三维电极法处理EDTA废水的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:乙二胺四乙酸(Ethylenediaminetetraacetic acid, EDTA)是一种多元酸人造有机化合物,对重金属具有强烈的络合能力,在化工食品、电镀等行业应用广泛。EDTA进入环境后会导致水体富营养化程度升高,与重金属离子形成稳定的络合物使河流沉积物中的重金属释放出来,造成严重的环境污染。三维电极法具有传质速度快、电流效率高等优点,是电化学领域研究的热点,但在有机废水处理方面的应用较少,开展三维电极法处理典型有机废水的研究是环境领域的重要发展方向之一。
     采用自制的三维电极反应器处理EDTA模拟废水,研究三维电极法生成羟基自由基的电化学过程,优化三维电极法处理EDTA模拟废水的工艺,基于电化学催化氧化技术阐明三维电极法降解EDTA模拟废水的机理。主要研究成果如下:
     (1)提出并揭示了三维电极法生成羟基自由基的电化学反应机理,确定了控制步骤,为EDTA的高效降解创造了有利条件。证明了OH自由基是三维电极法降解有机物过程中产生的重要活性物种。基于电化学测试技术,研究了硫酸钠体系活性炭阳极上·OH自由基生成的电化学反应历程和控制步骤。通过计算确定·OH自由基吸附引起的弛豫时间常数为6.24×10-2s,是双电层充电所引起时间常数的104倍,吸附引起的等效电阻是电荷转移电阻的6倍,表明·OH自由基以较强的化学键吸附在活性炭电极上,不易发生析氧反应。
     (2)研究确定了EDTA在活性炭上的吸附行为,发现EDTA在活性炭上的吸附不具有催化活性,而是氢键吸附,建立了EDTA在活性炭上的氢键吸附模型。活性炭粒子电极对EDTA的吸附动力学研究表明吸附过程分为两个阶段:在初始阶段,浓度梯度是吸附推动力,吸附剂表面存在较多的活性吸附位点,吸附速度较快;随着反应的进行,伴随有化学吸附的发生,活性位点被逐渐占据,吸附速率逐渐下降,反应逐渐达到平衡。不同浓度和不同温度下EDTA在活性炭上的吸附过程均符合伪二级动力学方程。Freundlich方程更适于描述不同温度下EDTA在活性炭粒子电极上的吸附过程,吉布斯自由能的变化表明吸附是自发进行的,随温度升高吸附能力逐渐增大。吸附热表明EDTA在活性炭上的吸附主要是氢键力和配位基交换力为主导。红外光谱分析表明EDTA通过氢键缔合吸附在活性炭上,键能较弱,容易被降解。
     (3)优化了三维电极法处理EDTA模拟废水的工艺参数,阐明了活性炭粒子电极失活的原因和原位再生机理。在进水速度200mL/min、电导率为2.0mS/cm、电流强度为200mA、pH值为6、反应温度为25℃的情况下电解60min, EDTA的降解率在95%以上。探明了溶液中HCO3-、NO3-、Cl-、SO42-等阴离子存在时会与·OH自由基反应,影响其对有机物的降解,HC03-对EDTA降解过程影响最大,S042-的影响最小,HC03-浓度为5mM时,EDTA降解的动力学反应速率常数下降33.45%。活性炭粒子电极因吸附EDTA产生非催化活性缔合物并占据活性点而失活,电化学原位催化降解使活性位点再次产生空穴,恢复炭粒子电极活性,为EDTA废水三维电极处理工艺提供支撑。
     (4)基于电化学测试技术阐明了三维电极法降解EDTA的电化学催化作用机理。EDTA体系活性炭阳极极化曲线上·OH自由基生成反应的极限峰电流是硫酸钠体系的10倍以上,说明EDTA存在时,活性炭阳极上发生了催化反应。双电势阶跃实验表明·OH自由基生成后吸附在活性炭阳极的表面,在发生析氧反应前与溶液中的有机物发生了催化反应。单电势阶跃实验证明EDTA在活性炭阳极上不发生直接电荷转移反应,而是基于催化反应机理在0.70V到1.50V的电位范围内,EDTA与·OH自由基在活性炭粒子电极表面发生直接矿化反应:OH-→·H+e-·H+EDTA→nCO2+m H2O+zNO2
Abstract:Ethylenediaminetrtraacetic acid (EDTA) is polyprotic acid which can strongly chelate with heavy metal ions to generate comple, it is widely used in chemical industry, food industry and electroplating industry. Aquatic eutrophication and release of heavy metal ions from the sediment in rivers would occur accordingly when EDTA enters into the environment, causing serious environmental contamination. Three-dimensional electrode method has become the hot issue in elrctrochemistry due to its advantages of fast mass transfer, high current efficiency and so on. But the application of this method in organic wastewater treatment is seldom reported. Therefore, developing three-dimensional electrode method to dispose the typical organic wastewater is an important direction in field of environmental science and engineering.
     In the present study, a self-made three-dimensional eletrode reactor was used to treat EDTA-containing model wastewater. The electrochemical process of generation of hydroxyl radicals (· OH) by three-dimensional electrode method was investigated and the EDTA degradation process was optimized. Moreover, the relevant mechanism was studied based on electrochemical catalysis oxidation techniques. The main conclusions are as follows:
     (1) The generation mechanism of· OH by three-dimensional electrode method was systematically studied and determine the control step.· OH was the activity speicies in the process of EDTA-containing wastewater treatment by three-dimensional electrode method. The electrochemical reaction course of the· OH generation on activated carbon anode in NaSO4system was investigated through electrochemical measurement technique. According to calculation, the constant of relaxation time caused by the adsorbtion of· OH was6.24X10-2s and it was104times of that by double layer charging and the equivalent resistance induced by adsorption was6times of that by charge transfer resistance. It is found that the· OH was adsorbed on activated carbon through strong chemical bond, and the oxygen evolution was difficult to occur.
     (2) The adsorption behavior of EDTA on activated carbon was studied and the adsorption model was established. It was showed that adsorption of EDTA on activated carbon without catalysis activity, but through hydrogen bond. The adsorption can be divided into two stages according to the kinetics study:in the initial stage the driving forces are concentration gradient and the adsorption proceeds fast since many active adsorption sites exist in the system; then the chemical adsorption occurs as the reaction proceeds and the adsorption rate gradually slows down because of the occupation of active sites. Under this condition, the adsorption tends to be equilibrium. The adsorption kinetics of EDTA on the activated carbon at different concentrations and temperatures were well fitted by the pseudo-second-order kinetic model. The EDTA adsorption isotherms at various temperatures can be better described by Freundlich model. The calculation of Gibbs free energy showed the adsorption of EDTA was spontaneous (Δ G<0) and the adsorption capacity increased with increasing the temperature. Hydrogen bond and dentate exchange force were the main forces in the process of EDTA adsorption, based on the results of adsorption heat. EDTA adsorption on the activated carbon is achieved by hydrogen bond from the analysis of infrared spectroscopy.
     (3) The treatment process of EDTA-containing moel waste water by three-dimensional electrode reactor was optimized, and the inhibition effect of anion ions such as HCO3-,NO3-, Cl-, SO42-on degradation was observed. The degradation efficiency of total organic carbon (TOC) was above95%under current intensity of200mA, electric conductivity of 2.0ms/cm, electrolysis time of60min, temperature of25℃, inflow rate of200mL/min, and pH of6.0. The HCO3-imposes the most significantly effects on EDTA degradation, while SO42-has the least effect. The kinetic constant of degradation drops by33.45%when the HCO3-concentration is increased to5mM. The regeneration technique of three-dimensional electrochemical method was proposed to destroy the complex without catalysis activity which occupies the active sites and therefore forcefully restore the reactivity.
     (4) The mechanism of EDTA degradation was revealed from the electrochemical method. Based on the anodic polarization curve of activated carbon, the limit peak current of the· OH formation reaction of EDTA system was10times of that for Na2SO4system, indicating that the catalysis reaction on activated carbon anode occured when EDTA exists. The· OH was adsorbed on the surface of activated carbon anode and subsequently reacted with organic compounds prior to the oxygen evolution, according to double potential step measurement. Instead of charge transfer reaction of EDTA, when the potential was in the range of0.7-1.5V the mineralization reaction between· OH and EDTA occurred: OH-→OH+e-·H+EDTA->nCO2+mH2O-zNO2
引文
[1]联合国教科文组织.世界水资源开发报告(第四版)[R].日内瓦:联合国教科文组织,2012.
    [2]金兆丰.21世纪的水处理[M].北京:化学工业出版社.2003.
    [3]《半月谈》编辑部.中国水资源现况[OL]. http://news.xinhuanet.com/ fortune/2005-09/19/content 3512629.htm.
    [4]环境保护部.2011年中国环境状况公报[OL]. http://jcs.mep.gov.cn/hjzl/ zkgb/2011zkgb/.
    [5]环境保护部.第一次全国污染源普查公报[OL]. http://cpsc.mep.gov.cn/gwgg/ 201002/t20100225186146.htm.
    [6]马凯.“十一五”规划战略研究[M].北京:北京科学技术出版社,2005.
    [7]林琳,袁志文.生物降解乙二胺四乙酸研究进展[J].净水技术,2008,27(5):10-13.
    [8]武汉大学.分析化学[M].北京:高等教育出版社,2000.
    [9]方景礼.电镀配合物——理论与应用[M].北京:化学工业出版社,2008.
    [10]李梦龙,蒲雪梅.分析化学数据速查手册[M].北京:化学工业出版社,2009.
    [11]杨军威.硫酸盐还原体系中EDTA的生物降解研究[D].大连:大连理工大学,2011.
    [12]Considine D M. Chemical and Process Technology Encylcopedia [M]. New York: Mcgraw Hill Book Company,1974:252-253.
    [13]Othmer K. Encyclopedia of Chemical Technology(4thed) [M]. New York:John Wiley & Sons,1993:764-795.
    [14]United States Trade Commission. Synthetic organic chemicals [M]. Washington D C:USITC Publication,1994.
    [15]Nothermann B. Biodegradation of EDTA [J]. Applied Microbiology and Biotechnology,1999,51(6):751-759.
    [16]百度百科.EDTA [OL]. http://baike.baidu.com/view/168516.htm.
    [17]Conway M, Holoman S, Jones L, et al. Selecting and using chelating agents [J]. Chemical Endineering,1999,106(3):86-90.
    [18]Frimmel F H. Erties of ethylene dinitrilotetraacetic acid and consequence foe its distribution in the aquatic environment [M]. New York:Marcel Dekker,1997: 89-312.
    [19]Schmidt C K, Brauch H J. Impact of aminopolycarboxylates on aquatic organisms and eutrophication:Overview of available data [J]. Environmental Toxicology,2004,19(6):620-637.
    [20]《明报》编辑部.东江水污染港人食物链——直流脏水灌溉农田重金属严重超标[N].明报,2006.09.04,A2.
    [21]Lo I M C, Yang X Y. EDTA extraction of heavy metals from different soil fractions and synthetic soils [J]. Water Air and Soil Pollution,1999,109(1-4): 219-236.
    [22]Riley R G, Zachara J M, Wobber F J. Chemical contaminants on DOE lands and selections of contaminant mixtures for subsurface science research [M]. Wahshington D C:US Department of Energy,1992.
    [23]Means J L, Crerar D A, Duguid J O. Migration o radioactive wastes-radionuclide mobilization by complexing agents [J]. Science,1978,200(4349):1477-1481.
    [24]Alder A C, Siegrist H, Gujer W, et al. Behavior of NTA and EDTA in biological Wastewater Treatment [J]. Water Research,1990,24(6):733-742.
    [25]Nortemann B. Biodegradation of EDTA [J]. Applied Microbiology and Biotechnology,1999,51(6):751-759.
    [26]Pitter P, Sykora V. Biodegradability of ethylenediamine-based complexing agents and related compounds [J]. Chemosphere,2001,44(4):823-826.
    [27]Lockhart H B, Blakeley R V. Aerobic photodegradation of iron(III)-(ethylenedinitrilo) teraacetate (ferric EDTA). Implications for natural waters [J]. Environmental Science and Technology,1975,9(12):1035-1038.
    [28]Allen P D, Muhammad S. V. TiO2- assisted photocatalysis of lead-EDTA [J], Water Research,2000,34(3):952-964.
    [29]庞熙华.利用电聚浮除法处理废水中Cu-EDTA之研究[D].新北:淡江大学,2000.
    [30]Madsebn E L, Alexoader M. Effects of chemical speciation on the mineralization of organic compounds by microorgamsms [J]. Applied and Environmental Microbiology,1985,50(2):342-349.
    [31]Bunch R L, Ettinger M B. Biodegradability of potential organic substitutes for phosphate [C]. Proceedings of the 22nd Industrial Waste Conference,1967, 129(1):393-396.
    [32]Jia W, Samuel P, Stacey M J, et al. Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils [J]. Soil Biology and Biochemistry,2009,41:2214-2221.
    [33]Margarete B W, Thomas E. Environmental fate and microbial degradation of aminopolycarboxylic acids [J]. FEMS Microbiology Reviews,2001,25(1): 69-106.
    [34]Kaluza U, Klingelhofer P, Tager K. Microbical degradation of EDTA in an industrial wastewater treatment plant [J]. Water Research,1998,32(9): 2843-2845.
    [35]Hinch M L, Ferguson J. Resistance of EDTA and DTPA to aerobic biodegradtation [J]. Environmental Science and Technology,1997,35(2-3): 25-31.
    [36]王罗春,蒋桂云,翁彦.EDTA废水处理研究现状及其展望[J].环境保护科学,2003,29(120):11-14.
    [37]Rodriguez J B, Mutis A.Chemical degradation of EDTA and DTPA in a totally chlorine free (TCF) effluent [J]. Water Research,1999,24(1):39-44.
    [38]李国良.空化效应-化学氧化协同降解水中有机污染物[D].济南:济南大学,2007.
    [39]Kari F G, Giger W. Modeling the photochemical degradation of ethylenediaminetetraacetate in the River Glatt [J]. Environmental Science and Technology,1995,29(11):2814-2827.
    [40]Matsarinne S, Tuhkanen T, Aksela R. Photodegradation of ethylenediaminetetraacetic (EDTA) and ethylenediamine disuccinic (EDDS) within natural UV radiation range [J]. Chemosphere,2001,45(6-7):949-955.
    [41]Babay P A, Emilio C A, Ferreyra R E, et al. Kinetics and mechanisms of EDTA photocatalytic degradation with TiO2 [J]. Water Science and Technology,2001, 44(5):179-185.
    [42]杨晓奕,蒋展鹏,师绍琪,等.乙二胺四乙酸(EDTA)生物降解特性[J].环境科学,2001,22(2):41-45.
    [43]Kusakaba K, Nishida H, Morooka S, et al. Simultaneous electrochemical removal of copper and chemical oxygen demand using a packed-bed electrode cell [J]. Journal of applied electrochemistry,1986,16(1):121-126. [44]Fenton H J H. Oxidation of tartaric acid in the presence of iron [J]. Journal of the Chemical Society, Transactions,1894,65:899-910.
    [45]Do J S, Chem C P. In situ oxidative degradation of formaldehyde with electrogenerated hydrogen peroxide [J]. Journal of the Electrochemistry Society. 1993,140(6):1632-1637.
    [46]Hoigne J, Barder H. The role of hydroxyl radical reaction in ozonation processes in aqueous solutions [J]. Water Research,1976,10(5):377-386.
    [47]Sheng H L, Chi M L, Hong G L. Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation [J]. Water Reasearch.1999, 33(7):1735-1741.
    [48]Haag W R, Yao C C. Rate constants for hydroxyl radicals with several drinking water contaminants [J]. Environmental Science and Technology.1992,26(5): 1005-1013.
    [49]杨杰,尤翔宇,王云燕,等.三维电极降解苯酚的新工艺及机理[J].中国有色金属学报,2012,22(6):1804-1811.
    [50]Yao C C D, Haag W R. Rate constants for direct reactions of ozone with several drinking water contaminates [J]. Water Research,1991,25(7):761-773.
    [51]David R L. CRC handbook of chemistry and physics [M]. Florida:CRC Press, 2007.
    [52]Legrini O, Oliveros E, Braun A M. Photochemical processes for water treatment [J]. Chemical Reviews.1993,93(2):671-698.
    [53]Amat A M, Arques A, Miranda M A, et al. Photo-fenton reaction for the abatement of commercial surfactants in a solar pilot plant [J]. Solar Energy, 2004,77(5):559-566.
    [54]Tang W, Zeng X, Zhao J, et al. The study on the wet air oxidation of highly concentrated emulsified wastewater and its kinetics [J]. Separation and Purification Technology,2003,31(1):77-82.
    [55]Quintanilla A., Cadd J A., Zazo J. A., et al. Wet air oxidation of phenol at mild conditions with a Fe/activated carbon catalyst [J]. Applied Catalysis B: Environmental,2006,62(1-2):115-120.
    [56]向波涛,王涛.一种新兴的高效废物处理技术——超临界水氧化法[J].化工进展,1997,(3):39-44.
    [57]孙楹煌,李彦旭,陈佩仪,等.超临界水氧化法及其在有机废水处理中的应用[J].水资源保护,2005,21(6):75-78.
    [58]Yu J, Savage P E. Phenol oxidation over CuO/Al2O3 in supercritical water [J]. Applied Catalysis B:Environmental,2000,28(3-4):275-288.
    [59]Kronholm J, Jyske P, Riekkola M L. Oxidation efficiencies of potassium persulfate and hydrogen peroxide in pressurized hot water with and without preheating [J]. Environmental Science and Technology,2000,39(7):2207-2213
    [60]Arnold S M, Hicckey W J, Harris R F. Degradation of atrazine by Fenton's reagent:condition optimization and product quantification [J]. Environmental Science and Technology,1995,29(8):2083-2089.
    [61]Kim Y K, Huh I R. Enhancing biological treatability of landfill leachate by chemical oxidation [J]. Environmental Engineering Science,1997,14(1): 73-79.
    [62]Kuo W G. Decolorizing dye wastewater with Fenton's reagent[J]. Water Research, 1992,26(7):881-886.
    [63]刘英艳,刘勇弟.Fenton氧化法的类型及特点[J].净水技术,2005,24(3):51-54.
    [64]Petrier C, Francony A. Incidence of wave-frequency on the raction rates during ultrasonic treatment [J]. Water Science and Technology,1997,35(4):175-180.
    [65]Visscher A D, Langenhove H V, Eenoo P V. Sonochemical degradation of ethylbenzene in aqueous solution:a product study [J]. Ultrasonics Sonochemistry,1997,4(2):145-151.
    [66]Flogstad H, Odegaard H. Treatment of humic waters by ozone [J]. Ozone: Science and Engineering,1985,7(2):121-136.
    [67]Gurol M D, Vatistas R. Oxidation of phenolic compounds by ozone and ozone-UV radiation:A comparative study [J]. Water Research,1987,21(8): 895-900.
    [68]贾成功.·OH的发生及其在水处理中的应用[D].北京:北京化工大学,2002.
    [69]Leite R H D L, Cognet P, Wilhelm A M, et al. Anodic Oxidation of 2,4-dihydroxybenzoic acid for wastewater treatment:study of ultrasound activation [J]. Chemical Engineering Science,2002,57(5):767-778.
    [70]Makino K, Mossoba M M, Riesz P. Chemical Effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms [J]. The Journal of Physical Chemistry,1983,87(8):1369-1377.
    [71]冯玉杰,李晓岩.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002.
    [72]Chen G H. Electrochemical technologies in wastewater treatment [J]. Seperation and purification Technology,2004,38(1):11-41.
    [73]Paire A, Espinoux D, Masson M, et al. Silver(Ⅱ) mediated electrochemical treatment of selected organics:hydrocarbon destruction mechanism [J]. RadiochinActa,1997,78:137-143.
    [74]Bringmann F, Ebert K, Galla U, et al. Electrochemical mediator for total oxidation of chlorinated hydrocarbons:formation kinetics of Ag(II), Co(Ⅲ), and Ce(IV) [J]. Journal of Applied Electrochemistry,1995,25(9):846-851.
    [75]Carlos A, Martinez H, Sergio F. Electrochemical oxidation of organic pollutants for the wastewater treatment:direct and indirect processes [J]. Chemical Society Reviews,2006,35:1324-1340.
    [76]Farmer J C, Wang F T, Hawley-fedder R A, et al. Electrochemical treatment of mixed and hazardous wastes:Oxidation of ethylene glycol and benzene by silver(Ⅱ) [J]. Journal of the Electrochemical Society,1992,139(3):654-662.
    [77]Bringmann F, Ebert K, Galla U, et al. Electrochemical mediators for total oxidation of chlorinated hydrocarbons:formation kinetics of Ag(Ⅱ), Co(Ⅱ), and Ce(Ⅳ) [J]. Journal of Applied Electrochemistry,1995,25(9):846-851.
    [78]Anotai J, Su C, Tsai Y, et al. Effect of hydrogen peroxide on aniline oxidation by electro-Fenton and fluidized-bed Fenton processes [J]. Journal of Hazardous Materials,2010,183(1-3):888-893.
    [79]Yoshida K, Yoshida S, Seki Y, et al. Basic study of electrochemical treatment of ammonium nitrogen containing wastewater using boron-doped diamond anode [J]. Environment and Resource,2007, (65):71-73.
    [80]Cabeza A, Urtiaga A, Rivero M J, et al. Ammonium removal from landfill leachate by anodic oxidation [J]. Journal of Hazardous Materials,2007,144(3): 715-719.
    [81]Vlyssides A, Barampouti E M, Mai S, et al. Degradation of methylparathion in aqueous solution by electrochemical oxidation [J]. Environmental Science and Technology,2004,38(22):6125-6131.
    [82]Vera Y M, Carvalho R J, Torem M L, et al. Atrazine degradation by in situ electrochemically generated ozone [J]. Chemical Engineering Journal,2009, 155(3):691-697.
    [83]Szpyrkowicz L, Radaelli M. Scale-up of an electrochemical reactor for treatment of industrial wastewater with an electrochemically generated redox mediator [J]. Journal of Applied Electrochemistry,2006,36(10):1151-1156.
    [84]Rajkumar D, Kim J G, Palanivelu K. Indirect electrochemical oxidation of phenol in the presence of chloride for wastewater treatment [J]. Chemical Engineering and Technology,2005,28(1):98-105.
    [85]常立民,段小月,刘伟.载钛活性炭电极电吸附除盐性能的研究[J].环境科 学学报,2010,30(3):530-535.
    [86]Han Y H, Quan X, Chen S, et al. Electrochemical enhancement of adsorption capacity of activated carbon fibers and their surface physicochemical characterizations [J]. Electrochimica Acta,2007,52(9):3075-3081.
    [87]Zou L D, Morri G, Qi D D. Using activated carbon electrode in electrosorptive deionization of brackish water [J]. Desalination,2008,225(1-3):329-340.
    [88]王辉,戴艺、施光楠,等.电吸附除盐技术在污水再生中的应用[J].中国给水排水,2012,28(21):107-112.
    [89]李静波,赵璇,李福志.电絮凝-微滤去除饮用水中的氟[J].清华大学学报(自然科学版),2007,47(9):1495-1497.
    [90]卢建杭,刘伟屏,郑巍.铝盐混凝法去除F离子的作用机理探讨[J].环境科学学报,2000,20(6):709-713.
    [91]Hu C Y, Lo S L, Kuan W H. Effect of co-existing anions on fluoride removal in electrocoagulation (EC) process using alum inium electrodes [J]. Water Research,2003,37(18):4513-4523.
    [92]凌开成,赵瑞华,张永奇,等.电渗析处理L-谷氨酸废水[J].膜科学与技术,2002,22(4):30-33.
    [93]Do J S, Chen C P. In situ oxidative degradation of formaldehyde with electrogenerated hydrogen peroxide [J]. Journal of the Electrochemical Society, 1993,140(6):1632-1637.
    [94]熊英健,范娟,朱锡海.三维电极电化学水处理技术研究现状及方向[J].工业水处理,1998,18(1):5-8.
    [95]Njau K N, Woude M V, Jvisser G J, et al. Electrochemical removal of nickel ions from industrial wastewater [J]. Chemical Engineering Journal,2000,79(3): 187-195.
    [96]Christiane A R R, Rosana A D I, Waldir B, et al. Recycled niobium felt as an efficient three-dimensional electrode for electrolysis metal ion removal [J]. Water Research,2000,34(13):3269-3276.
    [97]郝学奎,王三反.三维电极法处理含铜废水的方法研究[J].兰州铁道学院学报(自然科学版),2002,21(6):96-98.
    [98]伊藤健治.污液中の污染物质分离方法及处理装置[P].JP昭60-14987,1985.
    [99]许海梁,杨卫身,周集体,等.偶氮染料废水的电解处理[J].化工环保,1999,19(1):32-36.
    [100]熊蓉春,贾成功,魏刚.二维和三维电极法催化降解染料废水[J].北京化工 大学学报,2002,29(5):1-5.
    [101]申哲民,王文华,贾金平,等.不同形式电极与染料溶液的反应及其能耗[J].环境污染治理技术与设备,2000,1(2):21-25.
    [102]Fockedy E, Lierde A V. Coupling of anodic and cathodic reaction for phenol electro-oxidation using three-dimensional electrodes [J]. Water Research,2002, 36(16):4169-4175.
    [103]Polcaro A M, Palmas S, Renoldi F, et al. Three-dimensional electrodes for the electrochemical combustion of organic pollutants [J]. Electrochimica Acta, 2000,46(2-3):389-394.
    [104]杨庆,王三反,王越.三维电极加入氯化钠电解含酚废水的研究[J].兰州铁道学院学报(自然科学版),2003,22(1):133-136.
    [105]Tamminen A, Vuorilehto K. Application of a three-dimensional ionexchange electrolyte in the deoxygenation of low-conductivity water [J]. Journal of Applied Electrochemistry,1997,27(11):1095-1099.
    [106]周德瑞,郭垂根,王丽,等.三维电极电化学去除水中溶解氧的研究[J].腐蚀科学与防护技术,2003,15(3):169-171.
    [107]范彬,曲久辉,刘锁祥,等.复三维电极-生物膜反应器脱除饮用水中的硝酸盐[J].环境科学学报,2001,21(1):39-43.
    [108]陈卫国,徐涛,彭玉凡,等.电催化系统-电生物炭接触氧化床处理垃圾渗滤液[J].中国环境科学,2002,22(2):146-149.
    [109]Xiong Y, Karlsson H T. An experimental investigation of chemical oxygen demand removal from the wastewater containing oxalic acid using three-phase three-dimensional electrode reactor [J]. Advances in Environmental Research, 2002,7(1):139-145.
    [110]Xiong Y, Strunk P J, Xia H Y, et al. Treatment of dye wastewater containing acid orange Ⅱ using a cell with three-phase three-dimensional electrode [J]. Water Research,2001,35(17):4226-4230.
    [111]安太成,何春,朱锡海,等.三维电极电助光催化降解直接湖蓝水溶液的研究[J].催化学报,2001,22(2):193-197.
    [112]安太成,顾浩飞.三维电极电助光催化降解直接染料的可行性研究[J].中山大学学报(自然科学版),2000,39(6):131-132.
    [113]百度百科[EB/OL]. http://baike.baidu.com/view/168516.htm.
    [114]维基百科[EB/OL]. http://zh.wikipedia.org/wiki/EDTA.
    [115]Ho Y S, Mckay G. Pseudo-second order model for sorption processes [J]. Process Biochemistry,1999,34(5):451-465.
    [116]Chien S H, Clayton W R. Application of Elcovich equation to the kinetic of phosphate release and sorption on soil [J]. Soil Science Society of America Journal,1980,44(2):265-268.
    [117]Sparks D L, Kinetics of reactions in pure and mixed systems in soil physical chemistry [J]. Florida:CRC Press,1986.
    [118]Helfferich F, Ion Exchange [M]. New York:McGraw-Hill,1962.
    [119]Sontheimer H, Crittenden J C, Summers R D. Activated carbon for water treatment [J]. DVGW-Forschungsstelle Karlsruhe,1988.
    [120]Crittenden J C, Hu S, Hand D W, et al. A kinetic model for H2O2/UV process in a completely mixed batch reactor [J]. Water Research,1999,33(10): 2315-2328.
    [121]Beltran F J, Rivas J, Alonso M A, et al. A kinetic model for advanced oxidation process of aromatic hydrocarbons in water:application to phenanthreen and nitrobenzene. [J]. Industrial and Engineering Chenistry Research,1999,38(11): 4189-4199.
    [122]Resat A, Mahmet H. Photooxidation of som mono-, di, and trichlorophenol in aqueous solution by hydrogen peroxide/UV combinations [J]. Journal of Chemical Technology and Biotechnology,1999,67(3):221-226.
    [123]Liao C H, Gurol M D. Chemical oxidation by photolytic decomposition of hydrogen peroxide [J]. Environmental Science and Technology,1995,29(12): 3007-3014.
    [124]张鉴清.电化学测试技术[M].北京:化学工业出版社,2010.
    [125]吴辉煌.电化学[M].北京:化学工业出版社,2004:38-50.
    [126]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002:47-80.
    [127]李荻.电化学原理[M].北京:北京航空航天大学出版社,1995:292-298.
    [128]张小璇,任源,韦朝海,等.焦化废水生物处理尾水中残余有机污染物的活性炭吸附及其机理[J].环境科学学报,2007,27(7):1113-1120.
    [129]von Oepen B, Kordel W, Klein W. Sorption of nonpolar and polar compounds to soils:Processes, measurements and experience with the applicability of the modified OECD-Guideline 106 [J]. Chemosphere,1991,22(3-4):285-304.
    [130]Cordero T, Rodriguez-Mirasol J, Tancredi N, et al. Influence of Surface Composition and Pore Structure on Cr(III) Adsorption onto Activated Carbons [J]. Industrial and Engineering Chemistry Research,2002,41(24):6042-6048.
    [131]路朝阳,李爱民.活性炭对芳香有机物的吸附作用力研究进展[J].离子交换与吸附,2011,(5):474480.
    [132]杭州大学化学系分析化学教研室.分析化学手册(第二分册):化学分析(第二版).北京:化学工业出版社,1997.
    [133]查全性.电极过程动力学导论(第三版)[M].科学出版社,2002.
    [134]Brezonik P, Brekken J F. Nitrate-induced photolysis in natural waters:controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging agents [J]. Environmental Science and Technology,1998,32(19): 3004-3010.
    [135]Acero J L, Konrad S, Von Gunten U. Influence of carbonate on the ozone/hydrogen peroxide based advanced oxidation process for drinking water treatment [J]. Ozone:Science and Engineering,2000,22(3):305-328.
    [136]Glaze W H, Kang J W. Advanced oxidation process for treating groundwater contaminated with TCE and PCE:laboratory studies [J]. American Water Works Association,1988,80(5):57-63.
    [137]Glaze W H, Kang J W. Advanced oxidation processes. Description of a kinetic model for the oxidation of hazardous materials in aqueous media with ozone and hydrogen peroxide in a semibatch reactor [J]. Industrial and Engineering Chemistry Research,1989,28(11):1573-1580.
    [138]Glaze W H, Kang J W. Advanced oxidation processes. Test of a kinetic model for the oxidation of organic compounds with ozone and hydrogen peroxide in a semibatch reactor [J]. Industrial and Engineering Chemistry Research,1989, 28(11):1580-1587.
    [139]Langlais B, Reckhow D A, Brink D R. Ozone in water treatment:Application and engineering:Cooperative research report [M]. Chelsea Mi:Lewis publishers,1991.
    [140]Meyerstein D, Treinin A. Absorption spectra of NO3- in solution [J]. Transactions of the Faraday Society,1961,57(0):2104-2112.
    [141]Warneek P, Wurzinger C. Product quantum yields for the 305 nm photodecomposition of NO3- in aqueous solution [J]. The Journal of Physical Chemistry,1988,92(22):6278-6283.
    [142]Zeep R G. Hydroxyl radical formation in aqueous reactions (pH=3-8) of iron (Ⅱ) with hydrogen peroxide:the photo-Fenton reaction [J]. Environmental Science and Technology,1992,26(2):313-319.
    [143]吴贤格.臭氧活性炭—高级氧化组合技术处理水中有机污染物的研究[D].北京:中国科学院研究生院,2007.
    [144]Nadtochenko V, Kiwi J. Photoinduced mineralization of xylidine by the fenton Reagent.2. Implications of the precursors formed in the dark [J]. Environmental Science and Technology,1998,32(21):3282-3285.
    [145]薛松.有机结构分析[M].合肥:中国科技大学出版社,2005.
    [146]邹定平.有机化合物结构分析[M].北京:科学出版社,2005.
    [147]Flyunt R, Leitzke A, Mark G Determination of·OH,02-, and hydroperoxide yields in ozone reactions in aqueous solution [J]. Journal of physical Chemistry B,2003,107(30):7242-7253.
    [148]方景礼.电镀配合物:理论与应用[M].北京:化学工业出版社.2007.
    [149]Pitter P, Sykora V. Biodegradability of ethylenediamine-based complexing agents and related compounds [J]. Chemosphere,2001,44(4):823-826.
    [150]Peller J, Wiest O, Kamat P V. Sonolysis of 2-Dichloroph enoxyacetic acid in aqueous solutions. Evidence for ·OH-radical-mediated degradation [J]. Journal of physical ChemistryA,2001,105(13):3176-3181.
    [151]Saveant J M, Vianello E. Potential-sweep chronoamperometry:Kinetic currents for first-order chemical reaction parallel to electron-transfer process (catalytic currents) [J]. Electrochimica Acta,1965,10(9):905-920.
    [152]巴德A J,福克纳L R,谷林锳.电化学方法(原理及应用)[M].北京:化学工业出版社,1986.
    [153]Macdonald D D. Transient techniques in electrochemistry [M]. New York: Plenum press,1977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700