LBA在剥夺性弱视大鼠视觉发育可塑性关键期的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的建立单眼视觉剥夺性弱视大鼠动物模型,研究枸杞子提取物(LBA)对视觉剥夺性弱视大鼠视网膜神经节细胞(RGCs)是否具有保护作用。
     方法新生Wistar大鼠30只,随机分成生理盐水组(10只)、左旋多巴组(10只)及LBA组(10只)。出生1周后,应用褥式缝合法缝合所有幼鼠左侧眼睑,建立单眼视觉剥夺性弱视动物模型,三组每日分别经口给予等量的NS (0.9% NaCl)、L-dopa(20mg/kg)及LBA(10mg/kg),喂养满6周。取材前5天将30g/L荧光金注射到所有大鼠双侧的上丘和外侧膝状体,通过荧光金逆行标记观察视网膜铺片中RGCs形态和数量的变化。
     结果①视网膜铺片中标记的RGCs为黄白色,胞体形态多样,可见荧光充盈的细胞突起。②NS组、L-dopa组及LBA组中左眼的RGCs密度明显低于右眼,差异均有显著性(P<0.01)。③与NS组相比,L-dopa组及LBA组左眼RGCs密度均明显升高(P<0.01),而L-dopa组及LBA组之间差异无显著性(P>0.05)。④L-dopa组及LBA组RGCs的存活率分别为85.17%±4.42%和84.31%±5.97%,均明显高于NS组71.35%±6.34%(P<0.01),而L-dopa组及LBA组之间差异无显著性(P>0.05)。
     结论①在剥夺性弱视大鼠视觉发育可塑性的关键期,LBA可有效地保护RGCs,提高RGCs存活率。②LBA对RGCs的视觉保护作用与治疗弱视的常规用药左旋多巴效果接近。
     目的建立单眼剥夺性弱视大鼠动物模型,研究视觉发育敏感期不同阶段枸杞子提取物(LBA)对视皮层17区Bcl-2和NGF表达的影响。
     方法新生Wistar大鼠60只,随机分成正常组(12只)、生理盐水组(24只)、LBA组(24只)。出生7天后,应用褥式缝合法缝合NS组和LBA组幼鼠左侧眼睑,建立单眼视觉剥夺性弱视大鼠模型。NS组及LBA组每日分别经口给予等量的0.9%NaCl及10mg/kg LBA,正常组自由进食,于生后14天、21天、28天、35天、42天、70天分别取材制片,采用Nissl染色测量视皮层17区神经元的数目和截面积,采用SABC免疫组化法检测视皮层17区相应区域Bcl-2和NGF的表达。
     结果①Nissl染色显示剥夺性弱视大鼠右侧视皮层分层欠清晰,神经元排列相对疏松,细胞形态及突起不规则,Nissl小体表达有所减少,可见胞核缩小、着色加深。②LBA组大鼠生后28天至70天,右侧视皮层神经元的数量和截面积明显同龄NS组大鼠的对应区域,差异有显著性(P<0.05)。③LBA组大鼠生后21天至70天右侧视皮层Bcl-2阳性细胞的数量和OD值高于同龄NS组并低于正常组大鼠的对应区域,差异有显著性(P<0.05)。④LBA组大鼠生后42天及70天,右侧视皮层17区NGF阳性细胞的数目和OD值高于同龄NS组大鼠的对应区域,差异有显著性(P<0.05)。
     结论①大鼠视觉发育敏感期,剥夺性弱视可导致视皮层神经元细胞数目和截面积低于正常组。②LBA对剥夺性弱视大鼠在视觉发育可塑性的关键期内具有一定保护作用,可作为弱视治疗的临床备选药物。③LBA对剥夺性弱视大鼠视觉发育的保护机制可能与上调Bcl-2及NGF的表达有关,以促进神经细胞的营养和生长。
Objective:To construct the rat models of monocular visual deprived amblyopia, to investigate the possible neuroprotection of LBA on the retinal ganglion cells (RGCs) in rats with visual deprived amblyopia.
     Methods:A total of 30 postnatal Wistar rats were randomly divided into Normal Saline group (10), L-dopa group (10) and LBA group (10). After postnatal 1 week, the left palpebras of all rats was sewed by mattress suture in order to construct the models. Each day three groups were respectively fed with the same amount of 0.9% NaCl,20mg/kg L-dopa and 10mg/kg LBA up to 6 weeks. RGCs were retrograde labeled by injection of 30g/L fluorogold (FG) into bilateral superior colliculi and lateral geniculate body 5 days before the death in all rats, then the RGCs changes of morphology and numbers in retinal flat were observed.
     Results:①The labeled RGCs in retinal flats were yellow-white with various morphology, the cellular prominence with fluorescence could be seen.②RGCs density of left eyes in the three groups were obviously lower than right eyes, the differences were significant (P<0.01).③Compared with NS group, RGCs density of left eyes were obviously higher in L-dopa and LBA group (P<0.01), but there was no significance between L-dopa and LBA group (P>0.05).④The survival rates of RGCs in L-dopa group (85.17%±4.42%) and LBA group (84.31%±5.97%) were obviously higher than NS group (71.35%±6.34%, P<0.01), but there was no significance between L-dopa group and LBA group (P>0.05).
     Conclusion:①LBA might have neuroprotection on RGCs in rats with deprived amblyopia during the critical periods of visual plasticity and then increase the survival rates of RGCs.②The visual neuroprotection of LBA on RGCs is similar to L-dopa, which is used as conventional medicine in amblyopia therapy.
     Objective:To construct the rat model with monocular deprived amblyopia, to investigate the effects of LBA on Bcl-2 and NGF expression in visual cortex area 17 in the different sensitive periods of visual development.
     Methods:60 postnatal Wistar rats were randomly divided into normal group (12), normal saline group (24), LBA group (24). One week after left eyelid mattress sulture in NS group and LBA group, rats were respectively fed with the same amount of 0.9% NaCl and 10mg/kg LBA each day, while normal group were fed freely. In postnatal 14d,21d,28d, 35d,42d and 70d, rats were executed. Tissue sections were used to measure the neuron numbers and sectional areas in visual cortex area 17 by Nissl staining, then detect the corresponding expression of Bcl-2 and NGF by SABC immunohistochemistry.
     Results:①Nissl staining showed unsharp layering of the right visual cortex in deprived amblyopia rats, loose arrangement, irregular morphology and prominence, reduction of Nissl bodies, apperance of pyknosis and dark staining.②The neuron numbers and sectional areas in right visual cortex of LBA group were obviously higher than the corresponding area in the evenaged NS group from P28 to P70 (P<0.05).③The positive cell numbers of Bcl-2 and optical density (OD) in right visual cortex of LBA group were obviously higher than the evenaged NS group from P21 to P70 (P<0.05).④The positive cell numbers of NGF and OD in right visual cortex of LBA group were higher than the evenaged NS group from P14 to P28 (P<0.05).
     Conclusion:①In the sensitive stage of visual development, deprived amblyopia in rats might reduce the cell numbers and sectional areas in visual cortex, which were lower than normal group.②LBA might have neuroprotection during the critical period of visual plasticity in deprived amblyopia rats, and be used as an alternative drug for amblyopia treatment.③The neuroprotective mechanism of LBA on visual development in deprived amblyopia rats might be related with up-regulating the expression of Bcl-2 and NGF, which could improve nutrition and growth of the nerve cells.
引文
1 中华医学会眼科学会全国儿童斜视弱视防治学组.弱视的定义、分类及疗效评价标准[J].中国斜视与小儿眼科杂志,1996,4(3):97
    2 阴止勤.视觉发育可塑性关键期“终止”机制的研究进展[J].第三军医大学学报,2003,25(21):1878-1880
    3 Leung, I., Tso, M. L., Lam, T.. Absorption and tissue distribution of zeaxanthin and lutein in rhesus monkeys after taking Fructus lycii extract[J]. Invest. Ophthalmol. Visual Sci,2001,42, 466-471
    4 Hiu, C.C., Kwok-Fai So. Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma[J]. Experimental Neurology,2007, 203,269-273
    5 诸葛启钏主译.大鼠脑立体定位图谱.北京:人民卫生出版社,2005:图40-55
    6 Von Noorden GK, Crawford ML. The sensitive period[J]. Trans Ophthalmol Soc UK,1979,99: 442.
    7 Domenici L, Berardi N, Carmignoto G, et al. Nerve growth factor prevents the amblyopic effects of monocular deprivation[J].Proc Natl Acad Sci U S A,1991,88(19):8811-8815
    8 Selles-Navarro, Villegas-Perez MP, et al. Retinal ganglion cell death after different transient periods of pressure-induced ischemia and survival intervals. A quantitative in vivo study. Invest Ophthalmol Vis Sci,1996,37(10):2002-2014.
    9 Mohan K, Dhankar V, Sharnma A. Visual acuities after levodop administration in amblyopia[J]. J Pediatr Ophthalmol Strabismus,2001,38 (2):62-67.
    10 Sommerburg, O G, Siems, W G, Hurst, J S, et al. Lutein and zeaxanthin are associated with Photoreceptors in the human retina. Curr Eye Res,1999,19,491-495.
    11 Hiu, C C, Kwok-Fai So. Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Experimental Neurology,2007,203, 269-273.
    12 Yu M S, Yu S K, K F So, et al.. Neuroprotective efects of anti-aging oriental medicine lycium Barbarum against beta-amyloid peptide neurotoxicity. Exp Gerontol,40 (2005),716-727.
    13 Yu, M S, Ho, Y S, So, K F, et al. Cytoprotective effects of Lycium barbarum against reducing stress on Endoplasmic reticulum. Int J Mol Med,2006,17,1151-1162.
    14 Von Noorden GK, Crawford MLJ. The sensitive period. Trans Ophthalmol Soc UK,1979,99 (14):442-448
    15 Trachtenberg JT, Trepel C. Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex[J]. Science,2000,287 (5460):2029-2032
    16 Catalono SM, Chang CK, Shatz CJ. Activity-dependent regulation of NMDARl immunoreac- tivity in the developing visual cortex[J]. J Neuroscience,1997,17(21):8376-8390
    17 Yin ZQ, Crewther GS, Pirie B, et al. CAT-301 immunoreactivity in the LGN and cortex of the strabismic amblyopic cat[J]. Australian New Zealand J. Ophthalmology,1997,25 (Suppl 1): s107-109
    18 Zhou XF, Cameron D, Rush RA. Endogenenous neurotrophin-3 supports the survival of a sub-population of sensory neurons in neonatal rat[J].. Neuroscience,1998,86 (4):1155-1164
    19 Perters A, Kara D A. The neuronal composition of area 17 of rat visual cortex [J]. The nonpyra-midal cells[J]. Comp Neurol,1985,234(4):242~263
    20 Peters A, Kimerer L M. Bipolar neurons in rat visual cortex:a combined Golgi-electron micro-scope study[J]. Neurocytol,1981,10(6):291~246
    21 Parnavelas J G, Burne R A, Lin C S. Distribution and morphology of functionally identified neurons in the visual cortex of rats[J]. Brain Res,1983,261(12):21~29
    22 Sanderson K J, Dreher B, Gayer N. Prosencephalic connections of striate and extrastriate areas of rat visual cortex[J]. Exp Brain Res,1991,85(2):324~334
    23 Fifkova E, Hassler R. Quantitative morphological changes in visual centers in rats after unilateral deprivation[J]. Comp Neurol,1969,135(9):167~178
    24 Schober W, Winkelmann E. Die Geniculo-corticale projection bei Albinoratten[J]. Hirnforsch, 1987(2) 18:1~20
    25 Parnavelas J G, Chatzissavidou A, Burne RA. Subcortical projections to layer I of the visual cortex, area 17 of the rat [J]. Exp Brain Res,1981,41(8):184~187
    26 Brauer K, Davidowa H, Schober W. Topography of cells responding with long latencies to flashes and cells projecting to layer I of area 17 in the rat dorsal lateral geniculate nucleus[J]. Hirnforsch, 1984,25(5):569~575
    27 Rieck R W, Carey R G. Organization of the rostral thalamus in the rat:evidence for connection to layer I of visual cortex[J].Comp Neurol,1985,234(2):137~154
    28 Schober W, Gruschka H. Subcortical projections of the visua lcortex in the adult albino rat and during postnatal development[J]. Anat Forsch,1983,97(5):797~815
    29 Wyllie A.H., Kerr J. F. R, Currie A. R. Cell deaths:The significance of apoptpsis. Int Rev Cytol,1980,68(7):251-260
    30 Hockenbery D, Nunez G, Milliman C,et al. Bcl-2 is an mitochondrial membrane protein that blocks programmed cell death[J]. Nature,1990,348 (12):334-342
    31 Reed JC. Bcl-2 and the regulation of programmed cell death[J]. Cell Biol,1994,124:1-10
    32 Merry DE, Veis DJ, Hickey WF, et al. Bcl-2 protein expression is widespread in developing neurons system and retained in the adult PNS[J]. Development,1994,120(2):301-311
    33 朱长庚.神经解剖学,北京:人民卫生出版社,第1版,2002,375-397
    34 Silver MA, Faniioloni DC, Gillespic CL, et al. Infusion of nerve growth factor (NGF) into kitten visual cortex increases NGF, NGF receptors and choline acetylransterase in basal fore-brain without affecting ocular dominance plasticity or column development[J]. Neuroscience, 2001,108(4):569-585
    35 Michaelidis TM, Sendtner M, Cooper JD, et al. Inactivation of Bcl-2 results in progressive degeneration of motoneurons, sympathetic and sensory neurons during early postnatal development[J]. Neuron,1996,17(1):75-89
    36 Allosopp E, Riselev S, Wyat S, et al. Role of Bcl-2 in the brain derived neurotrophic factor survival response[J]. Eur J Neurosci,1995,7(6):1266-1272
    37 Ferre I, Tortosa A, Condom E, et al. Increased expression of Bcl-2 immunoreactivity in the developing cerebral cortex of the rat[J]. Neurosci Lett,1994,179(1-2):13-16
    38 钱彦丛.枸杞子的临床药理学研究及应用概况[J].中国中医药科技,2000,7(3):175-180
    39 Hiu-Chi C, Raymond C. Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma[J]. Experimental Neurology,2007, 20(12):269~273
    40 Leung, I., Tso, M. L. W., Lam, T.. Absorption and tissue distribution of zeaxanthin and lutein in rhesus monkeys after taking Fructus lycii extract. Invest. Ophthalmol. Visual Sci,2001,42(10): 466-471
    41 Sommerburg, O.G., Siems, W.G., Hurst, J.S., Lewis, J.W., Kliger, D.S.. Lutein and zeaxanthin are associated with photoreceptors in the human retina. Curr. Eye Res,1999,19(21):491-495
    42 王金章,王秀媳.枸杞子的化学成分和药理研究概况[J].天津药学,1999,11(3):14-16
    43 LUO Q, CAI Y Z, YAN J, et al. Hypoglycemic, hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum[J]. Life Sci,2004,26(2):137-149
    44 田庚元.枸杞子糖缀合物的结构与生物活性研究[J].世界科学技术,2003,15(4):22-31
    45 Thomson LR, Toyoda Y, et al. Elevated retinal zeaxanthin and prevention of light-induced photo-receptor cell death in quail. Invest Ophthalmol Vis Sci.2002 Nov;43(11):3538-49.
    46 Hiu, C.C., Kwok-Fai So. Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Experimental Neurology,2007,203, 269-273
    47 Sommerburg et al.,1999 O.G. Sommerburg, W.G Siems, J.S. Hurst, J.W. Lewis and D.S. Kliger, Lutein and zeaxanthin are associated with photoreceptors in the human retina, Curr. Eye Res.19 (1999), pp.491-495.
    48 Leung et al.,2001 I. Leung, M.L.W. Tso and T. Lam, Absorption and tissue distribution of zeaxanthin and lutein in rhesus monkeys after taking Fructus lycii (Gou Qi Zi) extract, Invest. Ophthalmol. Visual Sci.42 (2001), pp.
    49 Yu M.S, Yu S.K, K.F.So. Neuroprotective efects of anti-aging oriental medicine ycium barbarum against beta-amyloid peptide neurotoxicity. Exp, Gerontol,40 (2005), pp,716-727
    50 M.S. Yu, Y.S. Ho, K.F. So. Cytoprotective effects of Lycium barbarum against reducing stress on endoplasmic reticulum, Int. J. Mol. Med.17 (2006), pp.1151-1162.
    51 K.C. Suen, M.S. Yu, K.F. So, R.C. Chang and J. Hugon, Upstream signaling pathways leading to the activation of double-stranded RNA-dependent serine/threonine protein kinase in beta-amyloid peptide neurotoxicity, J. Biol. Chem.278 (2003), pp.49819-49827.
    52 K.F. Lin, R.C. Chang, K.F. So, et al. Modulation of calcium/calmodulin kinase-II provides partial neuroprotection against beta-amyloid peptide toxicity, Eur. J. Neurosci.19 (2004), pp.2047-2055.
    53 K.C. Suen, K.F. Lin, K.F. So, et al. Reduction of calcium release from the endoplasmic reticulum could only provide partial neuroprotection against beta-amyloid peptide toxicity, J. Neurochem. 87 (2003), pp.1413-1426.
    1 中华医学会眼科学会全国儿童斜视弱视防治学组.弱视的定义、分类及疗效评价标准[J].中国斜视与小儿眼科杂志,1996,4(3):97.
    2 阴正勤.视觉发育可塑性关键期“终止”机制的研究进展[J].第三军医大学学报,2003,25(21):1878-1880.
    3 Von Noorden GK, Crawford MLJ. The sensitive period [J]. Trans Ophthalmol Soc UK,1979,99: 442-451
    4 Zhou XF, Cameron D. Endogenenous neurotrophin-3 supports the survival of a subpopulation of sensory neurons in neonatal rat[J]. Neuroscience,1998,86 (4):1155-1164
    5 Catalono SM, Chang CK, Shatz CJ. Activity-dependent regulation of NMDAR1 immunoreactivity in the developing visual cortex[J]. J Neuroscience,1997,17(21):8376-8390
    6 Yin ZQ, Crewther GS, Pirie B. CAT-301 immunoreactivity in the LGN and cortex of the strabismic amblyopic cat[J]. Australian New Zealand J. Ophthalmology,1997,25 (Suppl 1):s107-109
    7 Ernfors P, Lee KF, Kucera J. Lack of Neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of linb proprioceptive afferents [J]. Cell,1994,77(4):503-512
    8 Ernfors P, Ibanez CF, Ebendal T, et al. Molecular cloning and neurotrophic activities of a protein with structural similarities to nerve growth factondevelopmenta and topographical expression in the brain[J]. Proc Natl Acad Sci USA,1990,87(14):5454-5458
    9 Levi Montalcini R. The nerve growth factor 35 year later[J]. Science,1987,237 (4819):154-162
    10 Gu Q, Liu Y, Cynader MS. Nerve growth factor-induced ocular dominance plasticity in adult cat visual cortex[J]. Proc Natl Acad Sci USA,1994,91(18):8408-8412
    11 Domenici L, Parisi V,Maffei L. Exogenous supply of nerve growth factor prevents the effects of strabismu in the rat[J]. Neuroscience,1992,51(1):19-24
    12 Pizzorusso T, Fagiolini M, Fabris M. Schwann cells transplanted in the lateral ventricles prevent the functional and anatomical effects of monocular deprivation in the rats[J]. Proc Natl Acad Sci USA,1994,91(7):2572-2576
    13 Berardi N, Cellerino A, Domenici L, et al. Monoclonal antibodies to nerve growth factor affect the postnatal development of the visual system[J]. Proc Natl Acad Sci USA,1994,91(2):684-688
    14 Carmignoto G, Canella R, Candeo P, et al. Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex[J]. J Physiol,1993,464:343-360
    15 Maffei L, Berardi N, Domenici L, et al. Nerve Growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats physiol[J]. J. Neurosci,1992,12(12):4651-4662
    16 Hwang JW, Kim J, Park SS. Leber's hereditary optic neuropathy mutations in ethambutol-induced optic neuropathy [J]. J Neurol,2003,250(1):87-89
    17 Maffei L. Plasticity in the visual system:role of neurotrophins and elecreical activity[J]. Arch Ital Biol,2002,140(2):341-346
    18 Berardi N, Pizzorusso T, Maffei L. Critical periods during sensory development [J]. Curr Opin Neurobiol,2000,10(1):138-145
    19 Pollock GS, Frost DO. Complexity in the modulation of neurotrophic factor mRNA expression by early visual experience[J]. Brain Res Dev,2003,143(2):225-232
    20 Ichisaka S, Katoh-Semba R, Hata Y, Ohishima M, Kameyama K, T Sumoto T. Activity-dependent change in the protein level of brain-derived neutrophic factor but no change in other neutrophins in the vusual cortex of young and adult ferrets [J]. Neuro, Science,2003,117(2):36371
    21 Casren E, Zafra F, Thoenen H. Light regulates expression of brain-derived neurotriphic factor mRNA in rat visual cortex[J]. Proc Natl Acad Sci USA,1992,89 (20):9444-9448
    22 Schoups AA, E lliott RC, Friedman WJ, Black IB. NGF and BDNF are differentially modulated by visula experience in the develop in geniculocortical pathway [J]. Brain Res Dev,1995,86(122): 326-334
    23 Galuske RA, Kim DS, et al. Brain-derived neureophic factor reversed expression dependent aynaptic modifacation in kitten visual cortex[J]. Eur Neurosci,1996,8(7):1554-1559
    24邵立功,章应华,张东杲等.弱视猫视觉系统三级神经元及其突触的超微结构研究[J].中华眼科杂志,1994,30(1):53-56
    25 Qu Y, Eysel UT, Vandesande F, et al. Effect of partial sensory deprication on monoaminer GIC neuromodulators in striate cortex of adult cat[J]. Neuroscience,2000,101(4):863-868
    26王海燕,张东异.VI P在剥夺性弱视猫视皮层17区的定位及作用[J].眼科新进展,2000,4(2):146-150
    27 Prada Oliveira JA, Verastegui Escolano C, Ontogenic attendance of neuropeptides in the embryo-chicken retina[J]. Histal Histopathol,2003,18(4):1013-1026
    29 Enamann V, Howard RM. Enhanced induction of RPE lineage markers in pluripotent neural stem cells engrafted into the adult rat subretinalspace[J]. Invest Ophthalmol Vis Sci,2003,44(12): 5417-5422
    29 Kato N, Yoshimura H. Facilitatory effects of substance P on the susceptibility to long term poten-tiation in the cortex of adult rats[J]. Brain Res,1993,617(15):353-356
    30王海燕,张东异.P物质在单眼剥夺性弱视猫外侧膝状体中的表达[J].眼科新进展,2001,21(5):338-340
    31 Desai NS, Cudmore RH, Nelson SB. Critical periods for experience dependent synnapic scaling in visual cortex[M]. Nat Nrurosci,2002,5(4):783-789
    32 Mataga N, Nagai N, Hensch TK. Permissice proteolytic activity for visual cortial plasticity[J]. Proc Natl Acad Sci USA,2002,99(13):7717-7721
    33 Hensch TK, Goedon JA, Brandon EP, et al. Comparison of plasiticity in vivo in the developing visual cortex of normal and protein kinase ARI-beta-deficient mice[J]. J Neurosci,1998,18(6): 2108-2117
    34秦伟,阴正勤,王仕军等.双眼形觉剥夺对大鼠视皮层神经元γ-氨基丁酸电流的影响.中华眼科杂志,2005,41(1):37-40
    35 Centonze D, Picconi B, Gubellini P. Dopaminergic control of synaptic plasticity in the dorsal striatum[J]. Eur J Neurosci,2001,13 (6):1071-1077
    36邵立功,郭静秋,李婷玉.单眼斜视和剥夺猫视皮质17区N-甲基D-天冬氨酸受体亚基1亚单位的表达[J].眼视光学杂志,2002,4(4):211-214
    37 Erisir A, Harris JL. Decline of the critical period of visual plasticity is concurrent with reduction Of NR2B subunit of the synaptie NMDA receptor in layer Ⅳ[J]. Neurosci,2003,23(12):5208-5218
    38 Yin Z, Yu T. Electron microscopic analysis of the expression of NMDA-R1 in the developmental process of visual cortex in strabismic amblyopic cat[J]. Chung Hua Yen Ko Tsa Chih,2002,38 (8):472-475
    39 Philpot BD, Sekhar AK, Shouval HZ, et al. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual crotex[J]. Neuron,2001,28: 157-169
    40 Cao ZP, Lykcey ME, Lin LY. Postnatal development of NR1, NR2A and NR2B immunoreactivity in the visual cortex of the rat[J]. Brain Res,2000,859 (23):26-37
    41 阴正勤,余涛,陈莉.斜视性弱视猫发育过程中视皮层神经元NMDA2R1表达的免疫组织化学电镜观察[J].中华眼科杂志,2002,38(8):472-475
    42 Gu Q. Contribution of acetylcholine to visual cortex plasticity[J]. Neubiol Learn Mem,2003,80 (3):291-301
    43 Prasad SS, Kojic LZ.Gene expression patterns during enhanced periods of visual cortex plasticity [J]. Neuroscience,2002,111(1):35-45
    44 The Pediatric Eye Disease Investigator Group. A randomized trial of patching regimens for treat-ment of moderate amblyopia in children[J]. Arch Ophthalmol,2003,121(5):603-611.
    45 HOLMES JM, KRAKER RT, BECK RW. A randomized trial of prescribed patching regimens for treatment of severe amblyopia in children[J]. Ophthalmology,2003,110(11):2075-2087.
    46 The Pediatric Eye Disease Investigator Group. A prospective, pilot study of amblyopia treatment in children 10 to 18 years old[J]. Am J Ophthalmol,2004,137(3):581-583.
    47 Pediatric Eye Disease Investigator Group. A randomized trial of atropine vs. patching for treat-ment of moderate amblyopia in children[J]. Arch Ophthalmol,2002,120(3):268-278.
    48 ARIKAN G, YAMAN A, BERK AT. Efficacy of occlusion treatment in amblyopia and clinical risk factors affecting the results of treatment[J]. Strabismus,2005,13(2):63-69.
    49 REPKA MX, WAL1ACE DK, BECK RW, et al. Two-year follow-up of a 6-month randomized trial of atropine vs. patching for treatment of moderate amblyopia in child[J].Arch Ophthalmol, 2005,123(2):149-157.
    50 STEWART CE, MOSELEYM J, FIELDER AR. MOTAS Cooperative. Refractive adaptation in amblyopia:quantification of effect and implications for practice[J]. Br J Ophthalmol,2004,88: 1552-1556.
    51 AUTRATA R, REHUREK J. Laser-assisted sub-epithelial keratectomy and photorefractive kera-tectomy vs. conventional treatment of myopic anisometropic amblyopia in children[J]. Cataract Refract Surg,2004,30(1):74-84.
    52 PAYSSE EA, COATS DK, HUSSEIN MA. Long-term outcomes of photorefractive keratectomy for anisometropic amblyopia in children[J]. Ophthalmology,2006,113(2):169-176.
    53 MEMBRENO JH, BROWN MM, BROWN GC. A cost-utility analysis of therapy for amblyopia [J]. Ophthalmology,2002,109(13):2265-2271.
    54 LEGUIRE LE, WALSON PD, ROGERS G Longitudinal study of levodopa and carbidopa for childhood amblyopia[J]. J Pediatr Ophthalmol Strabismus,1993,30(6):354-360.
    55 GOTTLOB I, WIZOV SS. Visual acuities and scotomas after three weeks L-dopa administration in adult amblyopia[J]. Graefes Arch Clin Exp Ophthalmol,1995,233(10):407-413.
    56 CAMPOS EC, SCHIAVI C, BENEDETTI P. Effect of citicoline on visual acuity in amblyopia: preliminary results[J]. Graefes Arch Clin Exp Ophthalmol,1995,233:307-312.
    57 CAMPOS EC. Fresina M. Medical treatment of amblyopia:present state and perspectives[J]. Strabismus,2006,14(2):7-73.
    58张凤梅.增视明目丸对儿童弱视疗效观察[J].中国中医眼科杂志,1997,7(2):77-80.
    59周晓莉.中西医结合治疗儿童弱视56例[J].安徽预防医学杂志,2006,12(1):59-60.
    60黄国林.弱视灵治疗儿童弱视疗效分析[J].浙江中医杂志,1997,32(8):351.
    61赖露丽.中西医结合治疗儿童弱视56例[J].湖北民族学院学医学版,2005,22(2):66.
    62王勇.综合视觉刺激增视治疗弱视的临床探讨[J].中国斜视与小儿眼科杂志,2006,14(3):123-126.
    63 Leung, I., Tso, M. L. W., Lam, T.. Absorption and tissue distribution of zeaxanthin and lutein in rhesus monkeys after taking Fructus lycii extract. Invest. Ophthalmol. Visual Sci,2001,42(24), 466-471.
    64 Sommerburg, O.G., Siems, W.G., Hurst, J.S., Lewis, J.W., Kliger, D.S.. Lutein and zeaxanthin are associated with photoreceptors in the human retina. Curr.Eye Res,1999,19(11):491-495.
    65 Hiu, C.C., Kwok-Fai So. Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Experimental Neurology,2007,203, 269-273
    66 Yu M.S, Yu S.K, K.F.So. Neuroprotective efects of anti-aging oriental medicine lycium barbarum against beta-amyloid peptide neurotoxicity. Exp, Gerontol,40(2005), pp,716-727
    67 Li XM. Protective effect of Lycium barbarum polysaccharide on streptozotccin-induced oxidative Stress in rats[J]. Intematinnal Journalof Biological Macromolecue|s,2007,40(3):461—465
    68 Ha KT, Yoon SJ, Choi DY. Prtective effect of Lycium chinense fruit on carbon tetrachloride-Induced hepatotoxicity[J]. J Ethnopharmacol,2005,96(5):529—35
    69汪积慧.枸杞多糖免疫调节作用的研究[J].齐齐哈尔医学院学报,2002,23(11):1204
    70李岩.枸杞多糖增强免疫与抗脂质过氧化作用的实验研究[J].中医药学报,2003,31(2):25
    71甘璐.枸杞多糖的抗肿瘤活性和对免疫功能的影响[J].营养学报,2003,2(2):200-202

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700