GABA及受体参与视觉发育可塑性关键期终止机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究采用视皮层脑片膜片钳全细胞记录技术,研究P3w-8w正常饲养、视皮层chABC处理以及双眼形觉剥夺(binocular form deprivation,BFD)大鼠视皮层Ⅳ层神经元突触后电流(postsynaptic currents,PSCs)、GABA_A受体介导的抑制性突触后电流(inhibitory postsynaptic currents,IPSCs)特性以及突触传递长时程增强(Long-term potentiation,LTP)现象,并对以上各组大鼠视皮层Ⅳ层中间神经元进行形态学研究,探讨成年动物视皮层可塑性终止的细胞内机制,以及参与这一过程的神经递质及受体,为儿童眼病治疗及成年后视功能损伤病人的康复提供理论基础。
     方法:P3w-8w Long-Evans大鼠,分为正常饲养、视皮层chABC处理以及BFD组,分别制备新鲜视皮层脑片,利用脑片膜片钳全细胞记录技术,记录视皮层Ⅳ层神经元PSCs,利用CNQX(20μM)和AP-5(50μM),分离GABA_A-IPSCs,并采用低频刺激伴随突触后去极化法诱发LTP。电生理记录的同时,进行biocytin细胞内标记,之后进行免疫组化染色。结合HE染色及电镜技术,对以上各组大鼠视皮层Ⅳ层中间神经元进行形态学研究。
     结果:1.P3w~P8w正常饲养大鼠视皮层Ⅳ层神经元被动膜学特性及PSCs保持稳定,各周龄无显著差异;GABA_A-IPSCs峰值、IPSCs/PSCs随周龄增加而逐渐增大,下降时间逐渐变长,在出生后5、6周龄时达到高峰,之后保持成年稳定的高水平;2.与正常饲养大鼠比较,chABC处理组大鼠视皮层Ⅳ层神经元被动膜学特性及PSCs各项指标无显著变化,但GABA_A-IPSCs的峰值、IPSCs/PSCs以及下降时间显著低于同周龄正常饲养组;chABC酶处理组大鼠视皮层Ⅳ层LTP诱发率明显降低,且LTP幅度明显低于正常大鼠。3.BFD大鼠视皮层Ⅳ层神经元PSCs峰值、10~90%下降时间(Decay time)明显下降,GABA_A-IPSCs的峰值、IPSCs/PSCs以及下降时间都显著低于同周龄正常饲养组,BFD组与chABC处理组同周龄间比较,以上各指标相差显著。4.ChABC处理组大鼠视皮层Ⅳ层每平方毫米细胞记数、神经元胞体大小、树突数目以及超微结构与正常饲养大鼠无显著差异,BFD大鼠视皮层神经元形态幼稚,树突分枝及树突棘数量较少,突触超微结构发生明显病理改变。
Objective: Patch-clamp whole cell recording and transmission electron microscope techniques were applied to investigate the electrophysiological and morphological property of layer IVneurons from visual cortex of the rats under different growth condition at different postnatal days and to explore the synaptic and cellular mechanism by which GABA transmitter and recepter involve in the ending of the critical period of rat visual development. Investigation of visual development will help interpret the principle of brain working, and provide theoretical basis for the visual reconstruction of adult visual damage and the treatment of infant-eye-disease.Methods: The visual cortex slices were prepared from normal, chondroitin sulphate proteoglycans (CSPGs) degradation and binocular form deprivation(BFD) rats of both genders. CSPGs degradation rats were obtained by injecting chABC into rat's visual cortex. Patch-clamp whole cell recording techniques were adopted. Pre-synaptic test stimulation was given at 0.07 Hz intervals through bipolar stimulating electrodes placed in white matter. PSCs of layer IV neurons were recorded by recording electrodes. Then GABA_A-IPSCs were isolated by adding AP-5 and CNQX into artificial cerebrospinal fluid (ACSF). Long-term potentiation (LTP) was induced by pairing 1Hz low frequency presynaptic stimulation with postsynaptic depolarization. During recording, 0.5% biocytin were injected into the cells. Cells were stained after recording for histological assessments. HE staining and transmission electron microscope techniques were also used for morphological study.Results: 1. Input resistance (IR), resting membrane potential (RMP) and the parameters of PSCs are not changed, while the peak value, 10-90% decaytime of GABA-IPSCs and ratio of IPSCs/PSCs increased with age from P3w to P8w in normal rat visual cortex, then reached the top at P5,6w and kept high level in adult. 2. Treatment with chABC had no effect on PSCs, IR and RMP, while peak value, 10-90% decaytime of GABA-IPSCs and ratio of IPSCs/PSCs were significantly decreased by chABC treatment.
    ChABC treatment also significantly decreased LTP incidence and amplitude of P35d rats. 3. BFD statistically decreased the peak value, 10-90% decaytime of PSCs and GABA-IPSCs and ratio of IPSCs/PSCs. There are also statistical differences of all the above parameters between BFD and chABC treatment group. 4. chABC had no effect on density of cells, cell body form, dentrite growth and ultrastructure, while BFD significantly changed those of layer IV interneurons in rat visual cortex.Summary: 1. Function of GABAa receptors of layer IV neurons in visual cortex is age dependent around the end of the critical period, reaching the top at P5,6w and keeping high level in adult. 2. The maturity of GABA circuits is involved in the end of critical period of visual development. The constant high level of GABAA receptors may result in the reduced plasticity in adult. 3. ChABC did not change PSCs, but changed GABAA-IPSCs through degradation of CSPGs, suggesting the maturity of GABA circuits is associated with the mechanism of inhibition of CSPGs for visual development plasticity. 4. CSPGs is suggested to be involved in LTP and long-term plasticity of layer IV in visual cortex. 5. Function of GABAa receptors of layer IV neuron in visual cortex is experience dependent. BFD affect inhibitory synaptic transmission through GABAa receptors. 6. Form information is crucial to the function development of visual cortical neurons. The kinetics basis of PSCs changes in BFD rats may lie in desensitization of postsynaptic receptors. 7. The changed morphological property and ultrastructure of layer IV intemeuron in visual cortex by BFD is the basis of the changed PSCs by BFD. 8. ChABC has no effect on morphological property and ultrastructure of layer IV intemeuron in visual cortex.
引文
1. Daw N.W, Beaver C. J. Developmental changes and ocular dominance plasticity in the visual cortex. Keio J Med 2001;50(3):192-197.
    2. Prusky G. T, West P. W, Douglas R. M. Experience-dependent plasticity of visual acuity in rats. Eur J Neurosci 2000;12(10):3781-3786.
    3. Levay S, Wiesel T. N, Hubel DH. The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol 1980;191:1-5.
    4. Berardi N. Critical periods during sensory development. Curr.Opin. Neurobiol 2000;10:138-145.
    5. Wiesel T.N, Hubel D. H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol 1965;28:1029-1040.
    6. Fagiolini M, Pizzorusso T, Berardi N, et al. Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res 1994;34(6):709-720.
    7. Maffei L, Berardi N. Protein synthesis in the visual cortex is needed for ocular dominance plasticity. Neuron 2002;34(3):328-331.
    8. Fox K, Bruce C. Enhanced: freeing the brain from the perineuronal net. Science 2002;298(5596):1187-1189.
    9. Daw N. W. Visual Development (Plenum, New York, 1995, 242 p), chap. 9.
    10. Huber KM, Sawtell NB, Bear MF. Brain-derived neurotrophic factor alters the synaptie modification threshold in visual cortex. Neuropharmacology 1998;37:571-579.
    11. Ghosh A, Greenberg ME. Distinct roles for bFGF and NT-3 in the regulation of conical neurogenesis. Neuron 1995;15:89-103.
    12. Cohen C. S, Fraser S. E. Effects of brain-derived neurotrophic factor on optic axon branching and remodeling in vivo. Nature 1995;378:192-196.
    13. Huang ZJ, Kirkwood A, Pizzorusso T. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 1999; 98(6):739-755.
    14. Yin ZQ, Crewther SG, Yang M, et al. Distribution and localization of NMDA receptor subunit 1 in the visual cortex of strabismic and anisometropic amblyopic cats. Neuroreport 1996;7:2997-3003.
    15. Yin ZQ, Crewther SG, Pirie B, et al. NMDA-R1 immunoreactivity in the developing visual cortex of strabismic kittens. Invest Ophthalmol Vis Sci 1999,40:Suppl:1608.
    16.阴正勤,余涛,陈莉。斜视性弱视猫发育过程中视皮层神经元NMDA-R1表达的免疫组织化学电镜观察 中华眼科杂志 2002;38(8):472-475.
    17.高朋芬,阴正勤,刘应兵,等 大鼠视觉发育可塑性关键期视皮层LTP的研究 中国神经科学杂志 2002;18(4):699-703.
    18.秦伟,阴正勤,王仕军,等。正常和双眼形觉剥夺大鼠发育过程中视皮层神经元NR1的表达 第三军医大学学报 2003;25(21):1924—1926.
    19. Fagiolini, M. et al. Separable features of visual cortical plasticity revealed by N-methyl-D-aspartate receptor 2A signaling. Proc Natl Acad Sci 2003;100:2854-2859.
    20. Hensch TK, Fagiolini M, Mataga N, et al. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 1998;282:1504-1508.
    21. Fagiolini M. Hensch T. K. Inhibitory threshold for critical-period activation in primary visual cortex. Nature 2000;404:183-186.
    22. Fagiolini M, Fritschy JM, Low K, et al Specific GABA_A Circuits for Visual Cortical Plasticity. Science, Vol 303, Issue 5664, 1681-1683,12 March 2004
    23. Kirkwood A, Bear MF. Hebbian synapse in the visual cortex. J Neurosci 1994;14(3):1634-1645.
    24. Hanover J. L. et al. Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex. J Neurosci 1999;19:40-51.
    25. Kirkwood A, Lee HK, Bear MF. Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience. Nature 1995;375(6529):328-331.
    26. Pizzorusso T, Medini P, Berardi N, et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 2002;298:1248-1251.
    27. McKeon, R. J., Schreiber, R. C., Rudge, J. S. & Silver, J. Reduction of neurite outgrowth in a model of glial scarfing following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 11, 3398-3411(1991).
    28. Smith-Thomas, L. C. et al. An inhibitor of neurite outgrowth produced by astrocytes. J. Cell Sci. 107,1687-1695 (1994).
    29. Niederost, B. P., Zimmermann, D. R., Schwab, M. E. & Bandtlow, C. E. Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans. J. Neurosci. 19, 8979-8989 (1999).
    30. Davies, S. J., Goucher, D. R., Doller, C. & Silver, J. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J. Neurosci. 19,5810-5822 (1999).
    31. Hockfield S, Kalb R.G, Zaremba S, et al. Expression of neural proteoglycans correlates with the acquisition of mature neuronal properties in the mammalian brain. Cold Spring Harbor Symp Quant Biol 1990;55:505-514.
    32. Bruckner, K. Brauer, W. Hartig, J.R. Wolff, M.J. Rickmann, et al. Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain. Glia 1993; 8:183-200.
    33. Briickner G, Grosche J, Schmidt S, et al. Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. J Comp Neurol 2000; 428:616-629.
    34. Haghihara K, Miura R, Kasaki R, et al. Immunohistochemical evidence for the brevican-tenascin-R interaction, colocalization in perineuronal nets suggests a physiological role for the interaction in the adult brain. J Comp Neurol 1999;410:256-264.
    35. Koppe G, Briickner G, Hartig W, et al. Characterization of proteoglycan-containing perineuronal nets by enzymatic treatments of rat brain sections. Histochem J 1997;29:11-20.
    36. Matsui F, Nishizuka M, Oohira A, et al. Proteoglycans in perineuronal nets. Acta Histochem Cytochem 1999;32:141-147.
    37. Matthews R.T, Kelly G.M, Zerillo C.A, et al. Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets. J Neurosci 2002;22:7536-7547.
    38. Hockfield S, McKay R.D. A surface antigen expressed by a subset of eurons in the
     vertebrate central nervous system. Proc Natl Acad Sci 1983;80:5758-5761
    39. Berardil N, Pizzorusso T, Gian MR, et al. Molecular basis of plasticity in the visual cortex. Trends in Neurosciences 2003;26(7):369-378.
    40. Bradbury EJ, Moon LD, Popat RJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002 Apr 11;416(6881):636-40.
    41.范惠民,阴正勤,高朋芬,等 双眼形觉剥夺对大鼠视皮层神经元电生理特性的影响 第三军医大学学报 2003,25(21):1915—1919
    42. Bukalo O, Schachner M, Dityatev A. Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R differentially affects several forms of synaptic plasticity in the hippocampus. Neuroscience 2001;104(2):359-369
    43. Sur M. et al. Expression of a surface-associated antigen on Y-cells in the cat lateral geniculate nucleus is regulated by visual experience. J Neurosci 1988;8:874-882.
    44. Dityatev A, Schachner M. Extracellular matrix molecules and synaptic plasticity. Nature Reviews Neuroscience 2003;4(6):456,13p.
    45. Bruckner G, Seeger G, Brauer K, et al. Cortical areas are revealed by distribution patterns of proteoglycan components and parvalbumin in the Mongolian gerbil and rat. Brain Res 1994;658:67-86.
    46. Mulligan K.A, Van Brederode J.F.M, Hendrickson A.E. The lectin Vicia villosa labels a distinct subset of GABAergie cells in macaque visual cortex. Vis Neurosci 1989;2:63-72.
    47. Naegele J.R, Arimatsu Y, Schwartz P, et al. Selective staining of a subset of GABAergic neurons in cat visual cortex by monoclonal antibody VC1.1. J Neurosci 1988;8:79-89.
    48. Nagakawa F, Schulte B.A, Wu J.Y, et al. GABAergic neurons of rodent brain correspond partially with those staining for glycoconjugate with terminal N-acetylgalactosamine. J Neurocytol 1986;15:389-396.
    49. Matsui F, Nishizuka M and Oohira A, Proteoglycans in perineuronal nets. Acta Histochem. Cytochem 1999;32:141-147.
    50. Bertolotto A, Rocea G, Canavese G, et al. Chondroitin sulfate proteoglycan surrounds a subset of human and rat CNS neurons. J. Neurosci. Res 1991;29:225-234.
    51. Wintergerst E.S, Faissner A, Celio M.R. The proteoglycan DSD-1-PG occurs in perineuronal nets around parvalbumin-immunoreactive interneurons of the rat cerebral cortex. Int J Devl Neurosci 1996; 14:249-255.
    52. Fawcett JW, Asher RA. The glial scar and central nervous system repair. : Brain Res Bull 1999;49(6):377-391.
    53. Fitch MT, Silver J. Glial cell extracellular matrix: boundaries for axon growth in development and regeneration. Cell Tissue Res 1997;290(2):379-384.
    54. Grumet M, Friedlander DR, Sakurai T. Functions of brain chondroitin sulfate proteoglycans during developments: interactions with adhesion molecules. Perspect Dev Neurobiol 1996;3(4):319-330.
    55. Trent F. Tepper J. M. Postnatal development of synaptic responses, membrane properties and morphology of rat neostriatal neurons in vivo. Soc Neurosci Abstr 1991;17:938.
    56. Celio MR, Spreafico R, De Biasi S, et al. Perineuronal nets: past and present. Trends Neurosci 1998; 21(12): 510-515.
    57. Yamaguchi Y. Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci 2000;57(2):276-289.
    58. Koppe G, Bruckner G, Brauer K, et al. Developmental patterns of proteoglycan-containing extracellular matrix in perineuronal nets and neuropil of the postnatal rat brain. Cell Tissue Res 1997;288(1):33-41.
    59. Bruckner G, Hartig W, Kacza J, et al. Extracellular matrix organization in various regions of rat brain grey matter. J Neurocytol 1996; 25(5): 333-346.
    60. McKeon RJ, Hoke A, Silver J. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol 1995;136(1):32-43.
    61. Celio M, Blumcke I. Perineuronal nets-a specialized form of extracellular matrix in the adult nervous system. Brain Res Rev 1994;19:128—145.
    62. Moon LD, Asher RA, Rhodes KE, et al. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat Neurosci 2001;4(5):465-466.
    63. Xiang ZX, Huguenard JR, Prince DA. GABA receptor mediated currents in interneurons and pyramidal cells of rat visual cortex. J Physiol 1998; 506(3):715-730.
    64.张莉.脑片膜片钳法——改进的盲法和离子孔道法.华西医大学报 1998;29(3):338-342.
    65. Li l. Zhang, A critical window for cooperation and competition among developing retinotectal synapses. Nature,395,37-44,1998
    66. Gustafsson B, Wigstrom H, Abraham WC, et al. Long-term potentiation in the hippocampus using depolarizing potentials as the conditioning stimulus to single volley synaptic potentials. J Neurosci 1987;7:774-780.
    67. Murphy KP, Reid GP, Trentham DR, et al. Activation of NMDA receptor is necessary for the induction of associative long-term potentiation in area CA1 of the rat hippocampal slice. J Physiol Lond 1997;504(2):3379-3385.
    68. Zakharenko SS, Zablow L, Siegelbaum SA. Visualization of changes in presynaptic function during long-term synaptie plasticity. Nat Neurosci 2001;4(7):711-717.
    69. Lynch MA, Voss KL, Rodrigue ZJ, et al. Increase in synaptic vesicle proteins accompanies long-term potentiation in dentate gyrus. Neurosci 1994;60(1):1-5.
    70. Tepper J.M, Trent F. In vivo studies of the postnatal development of rat neostriatal neurons. Chemical Signaling in the Basal Ganglia (eds Arbuthnott G. W. and Emson P. C.) 1993;99:35.
    71. Hattori T, McGeer P.L. Synaptogenesis in the corpus striatum of infant rat. Expl Neurol 1973;38:70-79.
    72. Tepper JM, Sharpe NA, Koos TZ, et al. Postnatal development of the rat neostriatum: electrophysiological, light- and electron-microscopic studies. Dev Neurosci 1998;20(2-3):125-145.
    73. Liao D, Malinow R. Deficiency in induction but not expression of LTP in hippocampal slices from young rats. Learn Mem 1996;3:138-149.
    74. Durand G, Kovalchuk Y, Konnerth A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 1996;381:71-75.
    75. Wu GY, Malinow R, Cline HT. Maturation of a central glutamatergic synapse. Science 1996;274:972-976.
    76. Isaac JT, Crair MC, Nicoll RA, et al. Silent synapses during development of thalamocortical inputs. Neuron 1997;18:269-280.
    77. Petralia RS, Esteban JA, Wang TX, et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat Neuronsci 1999;2(1):31-36.
    78. Akaike N. Glutamate response in immature and mature rat CNS neurons. Int Acad Biomed Drug Res 1996;11:11-26.
    79. Roberts EB, Rama AS. Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret. J Neurophysiol 1999;81(5):2587-2591.
    80. Wei Q, Zhengqin Y, Shijun W, et al. Effects of binocular form deprivation on the excitatory post-synaptic currents mediated by N-methyl-D-aspartate receptors in rat visual cortex. Clinical & Experimental Ophthalmology 2004;32(3),289-294.
    81. Teller DY, Movshon JA. Visual development. Vision-Res. 1986;26(9):1483-1506.
    82. Boothe RG, Kiorpes L, Williams RA, et al. Operant measurements of contrast sensitivity in infant macaque monkeys during normal development. Vision Res 1988;28(3):387-396.
    83. Fagiolini M, Pizzorusso T, Berardi N, et al. Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res 1994;34(6):709-720.
    84. Porciatti V, Pizzorusso T, Maffei L. The visual physiology of the wild type mouse determined with pattern VEPs. Vision Res 1999;39(18):3071-3081.
    85.姚军平,王仕军,阴正勤,等.正常Long Evans大鼠不同发育阶段闪光视觉诱发电位波形的比较 第三军医大学学报 2003;25(21):1933-1935.
    86. Crair M C, Gillespie D C and Stryker M P.The role of visual experience in the development of columns in cat visual cortex. Science. 1998 Jan 23;279(5350):566-70.
    87. Lewis T L, Maurer D and Brent H P. Development of grating acuity in children treated for unilateral or bilateral congenital cataract. Invest Ophthalmol Vis Sci. 1995 Sep;36(10):2080-95.
    88. Sato MT, Tokunaga A, Kawai Y, et al. The effects of binocular suture and dark rearing on the induction of c-fos protein in the rat visual cortex during and after the critical period. Neurosci Res 2000;36:227-233.
    89. Ahn KY, Nam KI, Kim BY, Cho CW, Jeong SK, Yang KJ, Kim KK. Postnatal expression and distribution of Refsum disease gene associated protein in the rat retina and visual cortex: effect of binocular visual deprivation. Int J Dev Neurosci, 2002, 20(2): 93-102.
    90. Mower GD, Berry D, Burchfiel JL, Duffy FH. Comparison of the effects of dark rearing and binocular suture on development plasticity of cat visual cortex. Brain Res,1981,220:255-267.
    91. Ohashi T, Norcia AM, Kasamatsu T, Iampolsky A. Corticaln recovery from effects of monocular deprivation caused by diffusion and occlusion. Brain Res, 1991, 548: 63-73.
    92. Goldberg MC, Maurer D, Lewis TL, et al. The influence of binocular visual deprivation on the development of visual-spatial attention. Dev Neuropsychol 2001;19(1):53-81.
    93. Lester RA, Jahr CE. NMDA channel behavior depends on agonist affinity. J Neurosci, 1992,12(2): 635-643.
    94. Clements JD. Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends in Neurosci 1996; 19:167-171.
    95. Jones MV, Westbrook GZ. Desensitized states prolong GABA A channel response to brief agonist pulses. Neuron 1995;15:181-191.. 102.
    96. Lester RA, Jahr CE. NMDA channel behavior depends on agonist affinity. J Neurosci 1992;12(2):635-643.
    97. Altmann L, Mundy WR, Ward TR, et al. Developmental exposure of rats to a reconstituted PCB mixture or aroclor 1254: effects on long-term potentiation and [3H]MK-801 binding in occipital cortex and hippocampus. Toxicol Sci 2001;61(2):321-330.
    98. Raman IM, Zhang S, Trussell LO. Pathway-specific variants of AMPA receptors and theircontribution to neuronal signaling. J Neurosci 1994; 14:4998-5010.
    99. Yamada KA, Tang CM. Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutam atergic synaptic currents. J Neurosci 1993; 13:3904-3915.
    100.Takahashi M, Kovalchuk Y, Attwell D. Pre and postsynaptic determinants of EPSC wave-form at cerebellar cl~nbing fiber and parallel fiber to Purkinje cell synapses. J Neurosci 1995;15:5693- 5702.
    101.Diamond JS, JahrCE. Asynchronous release of synaptic vesicles determines the time
     course of the AMPA receptors mediated EPSC. Neuron 1995; 15:1097-1107.
    102.Mennerick S, Zorum CF. Presynaptic influence on the time course of fast excitatory synaptic currents in cultured hippocampal cells. J Neurosci 1995; 15:3178-3192.
    103.Hemart N, Daniel H, Jaillard D, et al. Properties of glutam ate receptors are modified during long-term depression in rat cerebellar Purkinje cells. Neurosci Res 1994;19:213-221.
    104.Staubli U, Rogers G, Lynch G. Facilitation of glutamate receptors enhances memory. Proc Natl Acad Sci 1994;91:777- 781.
    105.Bukalo O, Schachner M, Dityatev A. Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R differentially affects several forms of synaptic plasticity in the hippocampus Neuroscience 2001;104(2):359-369.
    106. Faissner A, Steindler D. Boundaries and inhibitory molecules in developing neural tissues. Glia 1995;13:233-254.
    107.Powell E.M., Meiners S., DiProspero N.A., et al. Mechanisms of astrocyte-directed neurite guidance. Cell Tiss Res 1997;290:385-393.
    108.Jones F.S., Jones P.L. The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Devl Dyn 2000;218:235-259.
    109.Saghatelyan AK, Gorissen S, Albert M, et al. The extracellular matrix molecule tenascin-R and its HNK-1 carbohydrate modulate perisomatic inhibition and long-term potentiation in the CA1 region of the hippocampus. Eur J Neurosci 2000; 12(9):3331-3342.
    110. Ren J.Q., Heizmann C.W., Kosaka T. Regional difference in the distribution of parvalbumin-containing neurons immunoreactive for monoclonal antibody HNK-1 in the mouse cerebral cortex. Neurosci Lett 1994;166;221-225.
    111.Weber P., Bartsch U., Rasband M.N., et al. Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS. J Neurosci 1999;19:4245-4262.
    112. Yamamoto M., Marshall P., Hemmendinger L.M., et al. Distribution of glucuronic
     acid-and-sulfate-containing glycoproteins in the central nervous system of the adult mouse. Neurosci Res 1988;5:273-298.
    113.Saghatelyan A.K., Dityatev A., Schmidt S., et al. Reduced perisomatic inhibition, increased excitatory transmission and impaired long-term potentiation in mice deficient for the extracellular matrix glycoprotein tenascin-R. Mol Cell Neurosci2001;17:226-240.
    114. Abo T., Balch CM. A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol 1981; 127:1024-1029
    115.Alexander D, Melitta S. Extracellular matrix molecules and synaptic plasticity. Nature 2003;4:456-468.
    116.Brakebusch C, Seidenbecher CI, Asztely F, et al. Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory. Mol Cell Biol 2002;22(21): 7417-7427.
    117.Fitch M. T. & Silver J. CNS Regeneration: Basic Science and Clinical Advances (eds Tuszynski, M. H. &Kordower, J. H.) 55-88 (Academic, San Diego, 1999).
    118.Zuo, J., Neubauer, D., Dyess, K., Ferguson, T. A. & Muir, D. Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp. Neurol. 154,654-662 (1998).
    119.Fidler, P. S. et al. Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2. J. Neurosci. 19, 8778-8788 (1999).
    120.Kirkwood A, Bear M F. Hebbian synapse in the visual cortex. J Neurosci 1994;14(3):1634-1645.
    121.Volgushev M, Mittmann T, Chistiakova M, et al . Interaction between intracellular tetanization and pairing-induced long-term synaptic plasticity in the rat visual cortex. Neuroscience 1999;93(4): 1227-1232 .
    122.Sermasi E , Margotti E , Cattaneo A , et al. Trk B signalling controls LTP but not LTD expression in the developing rat visual cortex. Eur J Neurosci 2000;12(4):1411-1419.
    123. Komatsu Y, Toyama K , Maeda J , et al . Long-term potentiation investigated in a slice preparation of striate cortex of young kittens . Neuroscience Letters 1981;
     26:269-274.
    124. Bliss TVP, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993;361:31-39.
    125. Berry RL, Perkins IV, Teyler TJ. Visual deprivation decreases long-term potentiation in rat visual cortical slices. Brain Res 1993;628:99-104.
    126. Teyler TJ. Comparative aspects of hippocampal and neucortieal long-term potentiation. J Neurosci Methods 1989;28(1-2):101.
    127. Yoshimura Y, Tsumoto T. Dependence of LTP induction on postsynaptic depolarization:a perforated patch-damp study in visual cortical slices of young rats. J Neurophysiol 1994;71:1638-1645.
    128. Kimura F, Nishigori A, Shirokawa T, et al. Long-term potentiation and N-methyl-D-aspartate receptors in the visual cortex of young rats. J Physiol Lond 1989;414:125-144
    129. Kinoshita S, Yasuda H, Taniguchi N, et al. Brain-deprived neurotrophic factor prevents low-frequency inputs from inducing long-term depression in the developing visual cortex. J Neurosei 1999;19(6):2122-2130.
    130. Macdonald RL, Olsen RW. GABAA receptor channels. Annu Rev Neurosci 1994;17:569-602.
    131. Johnson RR, Burkhalter A. Microcircuity of forward and feedback connection with rat visual cortex. J Comp Neurol 1996;368:383-398.
    132. Johnson RR, Burkhalter A. A polysynaptic feedback circuit in rat visual cortex. J Nourosci 1997;17:7129-7140.
    133. Tsumoto T, Freeman RD. Dark-reared cats: responsitivity of cortical cells influenced pharmacologically by an inhibitory antagonist. Exp Brain Res 1987;65:666-672.
    134. Miles K, Toth A.I, Gulyas N. H, et al. Differences between somatic and dendritic inhibition in the hippocampus. Neuron 1996;16:823-825.
    135. Paysan J, Fritschy JM. GABA_A receptor subtypes in developing brain. Actors or spectators? Perspect Dev Neurobiol 1998;5:179-192.
    136. Huntsman MM, Munoz A, Jones EG. Temporal modulation of GABA_A receptor subunit gene expression in developing monkey cerebral cortex. Neurosci 1999;91:1223-1245.
    137.Laurie DJ, Wisden W, Seeburg PH. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain: Embryonic and postnatal development. J Neurosci 1992;12:4151-4172.
    138.Fritschy JM, Benke D, Mertens S, et al. Five subtypes of type A gamma-aminobutyric acid receptors identified in neurons by double and triple immunofluorescence staining with subunit-specific antibodies. Proc Natl Acad Sci 1992;89:6726-6730.
    139.Paysan J, Fritschy JM. GABAA receptor subtypes in developing brain. Actors or spectators? Perspect Dev Neurobiol 1998;5:179-192.
    140.Chen L, Yang C, Mower GD. Developmental changes in the expression of GABA(A) receptor subunits (alpha(l),alpha(2),alpha(3)) in the cat visual cortex and the effects of dark rearing. Brain Res Mol Brain Res 2001; 88(1):135-143.
    141.Jones MV, Westbrook GL. The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci 1996; 19:96-101.
    142.Verdoorn T.A, Draguhn A, Ymer S, et al. Functional properties of recombinant rat GABAA receptors depend upon subunit composition. Neuron 1990;4:919-928.
    143.Amin J, Weiss D.S. Homomeric P 1 GABA channels: activation properties and domain receptor channels. 1994;2:227-236.
    144.Tia S, Wang JF, Kotchabhakdi N, et al. Distincteactivation and desensitization kinetics of recominant GABAA receptors. Neuropharmacology 1996;35:1375-1382.
    145.Puia G, Costa E, Vinici S, et al. Functional diversity of GABA activated C1- currents in purkinje versus granule neurons in rat cerebellar slices. Neuron 1994;12:117-126.
    146.Pearce R.A. Physiological evidence for two distinct GABAa responses in rat hippocampus. Neuron 1993;10:189-200.
    147.Xiao Z.C., Bartsch U., Margolis R.K., et al. Isolation of a tenascin-R binding protein from mouse brain membranes. A phosphacan-related chondroitin sulfate proteoglycan. J biol Chem 1997;272:32,092-32,101.
    148. Saghatelyan AK, Gorissen S, Snapyanb M. Recognition molecule associated carbohydrate inhibits postsynaptic GABAb receptors: a mechanism for homeostatic regulation of GABA release in perisomatic synapses
    149. Buhl E.H., Szilagyi T, Halasy K., et al. Physiological properties of anatomically
     identified basket and bistratified cells in the CAl area of the rat hippocampus in vitro. Hippocampus 1996;6:294-305.
    150.Freund T.F., Buzsaki G.. Interneurons of hippocampus. Hippocampus 1996; 6:347-470.
    151.Parra P., Gulyas A.I., Miles R. How many subtypes of inhibitory cells in the hippocampus? Neuron 1998;20:983-993.
    152.Miles R., Toth K., Gulyas A.I., et al. Differences between somatic and dendritic inhibition in the hippocampus. Neuron 1996;16:823-825.
    153.Cobb S.R., Buhl E.H., Halasy K., et al. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 1995;378:75-78.
    154.Buzsaki G.. Functions for interneuronal nets in the hippocampus. Can J Physiol Pharmacol 1997;75:508-515.
    155. Miura R, Ethell IM, Yamaguchi Y. Carbohydrate-protein interactions between HNK-1-recactive sulfoglucuronyl glycolipids and the proteoglycan lectin domain mediate neuronal cell adhesion and neurite outgrowth. J Neurochem 2001;76;413-424.
    156. Snow D., Atkinson P., Hassinger T., et al. Chondroitin sulfate proteoglycan elevates cytoplasmic calcium in DRG neurons. Devl Biol 1994;166:87-100.
    157.Kullmann D.M., Asztely F. Extrasynaptic glutamate spillover in the hippocampus: evidence and implications. Trends Neurosci 1998;21:8-l4.
    158.Rusakov D.A., Kullmann D.M., Stewart M.G. Hippocampal synapses: do they talk to their neighbours? Trends Neurosci 1999;22:382-388.
    159.Terlau H., Seifert W. Fibroblast growth factor enhances long-term potentiation in hippocampal slices. EurJ Neurosci 1990;2:973-977.
    160.Luthi A., Laurent J.P., Figurov A., et al. Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature 1994;372:777-779.
    161 .Becker C.G., Artola A., Gerardy-Schahn R., et al. The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long-term potentiation. J Neurosci Res 1996; 45:143-152.
    162.Muller D., Wang C, Skibo G., et al. PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 1996; 17:413-422.
    163.Lauri S.E., Rauvala H., Kaila K., et al. Effect of heparin-binding growth-associated molecule (HB-GAM) on synaptic transmission and early LTP in rat hippocampal slices.
     Eur J Neurosci 1998;10:188-194.
    164. Dityatev, G. Dityateva, M. Schachner. Synaptic strength as a function of postversus presynaptic expression of the neural cell adhesion molecule NCAM. Neuron 2000;26:207-217.
    165. Eckhardt M., Bukalo O., Chazal G., et al. Mice deficient in the polysialyltransferase STSSialV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neuronal development and synaptic plasticity. J Neurosci 2000;20:5234-5244.
    166. Liu Y. B, Lio PA, Pasternak JF et al. Developmental changes in membrane properties and postsynaptic currents of granule cells in rat dentate gyrus, J Neurophysiol. 1996;76:1074-1087.
    167.高朋芬,阴正勤,刘应兵,等 年龄和视觉经验对大鼠视皮层突触功能发育的影响第三军医大学学报 2003,25(21):1920—1923
    168. Gordon B, Daw N, Parkinson D. The effect of age on binding of MK-801 in the cat visual cortex. Dev Brain Res, 1991;62:61-7
    169. Chen L, Cooper NGF and Mower GD. Developmental changes in the expression of NMDA receptor subunits(NR1, NR2A, NR2B) in the cat visual cortex and the effects of dark rearing. Mol Brain Res, 2000;1:1-5
    170. Elizabeth B, et at. Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret. J Neurophysiol, 1999;81:2587-2591
    171. Taha S, Stryker M. P. Rapid ocular dominance plasticity requires cortical but not geniculate protein synthesis. Neuron 2002;34:425-436.
    172. Catalano SM, Catherine K, et al. Activity-dependent regulation of NMDAR1 immunoreactivity in the developing visual cortex. J Neurosci, 1997;17(21):8376-8390

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700