异步电机高性能变频器若干关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异步电机变频调速系统具有重要的实用价值和广阔的市场空间,而研究和推广高性能的变频器是提高生产生活水平、促进节能减排、减少电网污染的有效途径,所以这也是人类社会实现科技进步和可持续发展的迫切需要。本文在调研异步电机相关控制技术和变频器硬件实现结构的基础上,主要对变频器传动单元中有利于降低系统成本、提高可靠性和适用性的无速度传感器矢量控制技术以及供电单元中有利于改善网侧电流质量、提高能源利用效率的有源前端实现结构进行了较深入的研究,并提出了一些新的解决方案。
     首先,本文在分析了几种适用于无速度传感器矢量控制的磁链观测结构的基础上,对转速自适应型全阶磁链观测器进行了较深入的研究。通过线性化小信号模型的方法说明了传统设计方案在低速再生制动工作状态下所存在的不稳定问题,进而提出了一种能够解决这一问题的全阶观测器反馈增益矩阵改进设计方法。然后,在设计并实现了异步电机无速度传感器矢量控制硬件系统的基础上对改进方案进行了实验,实验结果证明所提出的改进方案确实可以拓展无速度传感器控制在低速范围内的稳定工作范围。
     其次,本文从实际应用的角度出发分析了常见非理想因素对全阶磁链观测器的影响并研究了相应的解决方案。针对电机参数误差对于全阶观测器中磁链观测和转速估算准确性的影响,本文在综合考虑磁链和转速之间耦合关系的基础上进行了详细的理论分析,并且结合系统仿真结果总结了观测误差随不同参数变化的规律。然后分别对电机参数的全静止状态自整定方法和在线辨识方法进行了不同程度的分析和实验。针对传动单元中逆变器硬件系统实现过程中的非理想因素,则分别研究了数字化、采样、死区效应等三个方面。在数字化问题上分析了常用离散化方法应用于全阶磁链观测器时的优缺点,进而提出并实验验证了一种正向差分与双线性变换相结合的离散化方案。所提出的方案能够同时实现较高的精度和较少的运算量,一定程度上解决了高开关频率应用场合中离散化全阶观测器的实用问题。在采样问题上主要分析了定子电流采样不同频率范围误差对全阶观测器转速估算和磁链观测的影响,并说明了合理设计定子电流采样环节的重点问题。在死区效应的问题上详细分析了电压源逆变器死区效应的产生机理以及对观测器定子电压重构的影响,并在此基础上提出了一种考虑电流过零阶段的电流状态判断电路和方法,以及相应的死区补偿方案。理论分析和实验结果证明该方案可判断出逆变器输出电流的瞬时极性以及两种不同的过零状态,并可根据判断结果选择最适合的死区补偿量来提高死区补偿的准确性,从而有效地减小定子电压重构误差对磁链观测的影响。
     最后,本文对变频器中基于LCL型滤波器的有源前端供电单元的设计及其网侧电流优化控制技术的研究与实验。在分析了系统硬件参数和控制方案设计原则的基础上,实现了完整的以有源前端结构作为供电单元的变频器硬件样机,并对系统的驱动和回馈制动能力进行了实验。同时也分析了在电网电压畸变的条件下系统网侧电流谐波的抑制能力,并说明了LCL滤波器谐振问题给传统控制方案带来的局限性,进而对改进控制方案进行了研究和实验。一方面从稳定性条件、补偿函数设计、以及谐波抑制特性等方面对两种结构的复合重复控制方案进行了详细的分析,并结合实验总结了两种实现结构各自的优缺点和适用性;另一方面在反馈电容电压的有源衰减方案的基础上,提出了应用降阶观测器观测电容电压代替直接使用传感器对电容电压进行采样的方法来实现有源衰减的方案,而且也通过实验结果证明了该方案能够在不增加系统硬件成本和复杂度的同时实现有源衰减并提高控制性能。另外,也根据实验结果对比了重复控制和有源衰减应用于本系统时各自的优缺点。
     总之,本文以改善性能和提高实用价值为主要目标对异步电机变频器中的一些关键技术进行了研究。研究过程中提出了一些新的思路或改进方案,而且也通过大量的实验对所作分析和所提方案进行了验证。
Nowadays, induction motor drives are quite essential for both the industrial applications and the social consumptions. The research and promotion of the variable frequency motor drives with high performance is an effective way to deal with the energy crisis and the environment problem, improve the quality of the industry and the living, and reduce the grid power pollution. So the improvement of the motor drives is important for not only the technology progress, but also the sustainable development of human society. Based on the investigation of the induction motor control and the motor drives' hardware, this dissertation performs a detail research on the speed sensorless vector control technologies, which help to reduce the hardware cost and improve the system reliability, and the active front end related technologies, which help to improve the grid power quality and the efficiency. Some novel solutions are also proposed for performance improvement.
     First, several types of flux observer for speed sensorless control are analyzed and compared, and the speed adaptive full order flux observer is selected for further investigation. With the linearized small signal method, the instability problem of the conventional full order observer operating at the low speed and regenerative braking state is indicated. In order to deal with this problem, an improved strategy to design the feedback gain matrix of the full order observer. The indicated issue and the proposed solution are both verified by the theoretical analysis and the experimental results that are carried out on a prototype of induction motor drives with speed sensorless vector control. The results prove that the proposed solution is able to improve the stability of the sensorless control scheme at the low speed operating range.
     Secondly, this dissertation investigates the practical implementation issues for the full order observer in speed sensorless motor drives, and some novel solutions are proposed and verified experimentally. Taking the coupling effect between the flux and the rotor speed into consideration, the relationship between the error of motor parameters and the error of the flux estimation and the rotor speed estimation is analyzed in detail. Based on the analysis and the simulation results, the influence on estimation accuracy with respect to each motor parameter is concluded. Then, solutions for self-commissioning at standstill and on-line parameter identification are investigated and experimented respectively. Practical implementation issues of the inverter system in the motor drives are also investigated, including digital discretization process, sampling process, and dead time effect. The merits and demerits of the basic discretization methods are analyzed in the condition that they are implemented for the full order observer. Then a compound strategy using partial forward-difference method and partial bilinear transformation method is proposed. The proposed discretization strategy is able to realize better accuracy and lower computing burden simultaneously, which is quite essential for applications that require high switching frequency. In order to emphasize the key points for sampling process design, the influence of the stator current sampling noise and error on the accuracy of flux and speed estimation is also investigated. Furthermore, the dead time effect of voltage source inverter is analyzed in detail, especially its impact on the reconstruction of the stator voltage. Then, a novel method to determine the status of the inverter output current, together with a correspondent dead time compensation strategy are proposed. The proposed solution is verified by both the theoretical analysis and the experimental results, and it realizes better accuracy by selecting the different compensating terms based on the different current status, which effectively reduces the influence of stator voltage reconstruction error on the flux observer.
     Finally, this dissertation researches on the design and the control strategy of the active front end with LCL filter. The design criteria of the filter and the control scheme is investigated and concluded. According to the design criteria, a motor drives prototype is implemented with the LCL filter and the active front end as the grid interfacing stage, and both the motoring and the regenerating mode are tested on the prototype. Then, the harmonic suppression performance of the system in the condition of distorted grid voltage is analyzed in detail, and the limitation of conventional control scheme caused by the resonance problem of the LCL filter is also indicated, which leads to the research on the improved control scheme. Different structures of compound repetitive control scheme are discussed in detail, and are compared with each other in stability criteria, required compensation process, and harmonic suppression performance. Together based on the analysis and the experimental results, the merits and demerits of different compound repetitive control scheme are concluded. Furthermore, active damping is also analyzed in this dissertation. A novel active damping method that fed back the capacitor voltage estimated by a reduced-order observer to suppress the resonant peak of the LCL filter is proposed. The proposed method is able to implement active damping without increasing the hardware cost and complexity, and is verified by the experimental results. The performance of the proposed active damping method is also compared with the compound repetitive control scheme by the experimental results.
     In a word, this dissertation performs researches on several critical aspects of the induction motor drives, in order to achieve some improvement on the performance and the practical implementation. Some novel solutions are proposed in the dissertation, and a great quantity of experimental work is also carried out for verification.
引文
[1]A. Binder, "Potentials for energy saving with modern drive technology-a survey," in Proc. Power Electronics, Electrical Drives, Automation and Motion,2008, pp.90-95.
    [2]T. Sawa, T. Kume, H. Hara and M. Swamy, "Power-electronics contributing to the Green and Clean World," in Proc. Power Electronics and ECCE Asia,2011, pp.11-18.
    [3]T. Sawa and T. Kume, "Motor drive technology-history and visions for the future," in Proc. Power Electronics Specialists Conference,2004, vol.1. pp.2-9.
    [4]ABB, "Technical guide No.4 Guide to variable speed drives," Available:http://www.abb.com.cn.
    [5]B.K. Bose, "Power electronics and motor drives-technology advances, trends and applications," in Proc. Industrial Technology,2005, pp.20-64.
    [6]B.K. Bose, Modern Power Electronics and AC Drives, Prentice Hall PTR,2002.
    [7]章纪锋,郭雷,江勇.我国低压变频器市场分析.电器工业,201](05):14-16.
    [8]中国自动化网市场研究部,飞跃式增长的低压变频器市场.变频器世界,2011(04):42-43.
    [9]梁秀璟,李崇坚谈中国变频器行业发展,自动化博览,2011(04):24-26.
    [10]陈伯时,电力拖动自动控制系统,北京:机械工业出版社,1997.
    [11]冯垛生,曾岳南,无速度传感器矢量控制原理与实践,北京:机械工业出版社,2006.
    [12]B.K. Bose, "High performance control and estimation in AC drives," in Proc. Industrial Electronics, Control and Instrumentation,1997, vol.2. pp.377-385.
    [13]W.L. Erdman and R.G. Hoft, "Induction machine field orientation along airgap and stator flux," IEEE Trans. Energy Convers., vol.5, no. 1,pp.115-121, Mar.1990.
    [14]X. Xu and D.W. Novotny, "Implementation of direct stator flux orientation control on a versatile DSP based system," IEEE Trans. Ind. Appl., vol.27, no.4, pp.694-100, Jul./Aug.1991.
    [15]R.E. Betz and G. Mirzaeva, "Frame Alignment Stability Issues in Natural Field Orientation," IEEE Trans. Ind. Appl., vol.44, no.2, pp.575-593, Mar./Apr.2008.
    [16]G. Mirzaeva and A. Rojas "Stability Analysis of the Natural Field Orientation Controlled Induction Machine Drive," in Proc. Power Electronics and Motion Control Conference,2008, pp.1155-1162.
    [17]M.H. Shin, D.S. Hyun, S.B. Cho and S.Y. Choe, "An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors," IEEE Trans. Power Electron., vol.15, no. 2, pp.312-318, Mar.2000.
    [18]E. Levi, "Adaptive decoupling circuit for universal field oriented controller operating in the airgap flux reference frame," in Proc. Power Electronics and Applications,1993, vol.5, pp.57-62.
    [19]E. Levi, "Compensation of main flux saturation effects in UFO controller operating in the airgap flux reference frame," in Proc. Power Electronics Specilist Conference,1993, pp.1179-1185.
    [20]M. Boussak and K. Jarray, "A high-performance sensorless indirect stator flux orientation control of induction motor drive," IEEE Trans. Ind. Electron., vol.53, no.1. pp.41-49, Feb.2006.
    [21]G.S. Buja and M.P. Kazmierkowski, "Direct torque control of PWM inverter-fed AC motors-a survey," IEEE Trans. Ind. Electron., vol.51, no.4, pp.744-757, Aug.2004.
    [22]M. Depenbrock, "Direct self-control (DSC) of inverter-fed induction machine," IEEE Trans. Power Electron., vol.3, no.4, pp.420-429, Oct.1988.
    [23]I. Takahashi and T. Noguchi, "A New Quick-Response and High-Efficiency Control Strategy of an Induction Motor," IEEE Trans. Ind. Appl., vol.22. no.5, pp.820-827, Sept.1986.
    [24]E. Ozkop and H.I. Okumus, "Direct torque control of induction motor using space vector modulation (SVM-DTC)," in Proc. Power System Conference,2008, pp.368-372.
    [25]J.H. Lee, C.G. Kim and M.J. Youn, "A dead-beat type digital controller for the direct torque control of an induction motor," IEEE Trans. Power Electron., vol.17, no.5, pp.739-746. Sept.2002.
    [26]J. Maes and J. Melkebeek, "Discrete time direct torque control of induction motors using back-EMF measurement," in Proc. Industry Applications Conference,1998, vol.1, pp.407-414.
    [27]P.Z. Grabowski, M.P. Kazmierkowski, B.K. Bose and F. Blaabjerg, "A simple direct-torque neuro-fuzzy control of PWM-inverter-fed induction motor drive." IEEE Trans. Ind. Electron., vol.47, no.4. pp. 863-870, Aug.2000.
    [28]ABB, "Technical guide No.1 Direct torque control-the world's most advanced AC drive technology," Available:http://www.abb.com.cn.
    [29]曲永印,异步电机的高性能变频调速控制策略及系统实现研究[博士学位论文],上海:东华大学,2006.
    [30]I. Boldea, "Control issues in adjustable-speed drives," IEEE Ind. Electron. Mag. vol.2, no.3. pp.32-50, Sept.2008.
    [31]F.Z. Peng, "Speed and flux sensorless field oriented control of induction motors for electric vehicles." in Proc. Applied Power Electronics Conference and Exposition,2000, vol.1, pp.133-139.
    [32]K.Kondo and K. Yuki, "An Application of the Induction Motor Speed Sensor less Control to Railway Vehicle Traction System," in Proc. Industry Applications Conference,2002, vol.3, pp.2022-2027.
    [33]G. Edelbaher, B. Fosner, J. Korelic, E. Urlep, M. Curkovic and M. Rodic, "Sensorless Control of IM in Mining Applications," in Proc. Power Electronics and Motion Control Conference,2006, pp. 1842-1847.
    [34]M. Pacas, "Sensorless Drives in Industrial Applications," IEEE Ind. Electron. Mag. vol.5, no.2. pp. 16-23, Jun.2011.
    [35]J. Hu and B. Wu, "New Integration Algorithms for Estimating Motor Flux over a Wide Speed Range," in Proc. Power Electronics Specilist Conference,1997, vol.2, pp.1075-1081.
    [36]X. Zhang, W. Qu and H. Lu, "A New Integrator for Voltage Model Flux Estimation in a Digital DTC System," in Pore. Region 10 Conference,2006, pp.1-4.
    [37]史黎明,王珂,李耀华,基于改进磁链观测器的直线异步电动机直接牵引力控制,电工技术学报.2008,23(9):45-50.
    [38]M. Comanescu and L. Xu, "An improved flux observer based on PLL frequency estimator for sensorless vector control of induction motors," IEEE Trans. Ind. Electron., vol.53, no.1. pp.50-56, Feb.2006.
    [39]何志明,廖勇,向大为,基于改进层叠式可编程低通滤波器的磁链观测方法,电工技术学报,2008,23(4):53-58.
    [40]M. Zerbo, P. Sicard and A. Ba-Razzouk, "Accurate adaptive integration algorithms for induction machine drive over a wide speed range," in Proc. Electric Machines and Drives,2005, pp.1082-1088.
    [41]周霞,基于模型参考自适应系统的异步电机参数辨识的研究[硕士学位论文],杭州:浙江大学.2011.
    [42]M. Hinkkanen, L. Harnefors and J. Luomi, "Reduced-Order Flux Observers With Stator-Resistance Adaptation for Speed-Sensorless Induction Motor Drives," IEEE Trans. Power Electron., vol.25. no.5. pp.1173-1183. May 2010.
    [43]C. Lascu, I. Boldea and F. Blaabjerg, "A modified Direct Torque Control for Induction Motor Sensorless Drive," IEEE Trans. Ind. Appl., vol.36, no.1, pp.122-130, Jan./Feb.2000.
    [44]P.L. Jansen, R.D. Lorenz and D.W. Novotny, "Observer-based direct field orientation analysis and comparison of alternative methods," IEEE Trans. Ind. Appl., vol.30, no.4. pp.945-953. Jul./Aug.1994.
    [45]C. Schauder, "Adaptive speed identification for vector control of induction motors without rotational transducers," IEEE Trans. Ind. Appl, vol.28, no.5, pp.1054-1061, Sept./Oct.1992.
    [46]M. Elloumi, L. Ben-Brahim and M.A. Al-Hamadi, "Survey of speed sensorless controls for IM drives," in Proc.IECON'98, the 24th Annual Conference of the IEEE,1998, vol.2, pp.1018-1023.
    [47]TI, "Digital Motor Control Library," Available:http://www.ti.com.
    [48]M.A. Gallegos, R. Alvarez and C.A. Nunez, "A survey on speed estimation for ensorless control of induction motors." in Proc. International Power Electronics Congress.2006, pp.1-6.
    [49]A.R. Haron, and N.R.N. Idris, "Simulation of MRAS-based Speed Sensorless Estimation of Induction Motor Drives using MatlabSimulink," in Proc. Power and Energy Conference,2006, pp.411-415.
    [50]F.Z. Peng and T. Fukao, "Robust speed identification for speed-sensorless vector control of induction motors(EMF based)," IEEE Trans. Ind. Appl., vol.30, no.5, pp.1234-1240, Sept./Oct.1994.
    [51]M. Rashed, and A.F. Stronach, "A stable back-EMF MRAS-based sensorless low-speed induction motor drive insensitive to stator resistance variation," Proc. IEE Electric Power Applications, vol.151, no.6, pp.695-693, Nov.2004.
    [52]H. Tajima, G. Guidi. and H. Umida, "Consideration about problems and solutions of speed estimation method and parameter tuning for speed-sensorless vector control of induction motor drives," IEEE Trans. Ind. Appl., vol.38, no.5, pp.1282-1289, Sept./Oct.2002.
    [53]P. Vaclavek and P. Blaha, "Hybrid speed estimation scheme for AC induction machine sensorless control," in Proc. Control Applications,2005, pp.1455-1460.
    [54]H. Kubota,I. Sato, Y. Tamura, K. Matsuse, H. Ohta and Y. Hori, "Regenerating-mode low-speed operation of sensorless induction motor drive with adaptive observer," IEEE Trans. Ind. Appl., vol.38, no.4, pp.1081-1086, Jul./Aug.2002.
    [55]M. Depenbrock, A. Steimel and H. Kubota, "Discussion of regenerating-mode low-speed operation of sensorless induction motor drive with adaptive observer," IEEE Trans. Ind. Appl., vol.39, no.1, pp. 19-20, Jan./Feb.2003.
    [56]H. Kubota, "Closure to discussion of regenerating-mode low-speed operation of sensorless induction motor drive with adaptive observer," IEEE Trans. Ind. Appl, vol.39, no.1, pp.20, Jan./Feb.2003.
    [57]M. Hinkkanen and J. Luomi, "Stabilization of regenerating-mode operation in sensorless induction motor drives by full-order flux observer design," IEEE Trans. Ind. Electron., vol.51, no.6, pp. 1318-1328, Dec.2004.
    [58]M. Depenbrock and C. Evers, "Model-based speed identification for induction Machines in the whole operating range," IEEE Trans. Ind. Electron., vol.53, no.1, pp.31-40, Feb.2006.
    [59]S.Suwankawin and S. Sangwongwanich, "Design strategy of an adaptive full-order observer for speed-sensorless induction-motor Drives-tracking performance and stabilization," IEEE Trans. Ind. Electron., vol.53. no.1, pp.96-119, Feb.2006.
    [60]罗慧.感应电机全阶磁链观测器和转速估算方法研究[博士学位论文],武汉:华中科技大学,2009.
    [61]I. Vicente, A. Endemano, X. Garin and M. Brown, "Comparative study of stabilising methods for adaptive speed sensorless full-order observers with stator resistance estimation," IET Control Theory & Applications, vol.4, no.6, pp.993-1004, Jun.2010.
    [62]M. Tursini, R. Petrella and F. Parasiliti. "Adaptive sliding-mode observer for speed-sensorless control of induction motors," IEEE Trans. Ind. Appl., vol.35, no.5, pp.1380-1387, Sept./Oct.2000.
    [63]C.Lascu, I. Boldea and F. Blaabjerg, "Comparative study of adaptive and inherently sensorless observers for variable-speed induction-motor drives," IEEE Trans. Ind. Electron., vol.53, no.1, pp.57-65, Feb. 2006.
    [64]C.Lascu,I. Boldea and F. Blaabjerg, "A Class of Speed-Sensorless Sliding-Mode Observers for High-Performance Induction Motor Drives," IEEE Trans. Ind. Electron., vol.56. no.9 pp.3394-3403. Sept.2009.
    [65]H. Kim, J. Son and J. Lee, "A High-Speed Sliding-Mode Observer for the Sensorless Speed Control of a PMSM," IEEE Trans. Ind. Electron., vol.59, no.9 pp.4069-4077, Sept.2011.
    [66]L. Salvatore, S. Stasi and L. Tarchioni, "A new EKF-based algorithm for flux estimation in induction machines," IEEE Trans. Ind. Electron., vol.40. no.5 pp.496-504, Oct.1993.
    [67]B. Akin, U. Orguner and A. Ersak, "An experimental performance test of a derivative-free non-linear state observer designed for sensorless AC drives," in Proc. Mechatronics,2004, pp.432-438.
    [68]K.L. Shi, T.F. Chan, Y.K. Wong and S.L. Ho, "Speed estimation of an induction motor drive using an optimized extended Kalman filter," IEEE Trans. Ind. Electron., vol.49, no.1, pp.124-133. Feb.2002.
    [69]B. Akin, U. Orguner, A. Ersak and M. Ehsani, "Simple Derivative-Free Nonlinear State Observer for Sensorless AC Drives," IEEE/ASME Trans. Mechatronics., vol.11. no.5, pp.634-643. Oct.2006.
    [70]H. Rasmussen, M. Knudsen and M. Tonnes, "Parameter estimation of inverter and motor model at standstill using measured currents only," in Proc. Industrial Electronics,1996. vol.1. pp.331-336.
    [71]小林贵彦,金原义彦,李东钰(译),感应电机离线参数辨识方法,电力电子,2009(3):8-15.
    [72]P. Castaldi and A. Tilli, "Parameter estimation of induction motor at standstill with magnetic flux monitoring," IEEE Trans. Control Syst. Technol., vol.13, no.3. pp.386-400, May 2005.
    [73]G. Pellegrino, P. Guglielmi, E. Armando and R.I. Bojoi, "Self-Commissioning Algorithm for Inverter Nonlinearity Compensation in Sensorless Induction Motor Drives." IEEE Trans. Ind. Appl., vol.46. no. 4, pp.1416-1424, Jul./Aug.2010.
    [74]S. Moonl and A. Keyhani, "Estimation of Induction Machine Parameters from Standstill Time-Domain Data," IEEE Trans. Ind. Appl, vol.30, no.6, pp.1609-1615, Nov./Dec.1993.
    [75]M.S. Zaky, M.M. Khater, S.S. Shokralla and H.A. Yasin, "Wide-Speed-Range Estimation With Online Parameter Identification Schemes of Sensorless Induction Motor Drives," IEEE Trans. Ind. Electron., vol.56, no.5, pp.1699-1707, May 2009.
    [76]E. Levi and M. Wang, "Online identification of the mutual inductance for vector controlled induction motor drives," IEEE Trans. Energy Coners., vol.18, no.2, pp.299-305, Jun.2003.
    [77]B. Karanayil, M.F. Rahman and C. Grantham, "Online Stator and Rotor Resistance Estimation Scheme Using Artificial Neural Networks for Vector Controlled Speed Sensorless Induction Motor Drive," IEEE Trans. Ind. Electron., vol.54, no.1, pp.167-176, Feb.2007.
    [78]D.P. Marcetic and S.N. Vukosavic, "Speed-Sensorless AC Drives With the Rotor Time Constant Parameter Update," IEEE Trans. Ind. Electron., vol.54. no.5. pp.2618-2625, May 2007.
    [79]D.Leggate and R.J. Kerkman, "Pulse-based dead-time compensator for PWM voltage inverters." IEEE Trans, Ind. Electron., vol.44. no.2, pp.191-197, Apr.1997.
    [80]J.W. Choi and S.K. Sul, "A new compensation strategy reducing voltagecurrent distortion in PWM VSI systems operating with low output voltages." IEEE Trans. Ind. Electron., vol.31, no.5, pp.1001-1008, Sept./Oct.1995.
    [81]N. Urasaki, T. Senjyu, K. Uezato, and T. Funabashi, "An adaptive dead-time compensation strategy for voltage source inverter fed motor drives." IEEE Trans. Power. Electron., vol.20. no.5. pp.1150-1160. Sept.2005.
    [82]R.J. Kerkman, D. Leggate, D.W. Schlegel and C. Winterhalter, "Effects of parasitics on the control of voltage source inverters," IEEE Trans. Power. Electron., vol.18, no.1, pp.140-150, Jan.2003.
    [83]J. Holtz and J. Quan, "Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification," IEEE Trans. Ind. Appl., vol.38, no.4, pp.1087-1095, Jul./Aug.2002.
    [84]S.Y. Kim and S.Y. Park, "Compensation of Dead-Time Effects Based on Adaptive Harmonic Filtering in the Vector-Controlled AC Motor Drives," IEEE Trans. Ind. Electron., vol.54, no.3, pp.1768-1777, Jun. 2007.
    [85]胡斯登,赵争鸣,袁立强,鲁挺,王雪松,高性能变频调速系统的离散控制问题研究,中国电机工程学报,2010,30(30):1-6.
    [86]D.W. Chung and S.K. Sul "Analysis and compensation of current measurement error in vector-controlled AC motor drives," IEEE Trans. Ind. Appl., vol.34, no.2, pp.340-345, Mar./Apr.1998.
    [87]J.H. Jang, S.K. Sul and Y.C. Son, "Current measurement issues in sensorless control algorithm using high frequency signal injection method," in Proc. Industry Applications Conference,2003, vol.2, pp. 1134-1141.
    [88]J. Holtz, "Sensorless control of induction motor drives," Proc. IEEE, vol.90, no.8, pp.1359-1394, Aug. 2002.
    [89]J. Holtz, "Developments in Sensorless AC Drive Technology," in Proc. Power Electronics and Drives Systems,2005, vol.1, pp.9-16.
    [90]J.W. Finch and D. Giaouris, "Controlled AC Electrical Drives," IEEE Trans. Ind. Electron., vol.55, no. 2, pp.481-491, Feb.2008.
    [91]J. Holtz, "Sensorless Control of Induction Machines-With or Without Signal Injection," IEEE Trans. Ind. Electron., vol.53, no.1, pp.7-30, Feb.2006.
    [92]P. Garcia, F. Briz, D. Raca and R.D. Lorenz, "Saliency-Tracking-Based Sensorless Control of AC Machines Using Structured Neural Networks," IEEE Trans. Ind. Appl., vol.43, no.1, pp.77-86, Jan./Feb.2007.
    [93]J. Holtz and H. Pan, "Elimination of saturation effects in sensorless position-controlled induction motors," IEEE Trans. Ind. Appl., vol.40, no.2, pp.623-631, Mar./Apr.2004.
    [94]姜礼节,基于混合开关的三相电流型PWM整流器[博士学位论文],杭州:浙江大学,2011.
    [95]B.K. Bose, "Power Electronics and Motor Drives Recent Progress and Perspective," IEEE Trans. Ind. Electron., vol.56, no.2, pp.581-588. Feb.2009.
    [96]姚文熙,多电平六相同步电机变频调速全数字控制技术研究[博士学位论文],杭州:浙江大学,2005.
    [97]L. Lorenz, G. Deboy, A. Knapp and M. Marz, "COOLMOSTM-a new milestone in high voltage power MOS," in Proc. Power Semiconductor Devices and ICs.1999. pp.3-10.
    [98]T. Hausken, "Are GaN SiC Ready for Prime Time," Special Presentation, Available: http://www.apec-conf.org/2009.
    [99]钱照明,盛况,大功率半导体器件的发展与展望,大功率变流技术,2010(1):1-9.
    [100]B.J. Baliga, "The future of power semiconductor device technology," Proc. IEEE, vol.89, no.6, pp. 822-832, Jun.2001.
    [101]R. Callahan, "Characteristics, Application and High Power Demonstration of 1.7kV, 100mOhm Silicon Carbide DMOSFETs," Special Presentation, Available:http://www.apec-conf.org/2011.
    [102]M.S. Lee, J.H. Lee, B.S. Jin, J.B. Lee; D.W. Chung and W. Frank, "New intelligent power module with silicon carbide diode," in Proc. Power Electronics and ECCE Asia,2011, pp.1083-1086.
    [103]T. Morita, S. Tamura. Y. Anda, M. Ishida, Y. Uemoto, T. Ueda, T. Tanaka and D. Ueda, "99.3% Efficiency of three-phase inverter for motor drive using GaN-based Gate Injection Transistors," in Proc. Applied Power Electronics Conference and Exposition,2011, pp,481-484.
    [104]Tamura, Y. Anda, M. Ishida, Y. Uemoto, T. Ueda, T. Tanaka and D. Ueda, "Recent Advances in GaN Power Switching Devices," in Proc. Compound Semiconductor Integrated Circuit Symposium.2010. pp. 1-4.
    [105]张伟,无转速传感器异步电机矢量控制系统控制方法的研究[博士学位论文].杭州:浙江大学,2001.
    [106]J. Rodriguez. J.S. Lai and F.Z. Peng, "Multilevel inverters a survey of topologies controls and applications," IEEE Trans. Ind. Electron., vol.49. no.4. pp.724-738. Aug.2002.
    [107]A.K. Abdelsalam, M.I. Masoud, S.J. Finney and B.W. Williams, "Vector control PWM-VSI induction motor drive with a long motor feeder performance analysis of line filter networks," IET, Electric Power Applications, vol.5, no.5, pp.443-456, May.2011.
    [108]M. Adamowicz and M. Morawiec, "Advances in CSI-fed induction motor drives," in Proc. Compatibility and Power Electronics,2011, pp.276-282.
    [109]F. Filsecker, R. Alvarez and S. Bernet, "Design and losses of PWM current source converters," in Proc. Industrial Technology,2010,737-744.
    [110]R.D.Klug and N. Klaassen, "High power medium voltage drives-innovations, portfolio, trends." in Proc. Power Electronics and Applications,2005, pp.1-10.
    [111]郭前岗,矩阵变换器及其电机驱动控制系统关键技术研究[博士学位论文],西安:西北工业大学,2006.
    [112]K. Sun, D. Zhou, L. Huang and K. Sasagawa, "A Novel Commutation Method of Matrix Converter Fed Induction Motor Drive Using RB-IGBT," IEEE Trans. Ind. Appl., vol.43, no.3, pp.777-786, May./Jun. 2007.
    [113]ABB, "Technical guide No.8 Electrical Braking," Available:hrtp://www.abb.com.cn.
    [114]J. Jiang and J. Holtz, "An efficient braking method for controlled AC drives with a diode rectifier front end." IEEE Trans. Ind. Appl., vol.37, no.5, pp.1299-1307, Sept./Oct.2001.
    [115]J. Li, T. Tang, T. Wang and G. Yao, "Modeling and simulation for common dc bus multi-motor drive systems based on activity cycle diagrams," in Proc. Industrial Electronics,2010, pp.250-255.
    [116]B.T. Ooi, J.W. Dixon, A.B. Kulkarni and M. Nishimoto, "An integrated AC drive system using a controlled-current PWM rectifierinverter link," IEEE Trans. Power. Electron., vol.3, no.1. pp.64-71, Jan.1988.
    [117]林海雪,电能质量国家标准系列讲座第3讲公用电网谐波标准,建筑电气,2011(6):3-8.
    [118]J.F. Childs, "The role of converters and their control in the recovery of wave energy," in Proc. Power Electronics for Renewable Energy,1997. vol.3. pp.1-7.
    [119]S. Choi, B.S. Lee, and P.N. Enjeti, "New 24-pulse diode rectifier systems for utility interface of high-power AC motor drives," IEEE Trans. Ind. Appl., vol.33. no.2. pp.531-541, Mar./Apr.1997.
    [120]王勇,矩阵变换器的空间矢量调制_系统集成及应用研究[博士学位论文],杭州:浙江大学.2005.
    [121]S.M.A. Cruz, and M. Ferreira, "Comparison between back-to-back and matrix converter drives under faulty conditions," in Proc. Power Electronics and Applications,2009, pp.1-10.
    [122]M. Liserre, F. Blaabjerg and S. Hansen, "Design and control of an LCL-filter-based three-phase active rectifier," IEEE Trans. Ind. Appl., vol.41, no.5, pp.1281-1291, Sept./Oct.2005.
    [123]J. Dannehl, C. Wessels and F.W. Fuchs. "Limitations of voltage-oriented PI current control of grid-connected PWM rectifiers with LCL filters," IEEE Trans. Ind. Electron., vol.56, no.2, pp.380-388, Feb.2009.
    [124]E. Twining and D. G. Holmes, "Grid current regulation of a three-phase voltage source inverter with an LCL input filter," IEEE Trans. Power Electron., vol.18, no.3. pp.888-895. May 2003.
    [125]ABB, "Technical guide No.6 Guide to harmonics with AC drives," Available:http://www.abb.com.cn.
    [126]T. Abeyasekera, C. M. Johnson, D. J. Atkinson, and M. Armstrong, "Suppression of line voltage related distortion in current controlled grid connected inverters," IEEE Trans. Power Electron., vol.20. no.6. pp.1393-1401. Nov.2005.
    [1]B.K. Bose, Modern Power Electronics and AC Drives, Prentice Hall PTR,2002.
    [2]R. Krishnan and A.S. Bharadwaj, "A review of parameter sensitivity and adaptation in indirect vector controlled induction motor drive systems," IEEE Trans. Power Electron., vol.6, no.4, pp.695-703. Oct. 1991.
    [3]K. Ogata, Discrect-Time Control System, Prentice Hall,1995.
    [4]C.Lascu, I. Boldea and F. Blaabjerg, "Comparative study of adaptive and inherently sensorless observers for variable-speed induction-motor drives," IEEE Trans. Ind. Electron., vol.53, no.1, pp.57-65, Feb. 2006.
    [5]H. Kubota, K. Matsuse and T. Nakano, "DSP-based speed adaptive flux observer of induction motor,' IEEE Trans. Ind. Appl., vol.29, no.2, pp.344-348, Mar./Apr.1993.
    [6]L. Harnefors and M. Hinkkanen, "Complete Stability of Reduced-Order and Full-Order Observers for Sensorless IM Drives," IEEE Trans. Ind. Electron., vol.55, no.3, pp.1319-1329, Mar.2008.
    [7]M. Hinkkanen, L. Harnefors and J. Luomi, "Reduced-Order Flux Observers With Stator-Resistance Adaptation for Speed-Sensorless Induction Motor Drives," IEEE Trans. Power Electron., vol.25, no.5, pp.1173-1183. May 2010.
    [8]L. Harnefors "Design and Analysis of General Rotor-Flux-Oriented Vector Control Systems," IEEE Trans. Ind. Electron., vol.48, no.2, pp.383-390, Apr.2001.
    [9]P.L. Jansen, R.D. Lorenz and D.W. Novotny, "Observer-based direct field orientation analysis and comparison of alternative methods," IEEE Trans. Ind. Appl., vol.30, no.4, pp.945-953, Jul./Aug.1994.
    [10]C. Schauder, "Adaptive speed identification for vector control of induction motors without rotational transducers," IEEE Trans. Ind. Appl., vol.28. no.5, pp.1054-1061, Sept./Oct.1992.
    [11]M.A. Gallegos, R. Alvarez and C.A. Nunez, "A survey on speed estimation for ensorless control of induction motors," in Proc. International Power Electronics Congress,2006, pp.1-6.
    [12]A.R. Haron, and N.R.N. Idris, "Simulation of MRAS-based Speed Sensorless Estimation of Induction Motor Drives using MatlabSimulink," in Proc. Power and Energy Conference,2006, pp.411-415.
    [13]F.Z. Peng and T. Fukao, "Robust speed identification for speed-sensorless vector control of induction motors(EMF based)," IEEE Trans. Ind. Appl., vol.30, no.5, pp.1234-1240, Sept./Oct.1994.
    [14]M. Hinkkanen, "Analysis and design of full-order flux observers for sensorless induction motors," IEEE Trans. Ind. Electron., vol.51, no.5, pp.1033-1040, Oct.2004.
    [15]M.S. Zaky, M.M. Khater, S.S. Shokralla and H.A. Yasin, "Wide-Speed-Range Estimation With Online Parameter Identification Schemes of Sensorless Induction Motor Drives," IEEE Trans. Ind. Electron., vol.56, no.5, pp.1699-1707, May 2009.
    [16]G. Griva, F. Profumo, R. Bojoi, V. Bostan, M. Cuius and C. Has, "General adaptation law for MRAS high performance sensorless induction motor drives," in Proc. Power Electronics Specialists Conference, 2001. vol.2, no.1197-1202.
    [17]H. Tajima, G. Guidi, and H. Umida, "Consideration about problems and solutions of speed estimation method and parameter tuning for speed-sensorless vector control of induction motor drives," IEEE Trans. Ind. Appl., vol.38, no.5, pp.1282-1289, Sept/Oct.2002.
    [18]H. Kubota, I. Sato, Y. Tamura, K. Matsuse, H. Ohta and Y. Hori, "Regenerating-mode low-speed operation of sensorless induction motor drive with adaptive observer," IEEE Trans. Ind. Appl., vol.38, no.4, pp.1081-1086, Jul./Aug.2002.
    [19]M. Depenbrock, A. Steimel and H. Kubota, "Discussion of regenerating-mode low-speed operation of sensorless induction motor drive with adaptive observer," IEEE Trans. Ind. Appl., vol.39, no.1, pp. 19-20, Jan./Feb.2003.
    [20]H. Kubota, "Closure to discussion of regenerating-mode low-speed operation of sensorless induction motor drive with adaptive observer," IEEE Trans. Ind. Appl., vol.39, no.1, pp.20, Jan./Feb.2003.
    [21]M. Hinkkanen and J. Luomi, "Stabilization of regenerating-mode operation in sensorless induction motor drives by full-order flux observer design," IEEE Trans. Ind. Electron., vol.51, no.6, pp. 1318-1328, Dec.2004.
    [22]M. Depenbrock and C. Evers, "Model-based speed identification for induction Machines in the whole operating range," IEEE Trans. Ind. Electron., vol.53, no.1, pp.31-40, Feb.2006.
    [23]S.Suwankawin and S. Sangwongwanich, "Design strategy of an adaptive full-order observer for speed-sensorless induction-motor Drives-tracking performance and stabilization," IEEE Trans. Ind. Electron., vol.53, no.1, pp.96-119, Feb.2006.
    [24]罗慧,感应电机全阶磁链观测器和转速估算方法研究[博士学位论文],武汉:华中科技大学,2009.
    [25]I. Vicente, A. Endemano, X. Garin and M. Brown, "Comparative study of stabilising methods for adaptive speed sensorless full-order observers with stator resistance estimation," IET Control Theory & Applications, vol.4, no.6, pp.993-1004, Jun.2010.
    [1]P.L. Jansen and R.D. Lorenz, "A physically insightful approach to the design and accuracy assessment of flux observers for field oriented induction machine drives," IEEE Trans. Ind. Appl., vol.30, no.1, pp. 101-110, Jan./Feb.1994.
    [2]R. Krishnan and F.C. Doran, "Study of Parameter Sensitivity in High-Performance Inverter-Fed Induction Motor Drive Systems," IEEE Trans. Ind. Appl., vol.23. no.4, pp.623-635, Jul.1987.
    [3]M. Hinkkanen and J. Luomi, "Parameter sensitivity of full-order flux observers for induction motors," IEEE Trans. Ind. Appl., vol.39, no.4, pp.1127-1135, Jul./Aug.2003.
    [4]S. Bolognani, L. Peretti and M. Zigliotto, "Parameter Sensitivity Analysis of an ImprovedOpen-Loop Speed Estimate forlnduction Motor Drives," IEEE Trans. Power Electron., vol.23, no.4, pp.2127-2135. Jul.2008.
    [5]邓歆,异步电机全阶磁链观测器的设计分析及其应用研究[博士学位论文],武汉:华中科技大学,2010.
    [6]M. Sumner and G.M. Asher, "Autocommissioning for voltage-referenced voltage-fed vector-controlled induction motor drives," IEE Proc. Electric Power Applications, vol.140, no.3, pp.187-200. May 1993.
    [7]S. Moonl and A. Keyhani, "Estimation of Induction Machine Parameters from Standstill Time-Domain Data," IEEE Trans. Ind. Appl., vol.30, no.6, pp.1609-1615, Nov./Dec.1994.
    [8]F. Barrero, J. Perez, R. Millan and L.G. Franquelo, "Self-commissioning for voltage-referenced voltage-fed vector controlled induction motor drives," in Proc. IECON'99 the 25th Annual Conference of the IEEE,1999, vol.3, pp.1033-1038.
    [9]小林贵彦,金原义彦,李东钰(译),感应电机离线参数辨识方法,电力电子,2009(3):8-15.
    [10]H. Rasmussen, M. Knudsen and M. Tonnes, "Parameter estimation of inverter and motor model at standstill using measured currents only," in Proc. Industrial Electronics,1996. vol.1. pp.331-336.
    [11]M.S. Zaky, M.M. Khater, S.S. Shokralla and H.A. Yasin, "Wide-Speed-Range Estimation With Online Parameter Identification Schemes of Sensorless Induction Motor Drives," IEEE Trans. Ind. Electron., vol.56, no.5, pp.1699-1707, May 2009.
    [12]P. Castaldi and A. Tilli, "Parameter estimation of induction motor at standstill with magnetic flux monitoring," IEEE Trans. Control Syst. Technol, vol.13, no.3, pp.386-400, May 2005.
    [13]M. Barut, S. Bogosyan and M. Gokasan, "Experimental Evaluation of Braided EKF for Sensorless Control of Induction Motors," IEEE Trans. Ind. Electron., vol.55, no.2, pp.620-632, Feb.2008.
    [14]B. Karanayil, M.F. Rahman and C. Grantham, "Online Stator and Rotor Resistance Estimation Scheme Using Artificial Neural Networks for Vector Controlled Speed Sensorless Induction Motor Drive," IEEE Trans. Ind. Electron., vol.54, no.1, pp.167-176, Feb.2007.
    [15]H. Tajima, G. Guidi, and H. Umida, "Consideration about problems and solutions of speed estimation method and parameter tuning for speed-sensorless vector control of induction motor drives," IEEE Trans. Ind. Appl., vol.38, no.5, pp.1282-1289, Sept./Oct.2002.
    [16]H. Kubota and K. Matsuse, "Speed sensorless field-oriented control of induction motor with rotor resistance adaptation," IEEE Trans. Ind. Appl., vol.30, no.5, pp.1219-1224, Sept./Oct.1994.
    [1]K. Ogata, Discrect-Time Control System, Prentice Hall,1995.
    [2]罗慧,感应电机全阶磁链观测器和转速估算方法研究[博士学位论文],武汉:华中科技大学,2009.
    [3]D.W. Chung and S.K. Sul, "Analysis and compensation of current measurement error in vector-controlled AC motor drives," IEEE Trans. Ind. Appl., vol.34, no.2, pp.340-345, Mar./Apr.1998.
    [4]S.H. Song, J.W. Choi and S.K. Sul, "Current measurements in digitally controlled AC drives," IEEE Ind. Appl. Mag. vol.6, no.4, pp.51-62, Jul./Aug.2000.
    [5]F. Briz, D. Diaz-Reigosa, M.W. Denger, P. Garcia and J.M. Guerrero, "Current sampling and measurement in PWM operated AC drives and power converters," in Proc. Power Electronics Conference,2010, pp.2753-2760.
    [6]A. Mertens and D. Eckardt, "Voltage and current sensing in power electronic converters using sigma-delta AD conversion," IEEE Trans. Ind. Appl., vol.34, no.5, pp.1139-1146, Sept./Oct.1998.
    [7]R.J. Kerkman, D. Leggate, D.W. Schlegel and C. Winterhalter, "Effects of parasitics on the control of voltage source inverters," IEEE Trans. Power. Electron., vol.18, no.1, pp.140-150, Jan.2003.
    [8]D.Leggate and R.J. Kerkman, "Pulse-based dead-time compensator for PWM voltage inverters," IEEE Trans. Ind. Electron., vol.44, no.2, pp.191-197, Apr.1997.
    [9]J.W. Choi and S.K. Sul, "A new compensation strategy reducing voltagecurrent distortion in PWM VSI systems operating with low output voltages," IEEE Trans. Ind. Electron., vol.31, no.5, pp.1001-1008, Sept./Oct.1995.
    [10]J. Holtz and J. Quan, "Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification," IEEE Trans. Ind. Appl., vol.38, no.4. pp.1087-1095, Jul./Aug.2002.
    [11]J.W. Choi and S.K. Sul, "Inverter output voltage synthesis using novel dead time compensation," IEEE Trans. Power. Electron., vol.11, no.2, pp.221-227, Mar.1996.
    [12]L. Ben-Brahim, "On the compensation of dead time and zero-current crossing for a PWM-inverter-controlled AC servo drive," IEEE Trans. Ind. Electron., vol.51, no.5, pp.1113-1118, Oct.2004.
    [13]G. Pellegrino, P. Guglielmi, E. Armando and R.I. Bojoi, "Self-Commissioning Algorithm for Inverter Nonlinearity Compensation in Sensorless Induction Motor Drives," IEEE Trans. Ind. Appl., vol.46, no. 4, pp.1416-1424, Jul./Aug.2010.
    [14]孙向东,钟彦儒,任碧莹,周炳,一种新颖的死区补偿时间测量方法,中国电机工程学报,2003,23(2):103-107.
    [15]N. Urasaki, T. Senjyu, K. Uezato, and T. Funabashi, "An adaptive dead-time compensation strategy for voltage source inverter fed motor drives," IEEE Trans. Power. Electron., vol.20, no.5, pp.1150-1160, Sept.2005.
    [16]S.Y. Kim and S.Y. Park, "Compensation of Dead-Time Effects Based on Adaptive Harmonic Filtering in the Vector-Controlled AC Motor Drives," IEEE Trans. Ind. Electron., vol.54. no.3. pp.1768-1777. Jun. 2007.
    [17]S.Y. Kim, W. Lee, M.S. Rho and S.Y. Park, "Effective Dead-Time Compensation Using a Simple Vectorial Disturbance Estimator in PMSM Drives," IEEE Trans. Ind. Electron., vol.57. no.5. pp. 1609-1614, May.2010.
    [18]刘军锋,李叶松,死区对电压型逆变器输出误差的影响及其补偿,电工技术学报,2007,22(5):117-122.
    [19]S.G. Jeong and M.H. Park "The analysis and compensation of dead-time effects in PWM inverters." IEEE Trans. Ind. Electron., vol.38, no.2, pp.108-114, Apr.1991.
    [20]陈硕,薛昭武,电压型PWM逆变器输出误差分析及其补偿,电工技术学报,2001,16(2):51-55.
    [21]C. Attaianese and G. Tomasso, "Predictive compensation of dead-time effects in VSI feeding induction motors," IEEE Trans. Ind. Appl., vol.37, no.3, pp.856-863, May./Jun.2001.
    [22]刘亮,邓名高,欧阳红林,周马山,基于预测电流控制的PWM逆变器死区补偿方法研究,电工技术学报,2005,20(8):78-98.
    [23]胡庆波,吕征宇,一种新颖的基于空间矢量PWM的死区补偿方法,中国电机工程学报,2005,25(3):13-17.
    [24]何正义,季学武,瞿文龙,一种新颖的基于死区时间在线调整的SVPWM补偿算法,电工技术学报,2009,24(6):42-47.
    [25]L. Chen and F.Z. Peng, "Dead-Time Elimination for Voltage Source Inverters," IEEE Trans. Power. Electron., vol.23, no.2, pp.574-580, Mar.2008.
    [26]Y.K. Lin and Y.S. Lai, "Dead-Time Elimination of PWM-Controlled Inverter_Converter Without Separate Power Sources for Current Polarity Detection Circuit," IEEE Trans. Ind. Electron., vol.56, no. 6, pp.2121-2127, Apr.2009.
    [27]IR, "Application Characterization of IGBTs," Application Note, Available:http://www.irf.com.
    [28]Infineon, "IGBT fundamentals," Application Note, Available:http://www.infineon.com.
    [29]X.K. Wu, J.M. Zhang, X.G. Xie and Z.M. Qian, "Analysis and Optimal Design Considerations for an Improved Full Bridge ZVS DC-DC Converter With High Efficiency." IEEE Trans. Power. Electron., vol. 21, no.5, pp.1225-1234, Sept.2006.
    [1]P. Brogan and R. Yacamini, "Harmonic control using an active drive," IEE Proc. Electric Power Applications, vol.150, no.1, pp.14-20, Jan.2003.
    [2]N.R. Zargari and G. Joos, "A near unity power factor input stage with minimum control requirements for AC drive applications," IEEE Trans. Ind. Appl., vol.31, no.5, pp.1129-1135, Sept./Oct.1995.
    [3]J.R. Rodriguez, J.W. Dixon, J.R. Espinoza, J. Pontt and P. Lezana, "PWM regenerative rectifiers state of the art," IEEE Trans. Ind. Electron., vol.52, no.1, pp.5-22, Feb.2005.
    [4]B. Singh, B.N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D.P. Kothari, "A review of three-phase improved power quality AC-DC converters," IEEE Trans. Ind. Electron., vol.51, no.3, pp.641-660, Jun. 2004.
    [5]K. Jalili and S. Bernet, "Design of LCL Filters of Active-Front-End Two-Level Voltage-Source Converters," IEEE Trans. Ind. Electron., vol.56, no.5, pp.1674-1689, May 2009.
    [6]J. Dannehl, C. Wessels and F.W. Fuchs, "Limitations of voltage-oriented PI current control of grid-connected PWM rectifiers with LCL filters," IEEE Trans. Ind. Electron., vol.56, no.2, pp.380-388, Feb.2009.
    [7]M. Prodanovic and T.C. Green, "Control and filter design of three-phase inverters for high power quality grid connection," IEEE Trans. Power Electron., vol.18, no.1, pp.373-380. Jan.2003.
    [8]H.R. Karshenas and H. Saghafi, "Basic Criteria in Designing LCL Filters for Grid Connected Converters," in Proc. Industrial Electronics,2006, vol.3, no.1996-2000.
    [9]M. Liserre, F. Blaabjerg and S. Hansen, "Design and control of an LCL-filter-based three-phase active rectifier," IEEE Trans. Ind. Appl., vol.41, no.5, pp.1281-1291, Sept./Oct.2005.
    [10]F. Blaabjerg. R. Teodorescu, M. Liserre and A.V. Timbus. "Overview of Control and Grid Synchronization for Distributed Power Generation Systems," IEEE Trans. Ind. Electron., vol.53, no.5, pp.1398-1409, Oct.2006.
    [11]S.K. Chung, "A phase tracking system for three phase utility interface inverters," IEEE Trans. Power Electron., vol.15, no.3, pp.431-438. Jan.2000.
    [12]T. Abeyasekera, C. M. Johnson, D. J. Atkinson, and M. Armstrong, "Suppression of line voltage related distortion in current controlled grid connected inverters," IEEE Trans. Power Electron., vol.20, no.6, pp.1393-1401. Nov.2005.
    [13]M. Liserre, A. Dell' Aquila and F. Blaabjerg, "Genetic algorithm-based design of the active damping for an LCL-filter three-phase active rectifier," IEEE Trans. Power Electron., vol.10, no.1, pp.76-86, Jan. 2004.
    [14]E. Twining and D. G. Holmes, "Grid current regulation of a three-phase voltage source inverter with an LCL input filter," IEEE Trans. Power Electron., vol.18, no.3, pp.888-895. May 2003.
    [15]P. Channegowda and V. John, "Filter Optimization for Grid Interactive Voltage Source Inverters," IEEE Trans. Ind. Electron., vol.57, no.12, pp.4106-4114, Dec.2010.
    [1]IEEE, "IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems." IEEE Application Guide for IEEE Std.1547, Available:http://ieeexplore.ieee.org.
    [2]林海雪,电能质量国家标准系列讲座第3讲公用电网谐波标准,建筑电气,2011(6):3-8.
    [3]F. Blaabjerg, R. Teodorescu, M. Liserre and A.V. Timbus, "Overview of Control and Grid Synchronization for Distributed Power Generation Systems," IEEE Trans. Ind. Electron., vol.53, no.5, pp.1398-1409, Oct.2006.
    [4]J. Dannehl, F.W. Fuchs, S. Hansen and P.B. Thogersen, "Investigation of active damping approaches for PI-based current control of grid-connected pulse width modulation converters with LCL filters," IEEE Trans. Ind. Appl, vol.46, no.4, pp.1509-1517, Jul./Aug.2010.
    [5]K. Zhang, Y. Kang, J. Xiong and J. Chen. "Direct repetitive control of SPWM inverter for UPS purpose," IEEE Trans. Power Electron., vol.18, no.3, pp.784-792, May 2003.
    [6]陈宏,基于重复控制理论的逆变电源控制技术研究[博士学位论文],南京:南京航空航天大学,2003.
    [7]张凯,彭力,熊健,陈坚,基于状态反馈与重复控制的逆变器控制技术,中国电机工程学报,2006,26(10):56-62.
    [8]仇志凌,基于LCL滤波器的三相三线并网变流器若干关键技术研究[博士学位论文],杭州:浙江大学,2009.
    [9]魏学良,戴珂,方昕,康勇,三相并联型有源电力滤波器补偿电流性能分析与改进,中国电机工程学报.2007,27(28):113-119.
    [10]M. Liserre, R. Teodorescu and F. Blaabjerg, "Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values," IEEE Trans. Power Electron., vol.21, no.1, pp. 263-272, Jan.2006.
    [11]S. Mariethoz and M. Morari, "Explicit model-predictive control of a PWM inverter with an LCL filter," IEEE Trans. Ind.Electron., vol.56, no.2, pp.389-399, Feb.2009.
    [12]Z. Wang and L. Chang, "A DC voltage monitoring and control method for three-phase grid-connected wind turbine inverters." IEEE Trans. Power Electron., vol.23, no.3, pp.1118-1125, May 2008.
    [13]Y.A.I. Mohamed and E.F. El-Saadany, "Adaptive discrete-time grid-voltage sensorless interfacing scheme for grid-vonnected DG-inverters based on neural-network identification and deadbeat current regulation," IEEE Trans. Power Electron., vol.23. no.1. pp.308-321, Jan.2008.
    [14]H.G. Jeong, K.B. Lee, S. Choi and W. Choi, "Performance improvement of LCL-filter-based grid-connected inverters using PQR power transformation," IEEE Trans. Power Electron., vol.25. no.5. pp.1320-1330, May 2010.
    [15]P. C. Loh and D. G. Holmes, "Analysis of multiloop control strategies for LC/CL/LCL-filtered voltage-source and current-source inverters," IEEE Trans. Ind. Appl., vol.41, no.2. pp.644-654. Mar./Apr.2005.
    [16]V. Blasko and V. Kaura, "A novel control to actively damp resonance in input LC filter of a three-phase voltage source converter," IEEE Trans. Ind. Appl., vol.33. no.2, pp.542-550, Mar./Apr.1997.
    [17]M. Prodanovic and T. C. Green, "Control and filter design of three-phase inverters for high power quality grid connection," IEEE Trans. Power Electron., vol.18. no.1, pp.373-380, Jan.2003.
    [18]G. Shen, X. Zhu, J. Zhang and D. Xu, "A new feedback method for PR current control of LCL-filter-based grid-connected inverter," IEEE Trans. Ind. Electron., vol.57. no.6. pp.2033-2041. Jun. 2010.
    [19]T. Abeyasekera, C. M. Johnson, D. J. Atkinson, and M. Armstrong, "Suppression of line voltage related distortion in current controlled grid connected inverters," IEEE Trans. Power Electron., vol.20, no.6, pp.1393-1401. Nov.2005.
    [20]E. Twining and D. G. Holmes, "Grid current regulation of a three-phase voltage source inverter with an LCL input filter," IEEE Trans. Power Electron., vol.18, no.3, pp.888-895. May 2003.
    [21]E. Wu and P. W. Lehn, "Digital current control of a voltage source converter with active damping of LCL resonance," IEEE Trans. Power Electron., vol.21.no.5, pp.1364-1373. Sep.2006.
    [22]G. Shen, D. Xu, L. Cao and X. Zhu, "An Improved Control Strategy for Grid-Connected Voltage Source Inverters with an LCL Filter," IEEE Trans. Power Electron., vol.23, no.4, pp.1899-1906. Jul.2008.
    [23]I. J. Gabe, V. F. Montagner and H. Pinheiro, "Design and implementation of a robust current controller for VSI connected to the grid through an LCL filter," IEEE Trans. Power Electron., vol.24, no.6, pp. 1444-1452, Jun.2009.
    [24]M. Liserre, A. Dell'Aquila and F. Blaabjerg. "Genetic algorithm-based design of the active damping for an LCL-filter three-phase active rectifier," IEEE Trans. Power Electron., vol.10, no.1, pp.76-86. Jan. 2004.
    [25]M. Malinowski, W. Szczygiel, M. P. Kazmierkowski and S. Bernet, "Sensorless operation of active damping methods for three-phase PWM converters," in Proc Industrial Electronics,2005, vol.2. pp. 775-780.
    [26]M. Malinowski and S. Bernet, "A Simple Voltage Sensorless Active Damping Scheme for Three-Phase PWM Converters With an LCL Filter," IEEE Trans. Ind. Electron., vol.55, no.4, pp.1876-1880, Apr. 2008.
    [27]K. Ogata, Discreet-Time Control System, Prentice Hall,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700