气相零价汞催化氧化及二价汞液相吸收、还原过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞因其具有持久性、生物累积性和神经毒害作用,目前已经引起了较为广泛的关注。燃煤电厂是大气中主要的汞污染源,并且主要是以零价汞的形式排放,难以被现有除尘及脱硫装置捕集。现有ACI注入法脱汞技术因其较高的操作成本以及对飞灰品质的影响,不利于大规模工业应用。而利用氧化态汞的高溶解度,将零价汞氧化为二价汞,从而提高汞液相溶解能力并与湿法吸收技术相结合,开发基于湿法脱硫工艺的气相氧化-液相吸收联合脱硫脱汞技术将提供一种经济可行的技术途径。因此,本文针对汞的气相氧化结合液相吸收的汞控制技术,进行了系统研究。
     首先,基于实验室现有钛基催化剂制备技术,考察了利用溶胶凝胶法制备的不同金属掺杂催化剂汞催化氧化性能。通过筛选和优化,制备了一种在150-300℃温窗下氧化效率能达到100%的钻掺杂催化剂。此外,利用XRD、XPS、TEM和TPR等表征手段对催化剂进行了表征,确定催化剂主活性相为C0304。通过研究HCl和02在催化反应中的作用,提出了修正的Mars-Maessen模型,明确了HCl和O2在反应中的历程及对汞氧化的作用。
     其次,在模拟烟气二价汞吸收实验装置上对钙基湿法、双碱法和氧化镁法脱硫系统的脱汞性能进行了研究,考察了主要气相、液相条件和液相离子对脱汞性能的影响。研究结果显示:三种脱硫系统均显示出了较高的二价汞吸收性能,但汞还原现象也很明显。在吸收液pH值为4.5-5.5之间时,钙基系统中有将近70%汞被还原,而双碱法和氧化镁法也有近30%的还原量。提高吸收液硫酸根离子和氯离子浓度能明显抑制汞的还原。镁离子在钙基脱硫系统和双碱法中显示了不同的汞还原影响作用。NO和02可以提高系统的脱汞效果,而二氧化硫则不利于汞的脱除。
     最后,我们利用紫外可见分光光谱等表征手段,对镁离子、硫酸根和氯离子的二价汞还原抑制过程进行了研究。实验结果表明:镁离子在钙基脱硫系统中对汞还原的促进是由于在镁离子的作用下CaSO3·0.5H20固体悬浮颗粒表面积增加,从而增加了二价汞还原的活性点位;而在双碱法脱硫系统中,则生成了MgSO30中性离子对,降低了液相活性亚硫酸根含量。硫酸根的加入是由于生成了HgSO3SO42-这一相对稳定的络合物。而对于氯离子,主要是生成了较为稳定的Cl2HgSO32-和ClHgSO3-络合物,并且Cl2HgSO32-的稳定性比ClHgSO3-更强。液相HgSO3的降解是汞还原的限制步骤。硫酸根、氯离子和过量亚硫酸根主要是限制了HgSO3的降解从而实现汞还原的抑制。
Mercury, due to its persistence, bio-accumulation and neurological toxicity, has received tremendous attentions. The coal-fired power plant was the major source of the gas-phase mercury, which was mainly in elemental form and could not be removed by the existing dust removal and desulfurization system. The widely industry application of the active carbon injection method(ACI) for mercury capture from coal-derived flue gases was limited by its rather high operating cost and the harmful effect on the fly ash quality. A co-effective and economic alternative was to transfer the elemental mercury to more soluble bivalent form, following removed in wet absorption process. Thus, the mercury removal process of the gas-phase oxidation and aqueous absorption combined system was systematically investigated in this dissertation.
     Firstly, several catalysts were prepared by doping different metals into the TiO2 for mercury oxidation tests by sol-gel method, which was optimized by our group. By the activity tests and loading content optimization, a cobalt doped catalyst having an oxidation efficiency of 100% within the temperature reaction window of 150-300℃was obtained. The chosen catalyst was then characterized by XRD, XPS, TEM, HRTEM and TPR, indicating that the main active phase of the catalyst was Co3O4. Furthermore, a modified Mars-Maessen mechanism was proposed by us through the analysis of the performance of HCl and O2 during the reaction, in which the performance of HCl and O2 as well as their effects on mercury oxidation were defined.
     Secondly, the removal of bivalent mercury by the wet Ca-based FGD system, the Dual-Alkali FGD system and the magnesia FGD system were evaluated in a simulated flue gas absorption device, respectively. Main gas and liquid conditions as well as some aqueous ions on mercury removal were experimental studied. The results showed that three FGD systems all showed high efficiency on bivalent mercury absorption, but the reduction amount of absorbed bivalent mercury was also very large. Within the pH value of 4.5-5.5, about 70% of the absorbed mercury was reduced to elemental form in the wet Ca-based FGD system, while that were around 30% in both the Dual-Alkali and magnesia FGD systems. The increase of sulfate and chloride ions in the absorbent greatly inhibited the mercury reduction. The magnesium ion had different effects on mercury reduction in the Ca-based FGD system and Dual-Alkali system. NO and O2 in the gas were beneficial to the mercury removal, while SO2 would somewhat lower the removal efficiency.
     Finally, the UV-vis spectra and some other technologies were adopted to investigate the mercury reduction behaviors in the presence of magnesium, sulfate and chloride ions, respectively. The enhancement of reduction in the Ca-based FGD system was contributed to the increased surface area of CaSO3·0.5H2O suspended solid particle, thereby increasing the active sites of mercury reduction. And the reduction was inhibited by the formation of MgSO30 ion pairs in the Dual-alkali system by the addition of magnesium. The inhibitions by the addition of sulfate and chloride were attributed to the formation of HgSO3SO42-, Cl2HgSO32- and ClHgSO3-, respectively. Cl2HgSO32- was recognized as the more stable one compared to ClHgSO3- in the presence of chloride. Aqueous HgSO3 decomposition was the key step of mercury reduction, since presences of sulfate, chloride and excess sulfite ions all limited its decomposition.
引文
[1]Q.J. Nriagu, J.M. Pacyna. Quantitative assessment of worldwide contamination of air, water and soils by trace metals[J]. Nature,1988,333(6169):134-139.
    [2]T. Clark, Mercury Study Report to Congress Volume Ⅰ:Executive Summary, EPA-452/R-97-003. December.1997, United States Environmental Protection Agency.
    [3]D.G. Streets, J.M. Hao, Y.J. Wu, M. Chan, H.Z. Tian, X.B. Feng, Anthropogenic mercury emissions in China[J]. Atmospheric Environment,2005,39(40):7789-7806.
    [4]陈冰如,钱琴芳,杨亦男,杨绍晋.我国110个煤矿样中微量元素的浓度分布[J].核技术,1985(6):43-44.
    [5]王启超,沈文国,麻壮伟.中国燃煤汞排放量估算[J].中国环境科学,1999,19(4):318-321.
    [6]Y.J. Wu, S.X. Wang, D.G. Streets, J.M. Hao, M. Chan, J.K. Jiang. Trends in Anthropogenic Mercury Emissions in China from 1995 to 2003[J]. Environmental Science and Technology,2006,40(17):5312-5318.
    [7]G.C. Fang, Y.S.Wu, T.H. Chang. Comparison of atmospheric mercury (Hg) among Korea, Japan, China and Taiwan during 2000-2008[J]. Journal of Hazardous Materials, 2009,162(2-3):607-615.
    [8]S.T. Choo, S.D. Yim, I.S. Nam, S.W. Ham, J.B. Lee. Effect of promoters including WO3 and BaO on the activity and durability of V2O5/ulfated TiO2 catalyst for NO reduction by NH3[J]. Applied Catalysis B,2003,44(3):237-252.
    [9]Z.B. Wu, B.Q. Jiang, Y. Liu, W.R. Zhao, B.H. Guan. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method[J]. Journal of Hazardous Materials,2007,145(3):488-494.
    [10]Z.B. Wu, R.B. Jin, Y. Liu, H.Q. Wang. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catalysis Comunication, 2008,9(13):2217-2220.
    [11]Z.B. Wu, H.Q. Wang, Y. Liu, B.Q. Jiang, Z.Y. Sheng. Study of a photocatalytic oxidation and wet absorption combined process for removal of nitrogen oxides[J]. Chemical. Engeering Journal,2008,144(2):221-226.
    [12]National Research Council, Toxicological Effecs of Methyl Mercury, National Academy Press. In:Librara of Congress Card Number 00-108382 Augest,2000. Washington, DC.
    [13]R.K. Strivastava, N. Hutson, F. Princiotta, J. Straudt. Control of Mercury Emission from Coal-fired Electric Utility Boilers[J]. Environmental Science and Technology, 2006,40(5):1385-2394.
    [14]C. Miller, T.J. Feeley, W.W. Alioe. Mercury capture and Fate:Using Wet FGD at Coal-Fired Power Plant. DOE/NTEL Mercury and Wet FGD R&D Meeting, Aug. 2006.
    [15]A.P. Jones, J.W. Hoffman, T.J. Feeley, J.T. Murphy. DOE/NETL's Phase Ⅱ Mercury Control Technology Field Testing Program:Preliminary Ecnomic Analysis of Activated Carbon Injection[J]. Environmental Science and Technology,2007, 41(4):1365-1371.
    [16]W. Liu, R.D. Vidic, T.D. Brown. Impact of Flue Gas Conditions on Mercury Uptake by Sulfur-Impregnated Activated Carbon[J]. Environmental Science and Technology,2000, 34(1):154-195.
    [17]A.A. Presto, E.J. Granite, A. Karash. Further Investigation of the Impact of Sulfur Oxides on Mercury Capture by Activated Carbon[J]. Industrial and Engineering Chemistry Research,2007,46(24):8273-8276.
    [18]A.A. Presto, E.J. Granite. Impact of Sulfur Oxides on Mercury Capture by Activated Carbon[J]. Environmental Science and Technology,2007,41(18):6579-6584.
    [19]E.J. Granite, A.A. Presto. Response to Comment on "Impact of Sulfur Oxides on Mercury Capture by Activated Carbon"[J]. Environmental Science and Technology, 2008,42(3):972-972.
    [20]E.J. Granite, A.A. Presto. Comment on the "Role of SO2 for Elemental Mercury Removal from Coal Combustion Flue Gas by Activated Carbon"[J]. Energy & Fuels, 2008,22(5):3557-3558.
    [21]P. Chu, N. Goodman, G. Behrens, R. Roberson. Total and speciated mercury emissions from U.S. coal fired power plants. Proceedings of the Air Quality Ⅱ:Mercury, Trace Elements, and Particulate Matter Conference, September,2000.
    [22]R.B. Finkelman. Modes of occurrence of trace elements in coals:US Geological Survey Open-file Report 81-99[R],1981.
    [23]张军营,任德贻,许蔺伟,赵峰华.煤中汞及其对环境的影响[J].环境科学进展,1999.7(3):100-104.
    [24]张覃,刘志红,尚衍波.煤中汞的赋存形态及其脱除工艺研究进展[J].矿冶,2002,Z1(11):224-226.
    [25]刘晶,陆小华,娜欣.煤中痕量砷和汞的形态分析[J].华中理工大学学报,2000,29(7):71-73.
    [26]S. Nelson, R. Landreth, Q. Zhou, J. Miller. Mercury sorbent injection test results at the Lauche Plant. In:Combined Power Plant Air Pollutant Control Mega Symposium, Washington, DC, U.S.A., May 19-22,2003.
    [27]J.H. Pavlish, M.J. Holmes, K.C. Galbreath, Y. Zhuang, B.M. Pavlish. Pilot-scale investigation of mercury control technologies for utilities burning lignite coal. In: Combined Power Plant Air Pollutant Control Mega Symposium, Washington, DC, U.S.A., May 19-22,2003.
    [28]E.M. Prestbo, N.S. Bloom. Mercury Speciation Adsorption (MESA) Method for Combustion Flue Gas:Methodology Artifacts, Inter comparison and Atmospheric Implications[J]. Water, Air, and Soil Pollution,1995,80(1-4):145-158.
    [29]J.R. Butz, C. Turchi, T.E. Broderick, J. Albiston. Options for mercury removal from coal fired flue gas streams:pilot-scale research on activated carbon, alternative and regenerable sorbents. In:Proceedings of the 17th Annual Pittsburgh Coal Conference. Pittsburgh, PA. September,2000.
    [30]EPA, U.S.A., Research and Development, Control of Mercury Emission from Coal-fired Electricity Boilers:Interim Report Including Errata Dated 3-21-02, EPA-600/R-01-109[R]. U. S. Government Printing Office:Washington D C. April, 2002.
    [31]高洪亮,周劲松,骆仲泱,午旭杰,倪明江,岑可法.SO2对模拟燃煤烟气中汞形态分布影响研究[J].环境科学学报,2004,24(31):204-210.
    [32]Y.X. Zhao, M.D. Mann, E.S. Olson, J.H. Pavlish, G.E. Dunham. Effects of Sulfur Dioxide and Nitric Oxide on Mercury Oxidation and Reduction under Homogeneous Conditions[J]. Journal of the Air and Waste Management Association,2006,56(5): 628-635.
    [33]B. Hall, O. Lindqvist, E. Ljungstrom. Mercury chemistry in simulated flue gases related to waste incineration conditions[J]. Environmental Science and Technology,1990, 24(1):108-111.
    [34]R.N. Sliger, J.C. Kramlich, N.M. Marinov. Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species[J]. Fuel Processing Technology,2000,65-66:423-438.
    [35]C.G. Zheng, J. Liu, Z.H. Liu, M.H. Xu, Y.H. Liu. Kinetic mechanism studies on reactions of mercury and oxidizing species in coal combustion[J]. Fuel,2005,84(10): 1215-1220.
    [36]B. Toole-O'Neil, S.J. Tewalt, R.B. Finkelman, D.J. Akers. Mercury concentration in coal-unravelingthe puzzle[J]. Fuel,1999,78(1):47-74.
    [37]D.J. Akers, C.E. Raleigh. The mechanisms of trace elemental removal during coal cleaning[J]. Coal Preparation,1998,19(3-4):257-269.
    [38]K.L. Liu, Y. Gao, J.T. Riley, W.P. Pan, A.K. Mehta, K.K. Ho, S.R. Smith. An investigation of mercury emission from FBC systems fired with high-chlorine coals[J]. Energy and Fuels,2001,15(5):1173-1180.
    [39]J. Jurng, T.G. Lee, G.W. Lee, S.J. Lee, B.H. Kim, J. Seier. Mercury removal from incineration flue gas by organic and inorganic adsorbents[J]. Chemosphere,2002,47(9): 907-913.
    [40]G. Skodras, I. Diamantopoulou, A. Zabaniotou, G. Stavropoulos, G.P. Sakellaropoulos. Enhanced mercury adsorption in activated carbons from biomass materials and waste tires[J]. Fuel Processing Technology,2007,88(8):749-758.
    [41]E.J. Granite, H.W. Pennline, R.A. Hargig. Novel sorbents for mercury removal from flue gas[J]. Industrial and Engineering Chemistry Research,2000,39(4):1020-1029.
    [42]D. Karatza, A. Lancia. Study of mercury absorption and desorption on sulfur impregnated carbon[J]. Experimental Thermal and Fluid Science,2000,21 (1-3): 150-155.
    [43]H.C. Hsi, M.J. Rood, M. Rostam-Abadi, S.G. Chen, R. Chang. Effects of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers (ACFs)[J]. Environmental Science and Technology,2001, 35(13):2785-2791.
    [44]H. Hsi, M.J. Rood, M. Rostam-Abadi. Mercury adsorption properties of sulfur-impregnated adsorbents[J]. Journal of Environment Engineering,2002,128(11): 1080-1089.
    [45]W. Sun, N.Q. Yan, J.P. Jia. Removal of elemental mercury in flue gas by brominated activated carbon[J]. China Environmental Science,2006,26(3):257-261.
    [46]S.B. Ghorishi, R.M. Keeney, S.D. Serre. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury[J]. Environmental Science and Technology,2002,36(20):4454-4459.
    [47]H. Zeng, F. Jin, J. Guo. Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon[J]. Fuel,2004,83(1):143-146.
    [48]B. Ghorishi, B.K. Gullett. Sorption of mercury species by activated carbons and calcium-based sorbents:effect of temperature, mercury concentration and acid gases[J]. Waste Management and Research,1998,16(6):582-593.
    [49]M.M. Maroto-Valer, D.N. Taulbee, J.C. Hower. Characterization of differing forms of unburned carbon present in fly ash separated by density gradient centrifugation[J]. Fuel, 2001,80(6):795-800.
    [50]W.H. Gibb, F. Clarke, A.K. Mehta. The fate of coal mercury during combustion[J]. Fuel Processing Technology,2000,65-66:365-377.
    [51]C. Oktar, H.L. Yilmaz, O. Ozbelge, N. Bicak. Selective mercury uptake by polymer supported hydroxyethyl sulfonamides[J]. Reactive and Functional Polymers,2008. 68(4):842-850.
    [52]K.C. Galbreath, C.J. Zygarlicke. Mercury Speciation in Coal Combustion and Gasification Flue Gases[J]. Environmental Science and Technology,1996,30(8): 2421-2426.
    [53]Y.S. Liu, S.D. Xie, Y.Q. Li, Y.S. Liu. Novel Mercury Control Technology for Solid Waste Incineration:Sodium Tetrasulfide (STS) as Mercury Capturing Agent[J]. Environmental Science and Technology,2007,41(5):1735-1739.
    [54]J.H. Pavlish, E.A. Sondreal, M.D. Mann, E.S. Olson, K.C. Galbreath, D.L. Laudal, S.A. Benson. Status review of mercury control options for coal-fired power plants[J]. Fuel Processing Technology,2003,82(2-3):89-165.
    [55]S.V. Krishnan, B.K. Gullett, W. Jozewicz. Mercury control in municipal waste combustion and coal-fired utilities[J]. Environmental Research,1995,34(2):607-612.
    [56]K.C. Galbreath, C.J. Zygarlicke. Mercury transformations in coal combustion flue gas[J]. Fuel Processing Technology,2000,65-66:289-310.
    [57]S.B. Ghorishi, C.B. Sedman. Low concentration mercury sorption mech-anisms and control by calcium-based sorbents:application in coal-fired processes[J]. Journal of the Air and Waste Management Association,1998,48(12):1191-1198.
    [58]刘迎晖,郑楚光,游小清,邱建荣.氯元素对烟气中汞的形态和分布的影响[J].环境科学学报,2001,21(1):69-73.
    [59]A. Lancia, D. Musmarra, F. Pepe, G. Volpicelli. Adsorption of mercuric chloride vapours from incinerator flue gases on calcium hydroxide particles[J]. Combustion Science and Technology,1993,93(1-7):277-289.
    [60]H. Agarwal, H.G. Stenger. Effects of H2O, SO2, and NO on Homogeneous Hg Oxidation by C12[J]. Energy & Fuels,2006,20(3):1068-1075.
    [61]N.Q. Yan, S.H. Liu, S.G. Chang, C. Miller. Method for the study of gaseous oxidants for the oxidation of mercury gas[J]. Industrial and Engineering Chemistry Research, 2005,44(15):5567-5574.
    [62]A.I. Martinez, B.K. Deshpande. Kinetic modeling of H2O2-enhanced oxidation of flue gas elemental mercury[J]. Fuel Processing Technology,2007,88(10):982-987.
    [63]S.H. Liu, N.Q. Yan, Z.R. Liu, Z. Qu, H.P. Wang, S.G. Chang, C. Miller. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants [J]. Environmental Science and Technology,2007,41(4):1405-1412.
    [64]Y. Cao, Q.H. Wang, J. Li, J.C. Cheng, C.C. Chan, M. Cohron, W.P. Pan. Enhancement of Mercury Capture by the Simultaneous Addition of Hydrogen Bromide (HBr) and Fly Ashes in a Slipstream Facility[J]. Environmental Science and Technology,2009,43(8): 2812-2817.
    [65]Z. Qu, N.Q. Yan, P. Liu, Y. Chi, J.P. Jia. Bromine Chloride as an Oxidant to Improve Elemental Mercury Removal from Coal-Fired Flue Gas[J]. Environmental Science and Technology,2009,43(14):8610-8615.
    [66]N.Q. Yan, Z. Qu, Y. Chi, S.H. Qiao, R.L. Dod, S.G. Chang, C. Miller. Enhanced Elemental Mercury Removal from Coal-Fired Flue Gas by Sulfur-Chlorine Compounds[J]. Environmental Science and Technology,2009,43(22):5410-5415.
    [67]Z. Qu, N.Q. Yan, P. Liu, Y.F. Guo, J.P. Jia. Oxidation and Stabilization of Elemental Mercury from Coal-Fired Flue Gas by Sulfur Monobromide[J]. Environmental Science and Technology,2010,44(10):3889-3894.
    [68]S.A. Benson, J.D. Laumb, C.R. Crocker. SCR catalyst performance in flue gases derived from subbituminous and lignite coals[J]. Fuel Processing Technology,2005, 86(5):577-613.
    [69]C.W. Lee, R.K. Srivastava, S.B. Ghorishi, J. Karwowski, T.W. Hastings, J.C. Hirschi. Pilot-Scale Study of the Effect of Selective Catalytic Reduction Catalyst on Mercury Speciation in Illinois and Powder River Basin Coal Combustion Flue Gases[J]. Journal of the Air and Waste Management Association,2006,56(5):643-649.
    [70]S. Eswaran, H.G. Stenger. Understanding Mercury Conversion in Selective Catalytic Reduction (SCR) Catalysts[J]. Energy & Fuels,2005,19(6):2328-2334.
    [71]Y. Cao, B. Chen, J. Wu, H. Cui, J. Smith, C.K. Chen, P. Chu, W.P. Pan. Study of Mercury Oxidation by a Selective Catalytic Reduction Catalyst in a Pilot-Scale Slipstream Reactor at a Utility Boiler Burning Bituminous Coal[J]. Energy & Fuels, 2007,21(1):145-156.
    [72]Y. Zhuang, J. Laumb, R. Liggett, M. Holmes, J. Pavlish. Impacts of acid gases on mercury oxidation across SCR catalyst[J]. Fuel Processing Technology,2007,88(10): 929-934.
    [73]H. Kamata, S.I. Ueno, T. Naito, A. Yukimura. Mercury Oxidation over the V2O5(WO3)/TiO2 Commercial SCR Catalyst[J]. Industrial and Engineering Chemistry Research,2008,47(21):8136-8141.
    [74]S. He, J.S. Zhou, Y.Q. Zhu, Z.Y. Luo, M.J. Ni, K.F. Cen. Mercury Oxidation over a Vanadia-based Selective Catalytic Reduction Catalyst[J]. Energy & Fuels,2009,23(1): 253-259.
    [75]C.W. Lee, R.K. Srivastava, S.B. Ghorishi, T.W. Hastings, F.M. Stevens. Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions[J]. Journal of the Air and Waste Management Association, 2004,54(12):1560-1566.
    [76]F.D. Natale, A. Lancia, A. Molino, M.D. Natale, D. Karatza, D. Musmarra. Capture of mercury ions by natural and industrial materials[J]. Journal of Hazardous Materials, 2006.132(2-3):220-225.
    [77]N. Fujiwara, Y. Fujita, K. Tomura, H. Moritomi, T. Tuji, S. Takasu, S. Niksa. Mercury transformations in the exhausts from lab-scale coal flames[J]. Fuel,2002,81(16): 2045-2052.
    [78]D.L. Laudal, T.D. Brown, B.R. Nott. Effects of flue gas constituents on mercury speciation[J]. Fuel Processing Technology,2000,65-66:157-165.
    [79]S.D. Serre, G.D. Silcox. Adsorption of elemental mercury on the residual carbon in coal fly ash. Industrial and Engineering Chemistry Research,2000,39(6):1723-1730.
    [80]K.C. Galbreath, C.J. Zygarlicke, J.E. Tibbetts, R.L. Schulz, G.E. Dunham. Effects of NOx, α-Fe2O3, γ-Fe3O3, and HCl on mercury transformations in a 7-kW coal combustion system[J]. Fuel Processing Technology,2005,86(4):429-448.
    [81]A. Yamaguchi, A. Kimasa, H. Kiho, S. Ito. Mercury oxidation by copper oxides in combustion flue gases[J]. Powder Technology,2008,180(1-2):222-226.
    [82]Y.X. Zhao, M.D. Mann, J.H.Pavlish, B.A.F. Mibeck, G.E. Dunham, E.S. Olson. Application of Gold Catalyst for Mercury Oxidation by Chlorine[J]. Environmental Science and Technology,2006,40(5):1603-1608.
    [83]S. Rodriguez, C. Almquist, T.G. Lee, m. Furuuchi, E. Hedrick, P. Biswas. A Mechanistic Model for Mercury Capture with In Situ-Generate Titania Particles:Role of Water Vapor[J]. Journal of the Air and Waste Management Association,2004,54(2): 149-156.
    [84]T.G. Lee, J.E. Hyun. Structural effect of the in situ generated titania on its ability to oxidize and capture the gas-phase elemental mercury[J]. Chemosphere,2006,62(1): 26-33.
    [85]Y. Li, P. Murphy, C.Y. Wu. Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite[J]. Fuel Processing Technology,2008,89(6):567-573.
    [86]Y. Li, C.Y. Wu. Role of Moisture in Adsorption, Photocatalytic Oxidation, and Reemission of Elemental Mercury on a SiO2-TiO2 Nanocomposite[J]. Environmental Science and Technology,2006,40(20):6444-6448.
    [87]U. Kaluza, H.P. Boehm. Titanium dioxide catalyzed photooxidation of mercury[J]. Journal of Catalysis,1971,22:347-358.
    [88]E.J. Granite, H.W. Pennline. Photochemical Removal of Mercury from Flue Gas[J]. Industrial and Engineering Chemistry Research,2002,41(2):5470-5476.
    [89]T. Hilber, H. Thorwarth, V. Stack-Lara, M. Schneider, J. Maier, G. Scheffknecht. Fate of mercury and chlorine during SRF co-combustion[J]. Fuel,2007,86(12-13): 1935-1946.
    [90]A. Kolker, C.L. Senior, J.C. Quick. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems[J]. Applied Geochemistry,2006,21(11): 1821-1836.
    [91]Y. Zhuang, J.S. Thompson, C.J. Zygarlicke, J.H. Pavlish. Impact of calcium chloride addition on mercury transformations and control in coal flue gas[J]. Fuel,2007,86(15): 2351-2359.
    [92]P.S. Nolan, K.E. Redinger, G.T. Amrhein, G.A. Kudlac. Demonstration of additive use for enhanced mercury emissions control in wet FGD systems[J]. Fuel Processing Technology,2004,85(6-7):587-600.
    [93]S. Niksa, N. Fujiwara. The Impact of Wet Flue Gas Desulfurization Scrubbing on Mercury Emissions from Coal-Fired Power Station[J]. Journal of the Air & Waste Management Association,2005,55(7):970-977.
    [94]P.S. Nolan, K.E. Redinger, G.T. Amrhein, G.A. Kudlac. Demonstration of additive use for enhanced mercury emissions control in wet FGD systems[J]. Fuel Processing Technology,2004,85(6-7):587-600.
    [95]C.J. Lothgren, M. Takaoka, S. Andersson, B. Allard, J. Korell. Mercury Speciation in Flue Gases after an Oxidative Acid Wet Scrubber[J]. Chemical Engineering and Technology,2007,30(1):131-138.
    [96]L.V. Loon, E. Mader, S.L. Scott. Reduction of the Aqueous Mercuric Ion by Sulfite: UV Spectrum of HgSO3 and Its Intramolecular Redox Reaction[J]. Journal of Physical Chemistry A,2000,104(8):1621-1626.
    [97]M.Daz-Somoano, S. Unterberger, K.R.G. Hein. Mercury emission control in coal-fired plants:The role of wet scrubbers[J]. Fuel Processing Technology,2007,88(3): 259-263.
    [98]M.Daz-Somoano, S. Unterberger, K.R.G. Hein. Using Wet-FGD systems for mercury removal [J]. Journal of Environmental Monitoring,2005,7(9):906-909.
    [99]C. Brosset. The behavior of mercury in the physical environment[J]. Water, Air & Soil Pollution,1987,34(2):145-166.
    [100]J.C.S. Chang, S.B. Ghorishi. Simulation and Evaluation of Elemental Mercury Concentration Increase in Flue Gas Across a Wet Scrubber[J]. Environmental Science and Technology,2003,37(24):5763-5766.
    [101]J. Munthe, Z.F. Xiao, O. Lindqvist. The Aqueous Reduction Of Divalent Mercury By Sulfite. Water, Air & Soil Pollution,1991,56(1):621-630.
    [102]G.M. Blythe, J. Currie, D.W. Deberry. Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors, Final Report, Project Period of Performance:Cooperative Agreement NO:DE-FC26-04NT42314, September 30.2004-March 31,2008.
    [103]C.J. Lothgren, M. Takaska, S. Andersson, B. Allard, J. Korell. Mercury Speciation in Flue Gases after an Oxidative Acid Wet Scrubber[J]. Chemical Engineering and Technology,2007,30(1):131-138.
    [104]D. Lu, E.J. Anthony, Y.E. Tan, R. Dureau, V.Ko, M. A. Douglas. Mercury removal from coal combustion by Fenton reactions-Part A:Bench-scale tests[J]. Fuel,2007, 86(17-18):2789-2797.
    [105]Y.W. Tan, D. Lu, E.J. Anthony, R. Dureau, R. Mortazavi, M.A. Douglas. Mercury removal from coal combustion by Fenton reactions-Paper B:Pilot-scale tests[J]. Fuel, 2007,86(17-18):2798-2805.
    [106]C.D. Livengood, M.H. Mendelsohn. Progress for combined control of mercury and nitric oxide, EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium, 1999, Atlanta, Georgia.
    [107]C. Jeon, K.H. Park. Adsorption and desorption characteristics of mercury(Ⅱ) ions using aminated chitosan bead[J]. Water Research,2005,39(16):3938-3944.
    [108]J. Choong, H.H. Wolfgang. Chemical modification of chitosan and equilibrium study for mercury ion removal[J]. Water Research,2003,37(19):4770-4780.
    [109]A. Denizli, S. Senel, G. Alsancak, N. Tuzmen, R. Say. Mercury removal from synthetic solutions using poly (2-hydroxyethylmethacrylate) gel beads modified with poly(ethyleneimine)[J]. Reactive and Functional Polymers,2003,55(2):121-130.
    [110]M.A. Abu-Daabes, N.G. Pinto. Synthesis and characterization of a nano-structured sorbent for the direct removal of mercury vapor from flue gases by chelation[J]. Chemical Engineering Science,2005,60(7):1901-1910.
    [111]H.Q. Wang, J. Wang, Z.B. Wu, Y. Liu. NO Catalytic Oxidation Behaviors over CoOx/TiO2 Catalysts Synthesized by Sol-Gel Method[J]. Catalysis Letter,2010, 134(3-4):295-302.
    [112]Z. Y. Liu, X.T. Zhang, S. Nishimoto, M. Jin, D.A. Tryk, T. Murakami, A. Fujishima. Anatase TiO2 nanoparticles on rutile TiO2 nanorods:a heterogeneous nanostructure via layer-by-layer assembly[J]. Langmuir,2007,23(22):10916-10919.
    [113]T.J. Chuang, C.R. Brundle, D.W. Rice, Interpretation of the x-ray photoemission spectra of cobalt oxides and cobalt oxide surface[J]. Surface Science,1976,59(2): 413-429.
    [114]D. Pietrogiacomi, S. Tui, M.C. Campa, V. Indovin. Cobalt supported on ZrO2: catalysts characterization and their activity for the reduction of NO with C3H6 in the presence of excess O2[J]. Journal of Applied Catalysis B,2000,28(1):43-54.
    [115]F. Larachi, J. Pierre, A. Adnot, A. Bernis. Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts[J]. Applied Surface Science,2002,195(2): 236-250.
    [116]J. Fang, X. Bi, D.Si, Z. Jiang, W. Huang. Spectroscopic studies of interfacial structures of Ce-TiO2 mixed oxides[J]. Applied Surface Science,2007,253(22):8952-8901.
    [117]Z.B. WU, R.B. Jin, H.Q. Wang, Y. Liu. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature [J]. Catalysis Communications,2009,10(6):935-939.
    [118]S. Yang, W. Zhu, Z. Jiang, Z. Chen, J. Wang. The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts[J]. Applied Surface Science, 2006,252(24):8499-8505.
    [119]D.G. Gastner, P.R. Watson, I.Y. Chan. X-ray Absorption Spectroscopy, X-ray Photoelectron Spectroscopy, and Analytical Electron Microscopy Studies of Cobalt Catalysts.1. Characterization of Calcined Catalysts[J]. Journal of Physical Chemistry. 1989,93(8):3188-3194.
    [120]M.M. Yung, E.M. Holmgreen. Cobalt-based catalysts supports on titannia and zirconia for the oxidation of nitric oxide to nitrogen dioxide[J]. Journal of Catalysis,2007, 247(2):356-367.
    [121]S.L. Sun, N. Tsubaki, K. Fujimoto. The reaction performances and characterization of Fischer-Tropsch synthesis Co/SiO2 catalysts prepared from mixed cobalt salts[J]. Journal of Applied Catalysis:A General,2000,202(1):121-131.
    [122]C. Resini, T. Montanari, L. Nappi, G. Bagnasco, M. Turco, G. Busca, F. Bregani, M. Notaro. G. Rocchini, Selective catalytic reduction of NOx by methane over Co-H-MFI and Co-H-FER zeolite catalysts:characterisation and catalytic activity[J]. Journal of Catalysis,2003,214(2)179-190.
    [123]H.Pan, R.Minet, S.Benson, T.Tsotsis. Process for converting hydrogen chloride to chlorine[J]. Industrial & Engineering Chemistry Research,1994,33(12):2996-3003.
    [124]S. Niksa, N. Fujiwara. Predicting extents of mercury oxidation in coal-derived flue gases[J]. Journal of the Air & Waste Management Association.2005,55(7):930-939.
    [125]E. Pitoniak, C.Y. Wu, D.W. Mazyck, K.W. Powers, W. Sigmund. Adsorption Enhancement Mechanisms of Silica-Titania Nanocomposites for Elemental Mercury Vapor Removal[J]. Environmetal Science and Technology,2009,39(5):1269-1274.
    [126]H. Akiho, M. Nunokawa, H. Shiras, The Behaviour of gaseous mercury in a wet scrubber, In:Proceedings of the Ⅳ International Air Quality Conference, Mariott Crystal Gateway Arlington, VA. U.S.A., September 22-24,2003.
    [127]L.V. Loon, E. Mader, S.L. Scott. Stabilization and Reduction of the Aqueous Mercuric Ion:Kinetic Determination of Sequential Formation Constants[J]. Journal of Physical Chemistry A,2001,105(13):3190-3195.
    [128]C.L. Wu, Y. Cao, C.C. He, Z.B. Dong, W.P. Pan. Study of elemental mercury re-emission through a lab-scale simulated scrubber[J]. Fuel,2010,89(8):2072-2080.
    [129]W.A.Cronkright, W.J. Leddy. Improving mass transfer characteristics of limestone slurries by use of magnesium sulfate[J]. Environmetal Science and Technology,1976, 10(6):569-572.
    [130]G.T. Rochelle, C.J. King. The effect of additives on mass transfer in CaCO3 or CaO slurry scrubbing of SO2 from waste gases[J]. Industrial & Engineering Chemistry Fundamentals,1977,16(1):67-75.
    [131]G. Petersen, J. Munthe, K. Pleijel, R. Bloxam, A.V. Kuumar. A comprehensive Eulerian modeling framework for airborne mercury species:development and testing of the tropospheric chemistry module(TCM)[J]. Atmospheric Environment,1998, 32(5):829-843.
    [132]G. Petersen, R. Bloxam, S. Wong, O. Kruger, S. Schmolke. A Comprehensive Eulerian Modeling Framework for Airborne Mercury Species:Model Development and Applications. Air Pollution Modeling and Its Application ⅩⅣ,2004, Part 3, 237-245.
    [133]N. Tang, Y. Liu, H.Q. Wang, L. Xiao, Z.B. Wu. Enhanced absorption process of NO2 in CaSO3 slurry by the addition of MgSO4[J]. Chemical Engineering Journal,2010, 160(1):145-149.
    [134]M.M. Rasha, M.M.H. Mahmoud, L.A. Ibrahim, E.A. Abdel-Aal. Crystallization of calcium sulfate dehydrate under simulated condtionas of phosphoric acid production in the presence of aluminum and magnesium ions[J]. Journal of Crystal Growth,2004, 267(1-2):372-379.
    [135]J.J. Wo, M. Zhang, X.Y. Cheng, X.H. Zhang, J. Xu, X.H. Xu. Hg2+ reduction and re-emission from simulated wet flue gas desulfurization liquors[J]. Journal of Hazardous Materials,2009,172(2-3):1106-1110.
    [136]J. Currie, D.W. Deberry, G. Blythe, S. Pletcher, R. Rhudy. Bench-scale kinetics study of mercury reactions in FGD liquors. In Proceedings of the DOE-NETL Mercury Control Technology Conference, Pittsburgh, PA, December 11-13.2006.
    [137]G. Marshall, D. Midgley. Mercury Displacement Detection for the Determination of Picogram Amounts of Sulfite Ion or Sulfur Dioxide by Atomic Spectrometry[J]. Analytical Chemistry,1981,53(12):1760-1765.
    [138]F. Marsicano, R.D. Hancock. A potentiometric and calorimetric study of the thermodynamics of formation of some of the complexes of the d10 metal ions silver(I), mercury(II),and cadmium(II) with thiodiglycol, thiourea, and the sulphite ion[J]. Journal of Coordination Chemistry,1976,6(1):21-29.
    [139]C. Senior. Review of the role of aqueous chemistry in mercury removal by acid gas scrubbers on incinerator systems[J]. Environmental Engineering Science,2007,24(8): 1129-1134.
    [140]C. Acuna-Caro, K. Brechtel, G. Scheffknecht, M. Brab. The effect of chlorine and oxygen concentrations on the removal of mercury at an FGD-batch reactor[J]. Fuel, 2009,88(12):2489-1494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700