanism of acidic soil amelioration by biochar amendment was not well understood, and the adsorption and phytotoxicity alleviation mechanism of aluminum and heavy metal by biochars has not been systematically elucidated. In this dissertation, biochars derived from rice straw and cattle manure were prepared under different pyrolytic temperatures. Through the structural characterization of biochar by element analysis, FTIR, XRD, SEM and Zeta potential, the Al binding mechanisms by biochars were discovered, and then the Al phytotoxicity alleviation mechanisms by biochar in hydroponic system were investigated. Furthermore, the mechanisms of Al phytotoxicity alleviation in acidic soil were revealed. Simulating aging process of biochar by oxidation, the Al and Cd binding mechanisms by aging biochar were illustrated, and the Cd phytotoxicity mitigation mechanisms by biochar were clarified when response to the coupling of greenhouse effect and soil acidification. These results provide a theoretical basis for acid soil improvement and contaminated soil remediation. The main original conclusions of this work are drawn as follows:
     (1) Revealed the mechanism and structure-effect relationship of biochar and Al interaction, and found that the oxygen-containing organic components and the scattering silicon particles of biochar are two main regions of Al adsorption. The complexation of Al with organic hydroxyl and carboxyl groups and the surface adsorption and coprecipitation of Al with silicate particles both contributed to the Al adsorption of the biochars. According to the FTIR of biochar, the difference peak of carboxyl asymmetric and symmetric showed a significant increase after Al loaded, indicating the surface complexation of carboxyl group and Al. After the biochars were loaded with Al, the zeta potentials of the biochars and ashes increased as a function of pH. The charge reversal was caused by the Stern-layer adsorption of hydrolyzed aluminum species on the silicate surfaces via hydrogen bonds.
     (2) Effective alleviation of Al phytotoxicity by biochar was found, and its mechanism included the liming effect of biochar (alkaline) to change form of Al, the adsorption by biochar to reduced the available Al and the alleviation was the formation of aluminosilicate by dissolution silicon and Al. Hydroponic experiments showed that upon addition of0.02%biochar to the exposure solution, the inhibition of plant growth by Al was significantly reduced while the toxic threshold was extended from3to95μmol/L Al3+. Due to the biochar liming effect, the aluminum species were converted to Al(OH)2+and Al(OH)2+monomers, which were strongly adsorbed by biochar; furthermore, the highly toxic Al3+evolved to less toxic Al(OH)3and Al(OH)4-species. Further used biochar in acidic soil, it has proven a dual function in Al phytotoxicity alleviation. Soil exchangeable Al, Al concentration and hematoxylin stai ning showed that the biochar reduced soil exchangeable Al, thus reduce the migration to plants. Meanwhile, Morin staining and SEM-EDS showed silicon dissolution from biochar can enter in plants, then form Al-Si compounds with Al in the epidermis of wheat roots, alleviating the Al phytotoxicity in plants.
     (3) Elucidated the biochar structural evolution by aging process as well as the adsorption and resistance mechanisms controlling of soil toxic metals Al and Cd during soil acidification. Simulated biochar aging process in acidic soil and found that biochar aging process lead to the leaching of base cations and the increase of surface carboxyl and hydroxyl functional groups. Additional carboxyl and hydroxyl groups provided new adsorption sites of Al and Cd, thus promoting the adsorption of Al and Cd biochar, indicating that biochar had long-term effect on harmful metals immobilization in acidic soil. Further studies showed that soil acidification and warming effect have a synergistic effect on the phytotoxicity of Cd. Under the coupling of the soil acidification and warming effects, biochar showed effective alleviation of Cd phytotoxicity.
引文
[1]Lehmann, J.; Joesph, S. Biochar for Environmental Management:Science and Technology; Earthscan, Ltd:London,2009.
    [2]Woolf, D.; Amonette, J. E.; Street-Perrott, F. A.; Lehmann, J.; Joseph, S., Sustainable biochar to mitigate global climate change. Nature Communication 2010, 1,56.
    [3]Lehmann, J., A handful of carbon. Nature 2007,447(7141),143-144.
    [4]Chen, B. L.; Zhou, D. D.; Zhu, L. Z., Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology 2008,42(14),5137-5143.
    [5]Hayes, M. H. B., Biochar and biofuels for a brighter future. Nature 2006,443 (7108), 144-144.
    [6]Glaser, B.; Birk, J. J., State of the scientific knowledge on properties and genesis of anthropogenic dark earths in central amazonia (terra preta de indio). Geochimica Et Cosmochimica Acta 2012,82,39-51.
    [7]Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W., The'terra preta'phenomenon: Amodel for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88(1),37-41.
    [8]Glaser, B.; Parr, M.; Braun, C.; Kopolo, G., Biochar is carbon negative. Nature Geoscience 2009,2(1),2-2.
    [9]Marris, E., Putting the carbon back:Black is the new green. Nature 2006,442, (7103),624-626.
    [10]Schmidt, M. W. I.; Noack, A. G., Black carbon in soils and sediments:Analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles 2000,14(3),777-793.
    [11]Lehmann, J.; da Silva, J. P.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B., Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central amazon basin:Fertilizer, manure and charcoal amendments. Plant and Soil 2003,249(2),343-357.
    [12]Cao, X. D.; Harris, W., Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource Technology 2010,101(14),5222-5228.
    [13]Yuan, J. H.; Xu, R. K.; Zhang, H., The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology 2011,102(3), 3488-3497.
    [14]Azargohar, R.; Dalai, A. K., Biochar as a precursor of activated carbon. Applied Biochemistry and Biotechnology 2006,131(1-3),762-773.
    [15]Azargohar, R.; Dalai, A. K., Steam and KOH activation of biochar:Experimental and modeling studies. Microporous and Mesoporous Materials 2008,110(2-3), 413-421.
    [16]Chen, B. L.; Chen, Z. M., Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 2009,76(1), 127-133.
    [17]Lehmann, J.; Rillig, M. C.; Thies, J.; Masiello, C. A.; Hockaday, W. C.; Crowley, D., Biochar effects on soil biota-A review. Soil Biology & Biochemistry 2011, 43(9),1812-1836.
    [18]Chan, K. Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S., Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research 2007,45, (8),629-634.
    [19]Zhang, X.; Wang, H.; He, L.; Lu, K.; Sarmah, A.; Li, J.; Bolan, N. S.; Pei, J.; Huang, H., Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research 2013, 20(12),8472-8483.
    [20]McKendry, P., Energy production from biomass (part 1):Overview of biomass. Bioresource Technology 2002,83(1),37-46.
    [21]徐义亮.生物碳的制备动力学特性及其对镉的吸附性能和机理.浙江大学硕士学位论文.2013
    [22]Meyer, S.; Glaser, B.; Quicker, P., Technical, economical, and climate-related aspects of biochar production technologies:A literature review. Environmental Science & Technology 2011,45(22),9473-83.
    [23]Chen, B. L.; Chen, Z. M.; Lv, S. F., A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology 2011,102(2),716-723.
    [24]Zhang, M.; Gao, B.; Varnoosfaderani, S.; Hebard, A.; Yao, Y.; Inyang, M., Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology 2013,130,457-462.
    [25]Zhao, X. Q.; Song, Z. L.; Liu, H. Z.; Li, Z. Q.; Li, L. Z.; Ma, C. Y, Microwave pyrolysis of corn stalk bale:A promising method for direct utilization of large-sized biomass and syngas production. Journal of Analytical and Applied Pyrolysis 2010,89(1),87-94.
    [26]Keiluweit, M.; Nico, P. S.; Johnson, M. G.; Kleber, M., Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology 2010,44(4),1247-1253.
    [27]Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W., Black carbon in soils:The use of benzenecarboxylic acids as specific markers. Organic Geochemistry 1998, 29(4),811-819.
    [28]Lehmann, J.; Liang, B. Q.; Solomon, D.; Lerotic, M.; Luizao, F.; Kinyangi, J.; Schafer, T.; Wirick, S.; Jacobsen, C., Near-edge x-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil:Application to black carbon particles. Global Biogeochemical Cycles 2005,19(1).
    [29]王栋.生物质热裂解实验研究及热裂解产物利用.浙江大学硕士学位论文.2004.
    [30]周丹丹.生物碳质对有机污染物的吸附作用及机理调控.浙江大学硕士学位论文.2008.
    [31]Kong, L. L.; Liu, W. T.; Zhou, Q. X., Biochar:An effective amendment for remediating contaminated soil. Reviews of environmental contamination and toxicology,2014,28,83-99.
    [32]Chen, B. L.; Yuan, M. X.; Qian, L. B., Enhanced bioremediation of PAH- contaminated soil by immobilized bacteria with plant residue and biochar as carriers. Journal of Soils and Sediments 2012,12(9),1350-1359.
    [33]钱林波;元妙新;陈宝梁.固定化微生物技术修复PAHs污染土壤的研究进展.环境科学.2012,33(5),3767-3776.
    [34]陈宝梁.土壤有机污染的缓解与修复技术原理.环境化学学科前沿与展望王春霞;朱利中;江桂斌.北京:科学出版社.2011,372-390.
    [35]Sun, K.; Keiluweit, M.; Kleber, M.; Pan, Z. Z.; Xing, B. S., Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresource Technology 2011,102, (21),9897-9903.
    [36]Chen, Z. M.; Chen, B. L.; Chiou, C. T., Fast and slow rates of naphthalene sorption to biochars produced at different temperatures. Environmental Science & Technology 2012,46(20),11104-11111.
    [37]Xu, Y. L.; Chen, B. L., Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresource Technology 2013,146,485-493.
    [38]Uchimiya, M.; Orlov, A.; Ramakrishnan, G.; Sistani, K., In situ and ex situ spectroscopic monitoring of biochar's surface functional groups. Journal of Analytical and Applied Pyrolysis 2013,102,53-59.
    [39]Yao, F. X.; Arbestain, M. C.; Virgel, S.; Blanco, F.; Arostegui, J.; Macia-Agullo, J. A.; Macias, F., Simulated geochemical weathering of a mineral ash-rich biochar in a modified soxhlet reactor. Chemosphere 2010,80(1),724-732.
    [40]Nguyen, B. T.; Lehmann, J.; Kinyangi, J.; Smernik, R.; Riha, S. J.; Engelhard, M. H., Long-term black carbon dynamics in cultivated soil. Biogeochemistry 2009, P2(1-2),163-176.
    [41]Mao, J. D.; Kong, X. Q.; Schmidt-Rohr, K.; Pignatello, J. J.; Perdue, E. M., Advanced solid-state nmr characterization of marine dissolved organic matter isolated using the coupled reverse osmosis/electrodialysis method. Environmental Science & Technology 2012,46(11),5806-5814.
    [42]Hale, S. E.; Hanley, K.; Lehmann, J.; Zimmerman, A. R.; Cornelissen, G., Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. Environmental Science & Technology 2011,45(24),10445-10453.
    [43]Uchimiya, M.; Bannon, D. I.; Wartelle, L. H., Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil. Journal of Agricultural and Food Chemistry 2012,60(7),1798-1809.
    [44]Zheng, W.; Guo, M.; Chow, T.; Bennett, D. N.; Rajagopalan, N., Sorption properties of greenwaste biochar for two triazine pesticides. Journal of Hazardous Material 2010,181(1-3),121-6.
    [45]Cui, L. Q.; Li, L. Q.; Zhang, A. F.; Pan, G. X.; Bao, D. D.; Chang, A., Biochar amendment greatly reduces rice cd uptake in a contaminated paddy soil:A two-year field experiment. Bioresources 2011,6(3),2605-2618.
    [46]Xu, X. Y.; Cao, X. D.; Zhao, L.; Wang, H. L.; Yu, H. R.; Gao, B., Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research 2013,20(1),358-368.
    [47]Wu, W.; Yang, M.; Feng, Q.; McGrouther, K.; Wang, H.; Lu, H.; Chen, Y, Chemical characterization of rice straw-Tderived biochar for soil amendment. Biomass & Bioenergy 2012,47,268-276.
    [48]Wu, W. X.; Yang, M; Feng, Q. B.; McGrouther, K.; Wang, H. L.; Lu, H. H.; Chen, Y. X., Chemical characterization of rice straw-derived biochar for soil amendment. Biomass & Bioenergy 2012,47,268-276.
    [49]Cantrell, K. B.; Hunt, P. G.; Uchimiya, M.; Novak, J. M; Ro, K. S., Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology 2012,107,419-428.
    [50]Cao, X. D.; Ma, L. N.; Gao, B.; Harris, W., Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology 2009, 43(9),3285-3291.
    [51]Uchimiya, M.; Bannon, D. I.; Wartelle, L. H.; Lima, I. M.; Klasson, K. T., Lead retention by broiler litter biochars in small arms range soil:Impact of pyrolysis temperature. Journal of Agricultural and Food Chemistry 2012,60(20),5035- 5044.
    [52]Freitas, J. C. C.; Emmerich, F. G.; Bonagamba, T. J., High-resolution solid-state NMR study of the occurrence and thermal transformations of silicon-containing species in biomass materials. Chemistry of Materials 2000,12(3),711-718.
    [53]Oguntunde, P. G.; Abiodun, B. J.; Ajayi, A. E.; van de Giesen, N., Effects of charcoal production on soil physical properties in ghana. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 2008,171(4),591-596.
    [54]Herath, H.; Camps-Arbestain, M.; Hedley, M., Effect of biochar on soil physical properties in two contrasting soils:An alfisol and an andisol. Geoderma 2013,209, 188-197.
    [55]Chen, H.; Du, Z.; Guo, W.; Zhang, Q., Effects of biochar amendment on cropland soil bulk density, cation exchange capacity, and particulate organic matter content in the north china plain. The Journal of Applied Ecology 2011,22(11),2930-2934.
    [56]陈红霞;杜章留;郭伟;张庆忠.施用生物炭对华北平原农田土壤容重、阳离子交换量和颗粒有机质含量的影响.应用生态学报.2011,22(11),2930-2934.
    [57]Glaser, B.; Lehmann, J.; Zech, W., Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biology and Fertility of Soils 2002,35(4),219-230.
    [58]Laird, D.; Fleming, P.; Wang, B. Q.; Horton, R.; Karlen, D., Biochar impact on nutrient leaching from a midwestern agricultural soil. Geoderma 2010,158(3-4), 436-442.
    [59]Piccolo, A.; Mbagwu, J. S. C., Effects of different organic waste amendments on soil microaggregates stability and molecular sizes of humic substances. Plant and Soil 1990,123(1),27-37.
    [60]Cheng, C. H.; Lehmann, J.; Thies, J. E.; Burton, S. D.; Engelhard, M. H., Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry 2006, 37(11),1477-1488.
    [61]Liu, X.; Zhang, A.; Ji, C.; Joseph, S.; Bian, R.; Li, L.; Pan, G.; Paz-Ferreiro, J., Biochar's effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data. Plant and Soil 2013,373(1-2),583-594.
    [62]Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K. Y; Downie, A.; Rust, J.; Joseph, S.; Cowie, A., Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil 2010,327(1-2),235-246.
    [63]Topoliantz, S.; Ponge, J. F.; Ballof, S., Manioc peel and charcoal:A potential organic amendment for sustainable soil fertility in the tropics. Biology and Fertility of Soils 2005,41(1),15-21.
    [64]Yuan, J. H.; Xu, R. K., The amelioration effects of low temperature biochar generated from nine crop residues on an acidic ultisol. Soil Use and Management 2011,27(1),110-115.
    [65]Hilber, I.; Wyss, G. S.; Mader, P.; Bucheli, T. D.; Meier, I.; Vogt, L.; Schulin, R., Influence of activated charcoal amendment to contaminated soil on dieldrin and nutrient uptake by cucumbers. Environmental Pollution 2009,157(8-9),2224-2230.
    [66]Singh, B. P.; Hatton, B. J.; Singh, B.; Cowie, A. L.; Kathuria, A., Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of Environmental Quality 2010,39(4),1224-1235.
    [67]Biederman, L. A.; Harpole, W. S., Biochar and its effects on plant productivity and nutrient cycling:A meta-analysis. Global Change Biology Bioenergy 2013,5(2), 202-214.
    [68]Major, J.; Rondon, M.; Molina, D.; Riha, S. J.; Lehmann, J., Maize yield and nutrition during 4 years after biochar application to a colombian savanna oxisol. Plant and Soil 2010,333(1-2),117-128.
    [69]Zavalloni, C.; Alberti, G.; Biasiol, S.; Delle Vedove, G.; Fornasier, F.; Liu, J.; Peressotti, A., Microbial mineralization of biochar and wheat straw mixture in soil: A short-term study. Applied Soil Ecology 2011,50,45-51.
    [70]Steiner, C.; Teixeira, W. G.; Lehmann, J.; Nehls, T.; de Macedo, J. L. V.; Blum, W. E. H.; Zech, W., Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central amazonian upland soil. Plant and Soil 2007,291(1-2),275-290.
    [71]Mizuta, K.; Matsumoto, T.; Hatate, Y.; Nishihara, K.; Nakanishi, T., Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresource Technology 2004,95(3),255-7.
    [72]Taghizadeh-Toosi, A.; Clough, T. J.; Sherlock, R. R.; Condron, L. M., Biochar adsorbed ammonia is bioavailable. Plant and Soil 2012,350(1-2),57-69.
    [73]Clough, T. J.; Condron, L. M., Biochar and the nitrogen cycle:Introduction. Journal of Environmental Quality 2010,39(4),1218-1223.
    [74]Liang, B.; Lehmann, J.; Solomon, D.; Sohi, S.; Thies, J. E.; Skjemstad, J. O.; Luizao, F. J.; Engelhard, M. H.; Neves, E. G.; Wirick, S., Stability of biomass-derived black carbon in soils. Geochimica Et Cosmochimica Acta 2008,72(24), 6069-6078.
    [75]Laird, D. A.; Brown, R. C.; Amonette, J. E.; Lehmann, J., Review of thepyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioproducts & Biorefining-Biofpr 2009,3(5),547-562.
    [76]Lehmann, J., Bio-energy in the black. Frontiers in Ecology and the Environment 2007,5(7),381-387.
    [77]Pacala, S.; Socolow, R., Stabilization wedges:Solving the climate problem for the next 50 years with current technologies. Science 2004,305(5686),968-972.
    [78]Liang, B. Q.; Lehmann, J.; Sohi, S. P.; Thies, J. E.; O'Neill, B.; Trujillo, L.; Gaunt, J.; Solomon, D.; Grossman, J.; Neves, E. G.; Luizao, F. J., Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry 2010,41(2),206-213.
    [79]Haumaier, L.; Zech, W., Black carbon-possible source of highly aromatic components of soil humic acids. Organic Geochemistry 1995,23(3),191-196.
    [80]窦森;周桂;玉杨;翔宇;刘世杰;周鑫;张聪;武华.生物质炭及其与土壤腐殖质碳的关系.土壤学报.2012,49,(4),796-802.
    [81]Kim, J. S.; Sparovek, G.; Longo, R. M.; De Melo, W. J.; Crowley, D., Bacterial diversity of terra preta and pristine forest soil from the western amazon. Soil Biology & Biochemistry 2007,39(2),684-690.
    [82]Rondon, M. A.; Lehmann, J.; Ramirez, J.; Hurtado, M., Biological nitrogen fixation by common beans (phaseolus vulgaris 1.) increases with bio-char additions. Biology and Fertility of Soils 2007,43(6),699-708.
    [83]Warnock, D. D.; Lehmann, J.; Kuyper, T. W.; Rillig, M. C., Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant and Soil 2007,300(1-2),9-20.
    [84]Bindraban, P. S.; van der Velde, M.; Ye, L. M.; van den Berg, M.; Materechera, S.; Kiba, D. I.; Tamene, L.; Ragnarsdottir, K. V.; Jongschaap, R.; Hoogmoed, M.; Hoogmoed, W.; van Beek, C.; van Lynden, G., Assessing the impact of soil degradation on food production. Current Opinion in Environmental Sustainability 2012,4(5),478-488.
    [85]Vonuexkull, H. R.; Mutert, E., Global extent, development and economic-impact of acid soils. Plant and Soil 1995,171(1),1-15.
    [86]Zhao, Y; Jia, X.; Larssen, T. A.; Nielsen, J. H., Soil acidification in china-is controlling SO2 emissions enough? Environmental Science & Technology 2009, 43(21),8021-8026.
    [87]Larssen, T.; Duan, L.; Mulder, J., Deposition and leaching of sulfur, nitrogen and calcium in four forested catchments in china:Implications for acidification. Environmental Science & Technology 2011,45(4),1192-1198.
    [88]Guo, J. H.; Liu, X. J.; Zhang, Y.; Shen, J. L.; Han, W. X.; Zhang, W. F.; Christie, P.; Goulding, K. W. T.; Vitousek, P. M.; Zhang, F. S., Significant acidification in major chinese croplands. Science 2010,327(5968),1008-1010.
    [89]Vanbreemen, N.; Driscoll, C. T.; Mulder, J., Acidic deposition and internal proton sources in acidification of soils and waters. Nature 1984,307(5952),599-604.
    [90]赵其国.中国东部红壤地区土壤退化的时空变化、机制及调控.北京:群学出版社2002,70-75.
    [91]黄昌勇.土壤学.北京:中国农业出版社1999.
    [92]Duan, L.; Liu, J.; Xin, Y.; Larssen, T., Air-pollution emission control in china: Impacts on soil acidification recovery and constraints due to drought. Science of The Total Environment 2013,463,1031-1041.
    [93]Tian, H. Z.; Liu, K. Y; Hao, J. M.; Wang, Y.; Gao, J. J.; Nitrogen oxides emissions from thermal power plants in china:current states and futute predictions. Environmental Science & Technology 2013, 47(19),11350-11357.
    [94]Wang, Y. H.; Solberg, S.; Yu, P. T.; Myking, T.; Vogt, R. D.; Du, S. C, Assessments of tree crown condition of two masson pine forests in the acid rain region in south china. Forest Ecology and Management 2007,242(2-3),530-540.
    [95]Yu, P. T.; Sogn, T. A.; Wang, Y H.; Mulder, J.; Feger, K. H.; Zhu, J. H., Simulated effects of climate change and acid deposition on soil chemical conditions in a masson pine forest of S W china. Journal of Plant Nutrition and Soil Science 2012, 175(6),860-870.
    [96]徐仁扣,Coventry, D.R.,某些农业措施对土壤酸化的影响.农业环境保护2002,21(5),385-388.
    [97]Bergholm, J.; Berggren, D.; Alavi, G., Soil acidification induced by ammonium sulphate addition in a norway spruce forest in southwest Sweden. Water Air and Soil Pollution 2003,148(1-4),87-109.
    [98]Driscoll, C. T.; Vanbreemen, N.; Mulder, J., Aluminum chemistry in a forested spodosol. Soil Science Society of America Journal 1985,49(2),437-444.
    [99]Foy, C. D.; Chaney, R. L.; White, M. C, Physiology of metal toxicity in plants. Annual Review Of Plant Physiology and Plant Molecular Biology 1978,29,511-566.
    [100]Exley, C.; Birchall, J. D., Hydroxyaluminosilicate formation in solutions of low total aluminum concentration. Polyhedron 1992,11(15),1901-1907.
    [101]Exley, C., Darwin, natural selection and the biological essentiality of aluminium and silicon. Trends In Biochemical Sciences 2009,34(12),589-593.
    [102]van Gestel, C. A. M.; Hoogerwerf, G., Influence of soil pH on the toxicity of aluminium for eisenia andrei (oligochaeta:Lumbricidae) in an artificial soil substrate. Pedobiologia 2001,45(5),385-395.
    [103]Kochian, L. V., Cellular mechanisms of aluminum toxicity and resistance in plants. Annual Review of Plant Physiology and Plant Molecular Biology 1995, 46,237-260.
    [104]Jones, D. L.; Kochian, L. V., Aluminum inhibition of the inositol 1,4,5-trisphosphate signal-transduction pathway in wheat roots-A role in aluminum toxicity. Plant Cell 1995,7(11),1913-1922.
    [105]Kinraide, T. B., Toxicity factors in acidic forest soils:Attempts to evaluate separately the toxic effects of excessive Al3+ and H+ and insufficient Ca2+and Mg2+ upon root elongation. European Journal of Soil Science 2003,54(2),323-333.
    [106]Exley, C., Reflections upon and recent insight into the mechanism of formation of hydroxyaluminosilicates and the therapeutic potential of silicic acid. Coordination Chemistry Reviews 2012,256(1-2),82-88.
    [107]Blaser, P.; Walthert, L.; Pannatier, E. G., The sensitivity of swiss forest soils to acidification and the risk of aluminum toxicity. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Boderikunde 2008,171(4), 605-612.
    [108]Kochian, L. V.; Pineros, M. A.; Hoekenga, O. A., The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant and Soil 2005, 274(1-2),175-195.
    [109]Ma, J. F., Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. In Survey of cell biology,2007,264,225.
    [110]胡宏伟;束文圣;蓝崇钰;王伯荪.乐昌铅锌尾矿的酸化及重金属溶出的淋溶实验研究.环境科学与技术1999,86,(3),1-4.
    [111]盛献臻;李媛媛;赵秋香.模拟酸雨下尾矿中重金属Cu、Zn的释放特征.广东化工.2011,38(6),142-144.
    [112]Wang, A. S.; Angle, J. S.; Chaney, R. L.; Delorme, T. A.; Reeves, R. D., Soil pH effects on uptake of Cd and Zn by thlaspi caerulescens. Plant and Soil 2006, 281(1-2),325-337.
    [113]Li, Z. Y.; Tang, S. R.; Deng, X. F.; Wang, R. G.; Song, Z. G., Contrasting effects of elevated CO2 on Cu and Cd uptake by different rice varieties grown on contaminated soils with two levels of metals:Implication for phytoextraction and food safety. Journal of Hazardous Materials 2010,177(1-3),352-361.
    [114]Guo, H. Y; Zhu, J. G.; Zhou, H.; Sun, Y. Y.; Yin, Y.; Pei, D. P.; Ji, R.; Wu, J. C.; Wang, X. R., Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions. Environmental Science & Technology 2011,45(16), 6997-7003.
    [115]Kim, Y O.; Rodriguez, R. J.; Lee, E. J.; Redman, R. S., Phytolacca americana from contaminated and noncontaminated soils of south korea:Effects of elevated temperature, CO2 and simulated acid rain on plant growth response. Journal of Chemical Ecology2008, 34(11),1501-1509.
    [116]Shinogi, Y.; Kanri, Y, Pyrolysis of plant, animal and human waste:Physical and chemical characterization of the pyrolytic products. Bioresource Technology 2003,90(3),241-247.
    [117]Huang, Y Z.; Hu, Y; Liu, Y X., Combined toxicity of copper and cadmium to six rice genotypes (oryza sativa 1.). Journal of Environmental Sciences-China 2009,21(5),647-653.
    [118]Li, T. Q.; Di, Z. Z.; Han, X.; Yang, X. E., Elevated CO2 improves root growth and cadmium accumulation in the hyperaccumulator sedum alfredii. Plant and Soil 2012,354(1-2),325-334.
    [119]Rajkumar, M.; Prasad, M. N. V.; Swaminathan, S.; Freitas, H., Climate change driven plant-metal-microbe interactions. Environment International 2013,53, 74-86.
    [120]Bian, R. J.; Chen, D.; Liu, X. Y; Cui, L. Q.; Li, L. Q.; Pan, G. X.; Xie, D.; Zheng, J. W.; Zhang, X. H.; Zheng, J. F.; Chang, A., Biochar soil amendment as a solution to prevent cd-tainted rice from china:Results from a cross-site field experiment. Ecological Engineering 2013,58,378-383.
    [121]Houben, D.; Evrard, L.; Sonnet, P., Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 2013,92(11),1450-1457.
    [122]Kim, W. K.; Shim, T.; Kim, Y. S.; Hyun, S.; Ryu, C.; Park, Y. K.; Jung, J., Characterization of cadmium removal from aqueous solution by biochar produced from a giant miscanthus at different pyrolytic temperatures. Bioresource Technology 2013,138,266-270.
    [123]Xue, Y. W.; Gao, B.; Yao, Y.; Inyang, M.; Zhang, M.; Zimmerman, A. R.; Ro, K. S., Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals:Batch and column tests. Chemical Engineering Journal 2012,200, 673-680.
    [124]Xu, X.; Cao, X.; Zhao, L., Comparison of rice husk-and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere 2013,92(8),955-61.
    [125]Uchimiya, M.; Lima, I. M.; Klasson, K. T.; Chang, S. C; Wartelle, L. H.; Rodgers, J. E., Immobilization of heavy metal ions (Cu, Cd, Ni, and Pb) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry 2010,58(9),5538-5544.
    [126]Uchimiya, M.; Lima, I. M.; Klasson, K. T.; Wartelle, L. H., Contaminant immobilization and nutrient release by biochar soil amendment:Roles of natural organic matter. Chemosphere 2010,80(8),935-940.
    [127]Uchimiya, M.; Klasson, K. T.; Wartelle, L. H.; Lima, I. M., Influence of soil properties on heavy metal sequestration by biochar amendment:1. Copper sorption isotherms and the release of cations. Chemosphere 2011,82(10),1431-1437.
    [128]Uchimiya, M.; Klasson, K. T.; Wartelle, L. H.; Lima, I. M., Influence of soil properties on heavy metal sequestration by biochar amendment:2. Copper desorption isotherms. Chemosphere 2011,82(10),1438-1447.
    [129]Uchimiya, M.; Bannon, D. I., Solubility of lead and copper in biochar-amended small arms range soils:Influence of soil organic carbon and pH. Journal of Agricultural and Food Chemistry 2013,61(32),7679-7688.
    [130]Kochian, L. V.; Hoekenga, O. A.; Pineros, M. A., How do crop plants tolerate acid soils?-mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology 2004,55,459-493.
    [131]Lin, Y.; Munroe, P.; Joseph, S.; Kimber, S.; Van Zwieten, L., Nanoscale organo-mineral reactions of biochars in ferrosol:An investigation using microscopy. Plant and Soil 2012,357(1-2),369-380.
    [132]Zhou, Z. L.; Shi, D. J.; Qiu, Y. P.; Sheng, G. D., Sorptive domains of pine chars as probed by benzene and nitrobenzene. Environmental Pollution 2010,158 (1), 201-206.
    [133]Silber, A.; Levkovitch, I.; Graber, E. R., Ph-dependent mineral release and surface properties of cornstraw biochar:Agronomic implications. Environmental Science & Technology 2010,44(24),9318-9323.
    [134]Sath, K.; Pauly, T.; Holtenius, K., Mineral balance of cambodian cattle based on their faecal and urinary excretion. Journal of Animal and Veterinary Advances 2012,11(22),4221-4225.
    [135]Wang, W.; Martin, J. C.; Zhang, N.; Ma, C.; Han, A.; Sun, L., Harvesting silica nanoparticles from rice husks. Journal of Nanoparticle Research 2011,13, (12), 6981-6990.
    [136]Inoue, K.; Huang, P. M., Influence of citric-acid on the natural formation of imogolite. Nature 1984,308(5954),58-60.
    [137]Mimmo, T.; Marzadori, C.; Montecchio, D.; Gessa, C., Characterisation of Ca-and Al-pectate gels by thermal analysis and FT-IR spectroscopy. Carbohydrate Research 2005,340(16),2510-2519.
    [138]Xia, H. Y; Rayson, G. D., Investigation of aluminum binding to a datura innoxia material using Al-27 NMR. Environmental Science & Technology 1998,32(18), 2688-2692.
    [139]Lu, P.; Hsieh, Y. L., Highly pure amorphous silica nano-disks from rice straw. Powder Technology 2012,225,149-155.
    [140]Ahlrichs, J. L., Hydroxyl stretching frequencies of synthetic Ni-Al-and Mg-hydroxy interlayers in expanding clays. Clays and Clay Minerals 1968,16(1), 63-71.
    [141]Lou, G.; Huang, P. M., Hydroxy-aluminosilicate interlayers in montmorillonite-implications for acidic environments. Nature 1988,335(6191),625-627.
    [142]White, K. N.; Ejim, A. I.; Walton, R. C.; Brown, A. P.; Jugdaohsingh, R.; Powell, J. J.; McCrohan, C. R., Avoidance of aluminum toxicity in freshwater snails involves intracellular silicon-aluminum biointeraction. Environmental Science & Technology 2008,42(6),2189-2194.
    [143]Kosmulski, M., The pH-dependent surface charging and the points of zero charge. Journal of Colloid and Interface Science 2002,253(1),77-87.
    [144]James, R. O.; Healy, T. W., Adsorption of hydrolyzable metal-ions at oxide-water interface.2. Charge reversal of SiO2 and TiO2 colloids by adsorbed Co, La, and Th as model systems. Journal of Colloid and Interface Science 1972,40(1),53-64.
    [145]Johnson, S. B.; Dixon, D. R.; Scales, P. J., The electrokinetic and shear yield . stress properties of kaolinite in the presence of aluminium ions. Colloids and Surfaces A-physicochemical and Engineering Aspects 1999,146(1-3),281-291.
    [146]Rao, F.; Ramirez-Acosta, F. J.; Sanchez-Leija, R. J.; Song, S. X.; Lopez-Valdivieso, A., Stability of kaolinite dispersions in the presence of sodium and aluminum ions. Applied Clay Science 2011,51(1-2),38-42.
    [147]Yagasaki, Y.; Mulder, J.; Okazaki, M., The role of soil organic matter and short-range ordered aluminosilicates in controlling the activity of aluminum in soil solutions of volcanic ash soils. Geoderma 2006,137(1-2),40-57.
    [148]Feng, D.; Provis, J. L.; van Deventer, J. S. J., Adsorption of gold on albite in acidic chloride media. Hydrometallurgy 2013,134,32-39.
    [149]Fellet, G.; Marchiol, L.; Delle Vedove, G.; Peressotti, A., Application of biochar on mine tailings:Effects and perspectives for land reclamation. Chemosphere 2011,83(9),1262-1267.
    [150]Ahmad, M.; Lee, S. S.; Yang, J. E.; Ro, H. M.; Lee, Y. H.; Ok, Y. S., Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicology and Environmental Safety 2012,79,225-231.
    [151]Gensemer, R. W.; Playle, R. C., The bioavailability and toxicity of aluminum in aquatic environments. Critical Reviews In Environmental Science and Technology 1999,29(4),315-450.
    [152]Yang, J. L.; Zhu, X. F.; Peng, Y. X.; Zheng, C.; Li, G. X.; Liu, Y; Shi, Y. Z.; Zheng, S. J., Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in arabidopsis. Plant Physiology 2011,155(4),1885-92.
    [153]Ma, J. F.; Zheng, S. J.; Matsumoto, H.; Hiradate, S., Detoxifying aluminium with buckwheat. Nature 1997,390(6660),569-570.
    [154]Schutzendubel, A.; Schwanz, P.; Teichmann, T.; Gross, K.; Langenfeld-Heyser, R.; Godbold, D. L.; Polle, A., Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiology 2001,127(3),887-898.
    [155]Baker, C. J.; Mock, N. M., An improved method for monitoring cell-death in cell-suspension and leaf disc assays using evans blue. Plant Cell Tissue and Organ Culture 1994,39(1),7-12.
    [156]Schutzendubel, A.; Majcherczyk, A.; Johannes, C.; Huttermann, A., Degradation of fluorene, anthracene, phenanthrene, fluoranthene, and pyrene lacks connection to the production of extracellular enzymes by pleurotus ostreatus and bjerkandera adusta. International Biodeterioration & Biodegradation 1999,43(3),93-100.
    [157]Zheng, S. J.; Yang, J. L.; He, Y. F.; Yu, X. H.; Zhang, L.; You, J. F.; Shen, R. F.; Matsumoto, H., Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. Plant Physiology 2005, 138(1),297-303.
    [158]Delisle, G.; Champoux, M.; Houde, M., Characterization of oxalate oxidase and cell death in Al-sensitive and tolerant wheat roots. Plant and Cell Physiology 2001,42(3),324-333.
    [159]Kinraide, T. B., Three mechanisms for the calcium alleviation of mineral toxicities. Plant Physiology 1998,118(2),513-520.
    [160]Ma, J. F., Role of organic acids in detoxification of aluminum in higher plants. Plant and Cell Physiology 2000,41(4),383-390.
    [161]Singh, D.; Chauhan, S. K., Organic acids of crop plants in aluminium detoxification. Current Science 2011,100(10),1509-1515.
    [162]Kinraide, T. B.; Pedler, J. F.; Parker, D. R., Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant and Soil 2004,259(1-2),201-208.
    [163]Kinraide, T. B., Identity of the rhizotoxic aluminum species. Plant and Soil 1991, 134(1),167-178.
    [164]Naramabuye, F. X.; Haynes, R. J., Short-term effects of three animal manures on soil pH and Al solubility. Australian Journal of Soil Research 2006,44(5),515-521.
    [165]Graber, E. R.; Harel, Y. M.; Kolton, M.; Cytryn, E.; Silber, A.; David, D. R.; Tsechansky, L.; Borenshtein, M.; Elad, Y., Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soi 2010,337(1-2),481-496.
    [166]Grossman, J. M.; O'Neill, B. E.; Tsai, S. M.; Liang, B. Q.; Neves, E.; Lehmann, J.; Thies, J. E., Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microbial Ecology 2010,60(1),192-205.
    [167]Osawa, H.; Matsumoto, H., Possible involvement of protein phosphorylation in aluminum-responsive malate efflux from wheat root apex. Plant Physiology 2001, 126(1),411-420.
    [168]Polle, E.; Konzak, C. F.; Kittrick, J. A., Visual detection of aluminum tolerance levels in wheat by hematoxylin staining of seedling roots. Crop Science 1978,18 (5),823-827.
    [169]Wenzl, P.; Patino, G. M; Chaves, A. L.; Mayer, J. E.; Rao, I. M., The high level of aluminum resistance in signalgrass is not associated with known mechanisms of external aluminum detoxification in root apices. Plant Physiology 2001,125 (3),1473-1484.
    [170]Haynes, R. J.; Mokolobate, M. S., Amelioration of al toxicity and p deficiency in acid soils by additions of organic residues:A critical review of the phenomenon and the mechanisms involved. Nutrient Cycling In Agroecosystems 2001,59(1), 47-63.
    [171]Radmer, L.; Tesfaye, M.; Somers, D. A.; Temple, S. J.; Vance, C. P.; Samac, D. A., Aluminum resistance mechanisms in oat (avena sativa 1.). Plant and Soil 2012, 351(1-2),121-134.
    [172]Yuan, J. H.; Xu, R. K.; Qian, W.; Wang, R. H., Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. Journal of Soils and Sediments 2011,11(5),741-750.
    [173]Rengel, Z.; Zhang, W. H., Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytologist 2003,159(2),295-314.
    [174]Yagasaki, Y.; Mulder, J.; Okazaki, M., Comparing the activity of aluminum in two b horizons developed from volcanic ash deposits in japan, dominated by short-range ordered aluminosilicates and crystalline clay minerals, respectively. Geochimica Et Cosmochimica Acta 2006,70(1),147-163.
    [175]Hodson, M. J.; Wilkins, D. A., Localization of aluminum in the roots of norway spruce picea-abies (1) karst inoculated with paxillus-involutus. New Phytologist 1991,118, (2),273-278.
    [176]Hodson, M. J.; Sangster, A. G., The interaction between silicon and aluminum in sorghum-bicolor (1) moench-growth analysis and x-ray-microanalysis. Annals of Botany 1993,72(5),389-400.
    [177]Wang, Y. X.; Stass, A.; Horst, W. J., Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiology 2004,136(3),3762-3770.
    [178]Pierson-Wickmann, A. C.; Aquilina, L.; Martin, C.; Ruiz, L.; Molenat, J.; Jaffrezic, A.; Gascuel-Odoux, C, High chemical weathering rates in first-order granitic catchments induced by agricultural stress. Chemical Geology 2009, 265(3-4),369-380.
    [179]Cronan, C. S.; April, R.; Bartlett, R. J.; Bloom, P. R.; Driscoll, C. T.; Gherini, S. A.; Henderson, G. S.; Joslin, J. D.; Kelly, J. M.; Newton, R. M.; Parnell, R. A.; Patterson, H. H.; Raynal, D. J.; Schaedle, M.; Schofield, C. L.; Sucoff, E. I.; Tepper, H. B.; Thornton, F. C, Aluminum toxicity in forests exposed to acidic deposition-the albios results. Water Air and Soil Pollution 1989,45(1-2),181-192.
    [180]Yang, J. L.; Zhang, G. L.; Huang, L. M.; Brookes, P. C., Estimating soil acidification rate at watershed scale based on the stoichiometric relations between silicon and base cations. Chemical Geology 2013,337-338,30-37.
    [181]Mao, J. D.; Pignatello, J. J.; Lehmann, J.; Chappell, M., Characterization of charcoal using advanced solid-state nmr. Abstracts of Papers of the American Chemical Society 2010,240.
    [182]Chen, B. L.; Huang, W. H., Effects of compositional heterogeneity and nanoporosity of raw and treated biomass-generated soot on adsorption and absorption of organic contaminants. Environmental Pollution 2011,159(2),550-556.
    [183]Seredych, M.; Hulicova-Jurcakova, D.; Lu, G. Q.; Bandosz, T. J., Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 2008,46(11), 1475-1488.
    [184]Sun, K.; Gao, B.; Zhang, Z. Y; Zhang, G. X.; Zhao, Y; Xing, B. S., Sorption of atrazine and phenanthrene by organic matter fractions in soil and sediment. Environmental Pollution 2010,155(12),3520-3526.
    [185]Chingombe, P.; Saha, B.; Wakeman, R. J., Surface modification and characterisation of a coal-based activated carbon. Carbon 2005,43(15),3132-3143.
    [186]Zhou, J. H.; Sui, Z. J.; Zhu, J.; Li, P.; De, C.; Dai, Y. C.; Yuan, W. K., Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 2007,45(4),785-796.
    [187]Evanko, C. R.; Dzombak, D. A., Influence of structural features on sorption of nom-analogue organic acids to goethite. Environmental Science & Technology 1998,32(19),2846-2855.
    [188]Dong, H. T.; Du, H. B.; Wickramasinghe, S. R.; Qian, X. H., The effects of chemical substitution and polymerization on the pK(a) values of sulfonic acids. Journal of Physical Chemistry B 2009,113(43),14094-14101.
    [189]Wehr, J. B.; Blamey, F. P.; Hanna, J. V.; Kopittke, P. M.; Kerven, G. L.; Menzies, N. W., Hydrolysis and speciation of al bound to pectin and plant cell wall material and its reaction with the dye chrome azurols. Journal of Agricultural and Food Chemistry 2010,58(9),5553-60.
    [190]Murthy, M. K.; Kirby, E. M., Infrared study of compounds and solid solutions in the system lithia-alumina-silica. Journal of The American Ceramic Society 1962, 45(1),324-329.
    [191]Qian, L.; Chen, B., The dual role of biochars as adsorbents for aluminum:The effects of oxygen-containing organic components and the scattering of silicate particles. Environmental Science & Technology 2013,47(15),8759-8768.
    [192]El-Hendawy, A. N. A., Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon 2003,41(4), 713-722.
    [193]Yu, G. H.; Wu, M. J.; Wei, G. R.; Luo, Y. H.; Ran, W.; Wang, B. R.; Zhang, J. C.; Shen, Q. R., Binding of organic ligands with Al in dissolved organic matter from soil:Implications for soil organic carbon storage. Environmental Science & Technology 2012,46(11),6102-6109.
    [194]Cao, X. D.; Ma, L. N.; Liang, Y; Gao, B.; Harris, W., Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science & Technology 2011,45(11),4884-4889.
    [195]Hu, X. M.; Hu, C. X.; Sun, X. C.; Lu, M. X.; Su, B.; Cao, A. Y., Effects of simulated acid rain on soil acidification, availabilities and temporal and spatial variations of Cu and Pb in a vegetable field under natural conditions. Journal of Food Agriculture & Environment 2009,7(1),92-96.
    [196]Uchimiya, M.; Lima, I. M.; Klasson, K. T.; Chang, S.; Wartelle, L. H.; Rodgers, J. E., Immobilization of heavy metal ions (Cu, Cd, Ni, and Pb) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry 2010,58(9),5538-5544.
    [197]Pahlsson, A. M. B., Toxicity of heavy-metals (Zn, Cu, Cd, Pb) to vascular plants-a literature-review. Water Air and Soil Pollution 1989,47(3-4),287-319.
    [198]Zhu, X. F.; Zheng, C.; Hu, Y. T.; Jiang, T.; Liu, Y; Dong,N. Y; Yang, J. L.; Zheng, S. J., Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in lycopersicon esulentum. Plant Cell and Environment 2011,34(7),1055-1064.
    [199]Zhou, D. M.; Chen, H. M.; Wang, S. Q.; Zheng, C. R., Effects of organic acids, o-phenylenediamine and pyrocatechol on cadmium adsorption and desorption in soil. Water Air and Soil Pollution 2003,145(1),109-121.
    [200]曹军;陶澍.土壤与沉积物中天然有机物释放过程的动力学研究.环境科学学报.1999,19(3),297-302.
    [201]Stone, M.; Droppo, I. G., Distribution of lead, copper and zinc in size-fractionated river bed sediment in two agricultural catchments of southern Ontario, Canada. Environmental Pollution 1996,93(3),353-362.
    [202]Krishnamurti, G. S. R.; Cieslinski, G.; Huang, P. M.; VanRees, K. C. J., Kinetics of cadmium release from soils as influenced by organic acids:Implication in cadmium availability. Journal of Environmental Quality 1997,26(1),271-277.
    [203]Mench, M.; Martin, E., Mobilization of cadmium and other metals from 2 soils by root exudates of zea-mays 1, nicotiana-tabacum-1 and nicotiana-rustica 1. Plant and Soil 1991,132(2),187-196.
    [204]余贵芬;蒋新;孙磊;王芳;卞永荣.有机物质对土壤镉有效性的影响研究综述.生态学报.2002,22(5),770-776.
    [205]Mohan, D.; Pittman, C. U.; Bricka, M.; Smith, F.; Yancey, B.; Mohammad, J.; Steele, P. H.; Alexandre-Franco, M. F.; Gomez-Serrano, V.; Gong, H., Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid and Interface Science 2007, 310(1),57-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700