复杂介质参数反演的小生境蚁群算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界的资源紧缺,尤其是对油气资源的需求与日俱增,油气勘探的理论研究和实际应用受到全球各国研究者们的关注。特别的,我国的资源分布比较分散、隐蔽,增大了油气勘探的难度。因此,复杂介质参数反演问题在实际应用中显得越来越重要。对于实际地下介质来说,大多数的储层都是由流体和固体两部分组成,即双相介质,如砂岩储层和碳酸盐储层。单相介质理论过于理想化,与现实世界有一定的差距,双相介质理论对实际地层结构以及地层性质的描述更加准确。因而,双相介质理论被广泛的应用于地震工程、地球物理勘探和岩土动力学等地球物理科学研究中,人们的研究重心也越来越多的偏向于双相介质理论的研究。在进行油气储层勘探时,我们需要事先知道孔隙度、渗透率、饱和度等储层参数以预测地层结构,而这些参数的获得往往都要通过地球物理反演来得到。
     本文在分析和总结了传统的几种反演方法的基础上,详细介绍了蚁群算法、双相介质中Biot模型和BISQ模型的基础理论和研究发展现状。考虑到储层参数的反演问题属于非线性多模态函数的极值问题,为了防止“早熟”,避免求取全局最优值时陷入局部最优,本文就小生境蚁群算法进行了改进,提出了基于适应值共享的小生境蚁群算法,我们首先将改进的小生境蚁群算法应用于多模态函数优化问题中,并将结果与小生境遗传算法进行了对比,模拟结果显示无论是局部寻优还是全局寻优,小生境蚁群算法都显示出较高的有效性和优越性。其次,我们利用该算法,基于Biot模型和非饱和孔隙介质BISQ模型,对孔隙度,渗透率等参数进行了反演计算,得到了较好的反演结果。
     在基于Biot模型的参数反演中,根据双相介质一维波动方程瞬态位移响应的解析解和双相介质材料的真值求得精确的地表位移以及流体位移,作为反演的附加条件。然后,基于上述解析解,在预反演参数的反演区间上计算出相应的地表位移和流体位移,取目标函数为上述两类位移差的绝对值之和,这时使目标函数值达到最小的参数值即为我们要求的参数反演值。在基于BISQ模型的参数反演中,我们根据高维非饱和孔隙介质BISQ正演模型和各个参数的真值计算出横纵波的实际波速,再根据上述正演模型在预反演参数区间上求得横纵波波速的理论预测值,选取两种波速的差值的绝对值之和作为反演的目标函数,反演的结果即为目标函数达到最小时的参数值。
     本文采用的小生境蚁群算法是第一次被应用于地球物理参数反演中,取得了较好的结果,反演的精度非常高。在Biot模型参数反演中,单参数反演的相对误差都在0.4%以内,双参数(孔隙度和渗透率)反演的误差可以达到7%左右,在BISQ模型反演中,单参数反演相对误差都可以保持在0.08%以下,双参数(孔隙度和饱和度)反演可以达到与单参数反演相同的精度,三参数(孔隙度、固体密度和流体密度)反演效果稍差一些,但相对误差也都保持在4%以内。在反演的过程中,我们发现反演的精度对算法中蚂蚁个体总数的要求并不高,只要很少个体就能达到很高的精度,说明了改进的小生境蚁群算法在复杂介质参数反演中的有效性和优越性。因此,本文的反演算法有望被广泛的应用于油气储集层的动态监测开发、静态描述以及地震理论研究和实际应用。
Because of the scarcity of resources in today’s world, especially the increasing demand for oil and gas resources, the theoretical study and practical application in oil and gas exploration have been the concern of researchers around the world. In particular, resource distribution in our country is more decentralized and more concealed, which increased the difficulty of oil and gas exploration. Therefore, parameters inversion problem in complex media plays more and more important role in the practical application. For the actual underground media, most of reservior are made of two parts including fluid and solid, namely two-phase media, such as standatone reserior and carbonate reservior. The single-phase medium theory which is too idealistic has a certain gap with the real world. The discription that two-phase medium theory made for actual stratum structure and stratum properties is more accurate. Thus, two-phase medium theory has been widely used in geophysical research such as earthquake engineering, geophysical exploration and soil dynamics. The research focus is also biased in favor of two-phase medium theory gradually. For carrying out exploration in oil and gas reserviors, we need to know the reservior parameters, such as porosity, permeability, saturation and so on, to predict the stratum structure. However, we have to adopt the geophysical inversion in order to obtain these parameters generally.
     Based on the analysis and summary of several traditional inversion methods, this thesis introduces the basic theory and research status of ant colony algorithm, Biot model and BISQ model in two-phase medium in detail. Taking into account the reservior parameter inversion problem is extreme value problem of nonlinear milti-modal function. In order to prevent“preneture”and avoid a global optimal falling into a local optimal, we proposed the niche ant colony algorithm based on the fitness sharing by improving the niche ant algorithm. First, we use the improved niche ant colony algorithm in multi-modal function optimization problem, and we compare the results obtained by niche ant colony algorithm with the results found by niche genetic algorithm. It can be shown that the former has higher effectiveness and superiority in both local optimization and global optimization. Second, we perform the inversion of reservior parameters such as porosity and permeability by tne niche ant colony algorithm based on the Biot model and the unsaturated porous media BISQ model, and we get better inversion results.
     In the parameter inversion based on the Biot model, according to the analytic solutions of transient displacement response of one dimensional wave equation in two-phase medium and the true value of the two-phase medium material, we can obtain accurate surface displacement and fluid displacement, which is the additional condition of inversion. Then, calculate the corresponding surface displacement and fluid displacement in the inversion intervals of pre-inversion parameters based on the analytic solution. The objective function is the sum of absolute value of the two types of displacement differences. The parameters value when the objective function attained the minimum are the inversion value of parameters we require. In the parameter inversion based on the BISQ model, we calculate the actual value of transverse and longitudinal waves according to the high-dimensional unsaturated porous media BISQ forward model and the true value of each parameter. Then, calculate the theoretical predicted velocity of transverse and longitudinal waves in the inversion intervals of pre-inversion parameters under the forward model. The objective function we selected is the sum of absolute value of the two kinds of velocity. The inversion results are just the parameters value when the objective function attained the minimum.
     In this thesis, the niche ant colony algorithm adopted is applied to paraneters inversion for the fisrt time in geophysics, the results achieved is very well and the inversion accuracy is very high. In the parameter inversion based on the Biot model, the relative error of single parameter inversion are all less than 0.4 percent, and the relative error of two parameters (porosity and permeability) inversion can reach about 7 percent. In the parameter inversion based on the BISQ model, the relative error of single parameter inversion can be maintained at less than 0.08 percent, the relative error of two parameters (porosity and saturation) inversion can attain the same accuracy with single parameter inversion, and the inversion effect of three parameters (porosity, solid density and fluid density) inversion is a bit weaker, but the relative error can still maintain less than 4 percent. In the process of inversion, we found the demand for the number of the ants in the algorithm is not high, as long as very few individuals, the inversion results can achieve higher accuracy. It represented the effectiveness and the superiority of the improved niche ant colony algorithm applied to the parameter inversion in complex media. Therefore, the inversion algorithm we adopted in this thesis is expected to be widely used in oil and gas reservoir dynamic monitoring development, static description and the theoretical study and practical application of earthquake.
引文
[1] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid, Low-frequency range[J]. J Acoust Soc Amer, 1956a, 28: 168-178.
    [2] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid, Higher-frequency range[J]. J Acoust Soe Amer, 1956b, 28: 179-191.
    [3] John A S, Martin L S, Sven T. Introductory Geophysical Inverse Theory[M]. Samizdat Press, 2001. http://samizdat.mines.edu.
    [4]刘克安,刘宏伟.双相介质二维波动方程孔隙率反演的扰动方法[J].哈尔滨建筑大学学报, 1996, 29(4): 80-84.
    [5]刘克安,刘宏伟,郭保琦,等.二维双相介质波动方程孔隙率反演的时卷正则迭代法[J].石油地球物理勘探, 1996, 31(3): 410-414.
    [6]杨顶辉,滕吉文,张中杰.各向异性动力学方程反演新算法[J].地震学报, 1997, 19(4): 376-382.
    [7]宋海斌,张关泉.层状介质弹性参数反演问题研究综述[J].地球物理学进展, 1998, 13(4): 67-78.
    [8]韩华,章梓茂,汪越胜.双相介质波动方程孔隙率反演的同伦方法[J].力学学报, 2003, 35(2): 235-239.
    [9]聂建新,杨顶辉,杨慧珠.基于非饱和多孔隙介质BISQ模型的储层参数反演[J].地球物理学报, 2004, 47(6): 1101-1105.
    [10]张新明,刘克安,刘家琦.流体饱和多孔隙介质波动方程多尺度反演[J].应用力学学报, 2007, 24(1): 88-92.
    [11]周清强,刘远志.基于改进的BISQ地震波储层参数反演[J].内蒙古石油化工, 2008(14): 60-62.
    [12] Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies[C]. Proceedings of the First EuroPean Conference on Artificial Life, 1991: 134-142.
    [13] Colorni A, Dorigo M, Maniezzo V. An investigation of some properties of an ant algorithm[C]. Proceedings of PPSN-II, Second International Conference on Parallel Problem Solving from Nature, 1992: 509-520.
    [14] Colorni A, Dorigo M, Maniezzo V. Ant system for job-shop scheduling[J]. JORBEL-Belgian Journal of Operations Research, Statistics and Computer Science, 1994, 34(1): 39-53.
    [15] Colorni A, Dorigo M, Maffioli F, et al. Heuristics From Nature for HardCombinatorial Optimazation Problems[J]. International Transactions in Operational Research, 1996, 3(1): 1-21.
    [16] Dorigo M, Maniezzo V , Colorni A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transon SMC, 1996, 26(1): 28-41.
    [17] Gambardella L M, Dorigo M. Ant-Q: A reinforcement learning approach to traveling salesman problem[C]. Proceedings of the 11th International Conference on Evolutionary Computation. IEEE Press, 1996: 616-621.
    [18] Dorigo M, Luca M. A study of Ant-Q[C]. Proceedings of 4th International Conference on Parallel Problem from Natrue. Berlin: Springer Verlag, 1996: 656-665.
    [19] Stutzle T, Hoos H H. MAX-MIN Ant System and Local Search for the traveling salesman problem[C]. Proceedings of the 1997 IEEE International Conference on Evolutionary Computation.1997: 309-314.
    [20] Stutzle T, Hoos H H. MAX-MIN Ant System[J]. Future Generation Computer Systems. 2000, 16(8): 889-914.
    [21]秦玲.改进的蚁群算法及应用[D].江苏:扬州大学学位论文, 2004.
    [22] Bilchev G A, Parmee I C. The ant colony metaphor for searching continuous spaces[J]. Lecture Notes in Computer Science. 1995, 993: 25-39
    [23] Bilchev G A, Parmee I C. Adaptive Search Stratiges for Heavily Constrained Design Spaces[C]. Proceedings of 22nd International Conference Computer Aided Design. 1995: 230– 235.
    [24]李艳君,吴铁军.连续空间优化问题的自适应蚁群系统算法[J].模式识别与人工智能, 2001, 14(4): 423-427.
    [25]陈崚,沈洁,秦玲.蚁群算法进行连续参数优化的新途径[J].系统工程理论与实践, 2003, 17(3): 48-53.
    [26]陈崚,沈洁,秦玲.蚁群算法求解连续空间优化问题的一种方法[J].软件学报, 2002, 13(12): 2317-2323.
    [27]高尚,钟娟,莫述军.连续优化问题的蚁群算法研究[J].微机发展, 2003, 13(1): 21-22, 69.
    [28]杨勇,宋晓峰,王建飞,等.求解连续空间优化问题[J].控制与决策, 2003, 18(5): 573-576.
    [29]汪镭,吴启迪.蚁群算法在连续空间寻优问题求解中的应用[J].控制与决策, 2003, 18(1): 45-57.
    [30] Dreo J, Siarry P. Continuous interacting ant colony algorithm based on dense heterarchy[J]. Future Generation Computer Systems, 2004, 20(5): 841–856.
    [31] Dreo J, Siarry P. An ant colony algorithm aimed at dynamic continuousoptimization[J]. Applied Mathematics and Computation, 2006(181): 457–467.
    [32]闻育,吴铁军.求解复杂多阶段决策问题的动态窗口蚁群优化算法[J].自动化学报, 2004, 30(6): 872-879.
    [33]陈烨.用于连续函数优化的蚁群算法[J].四川大学学报(工程科学版), .2004, 36(6): 117-120.
    [34]张勇德,黄莎白.多目标优化问题的蚁群算法研究[J].控制与决策, 2005, 20(2): 170-178.
    [35]段海滨,马冠军,王道波,等.一种求解连续空间优化问题的改进蚁群算法[J].系统仿真学报, 2007, 19(5): 974-977.
    [36]甘屹,齐从谦,杜继涛.基于蚁群算法的动态联盟伙伴选择研究[J].系统仿真学报, 2006, 18(2): 517-520.
    [37] Mullen R J, Monekosso D, Barman S, et al. A review of ant algorithms[J]. Expert Systems with Applications, 2009,36: 9608–9617.
    [38]孙海鹰.蚁群算法的理论与性能研究[D].江苏:扬州大学学位论文, 2009.
    [39]王书明,刘玉兰,王家映.地球物理资料非线性反演方法讲座(九)[J].工程地球物理学报, 2009, 6(2), 131-136.
    [40]张志高,张大志,安玉英,等.中国蚂蚁资源研究进展[J]. 2007, 28(3): 63-67.
    [41] Dorigo M, Stutzle T. Ant Colony Optimization[M]. Cambridge: The MIT Press, 2004.
    [42] Dorigo M. Optimization, learning and natural algorithms[D]. Italy: Department of Electronics, Polirecnico di Milano, 1992.
    [43]余玲,刘康,李开世.蚁群算法的连续空间算法研究[J].机械设计与研究, 2006, 22(2): 6-8, 12.
    [44] Dovorkin J, Nur A. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms[J]. 1993, 58(4): 524-533.
    [45] Mavko G, Nur A. Melt squirt in asthenospere[J]. Geophys, 1975, 80(11): 1444-1448.
    [46] Akbar N, Dovorkin J, Nur A. Relating P-wave attenuation to permeability[J]. Geophsics, 1993(58): 20-29.
    [47] White J E. Underground sound: application of seismic waves[M]. New York: Elsevier, 1983.
    [48] Yang D H, Zhang Z J. Poroelastic wave equation including the Biot/fluid coupling anisotropy[J]. Wave Motion, 2002, 35(3): 223-245.
    [49]杨顶辉,陈小宏.含流体多孔介质的BISQ模型[J].石油地球物理勘探,2001, 36(2): 146-159.
    [50] Holland J H. Adaptation in natural and artificial system[M]. Ann Arbor: University of Michigan Press, 1975.
    [51]唐超礼.群智能算法及其在优化函数中的应用研究[D].安徽:安徽理工大学硕士学位论文, 2007.
    [52]刘俊,徐昌标,隆克平.基于NS的网络仿真探讨[J].计算机应用研究, 2002, 19(9): 54-57.
    [53] Goldberg D E, Richardson J. Genetic Algorithms with sharing for multi-model function optimization[C]. Proceedings of the Second Conference on Genetic Algorithms. Hillsdale N J: Lawrence Erlbaum Associates, 1987, 41-47.
    [54] Li M Q, Lin D, Kou J S. Dynamics of fitness sharing evolutionary algorithms for coevolution of multiple species[J]. Applied Soft Computing, 2010(10): 832-848.
    [55]丁歆杰,王赞基.对适应值共享遗传算法的分类及评价[J].模式识别与人工智能, 2001, 14(1): 42-47.
    [56]唐超礼,黄宜庆,黄友锐.多模态函数优化的小生境蚁群算法及其仿真分析[J].工业控制计算机, 2008, 21(6): 57-60.
    [57] Simon B R, Zienriewicz O C, Paul D K. An analytical solution for the transient response of saturated porous elastic solids[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984(8):281-398.
    [58] Gassmann F. Uber die elastizat poroser medien[J]. Viertel. Natruforsch. Ges. Zurich, 1951(96): 1-23.
    [59] Berryman J G. Effective constants for wave propagation throuth partially saturated porous media[J]. Appl. Phys. Lett., 1985, 46(8): 722-724.
    [60]许多.双相介质储层参数非线性反演[D].四川:成都理工大学学位论文, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700