非线性系统的对称性与可积性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于符号计算,研究了非线性数学物理中的对称性和可积性理论及其应用问题。主要开展了四个方面的工作:应用经典对称方法研究了流体力学和大气海洋中的一些重要的非线性模型;发展了非局域对称的理论和相关应用;利用Bell多项式系统地分析了含任意参数的非线性发展方程的可积性质;开发了构造有限维Lie代数一维最优系统的程序包。
     第一章作为绪论部分,重点介绍了对称理论、可积系统和符号计算的背景与发展现状,并且阐明了本论文的主要工作。
     第二章研究了经典对称理论在流体力学和大气海洋动力学中的应用。首先利用一些经典对称方法讨论了流体力学中与非线性薛定谔方程相关的一个新型非线性模型:共振DS系统,分析了其连续和离散的对称性质,给出了三种类型的相似约化;其次,研究了大气海洋中的一个重要的非线性高维模型—(3+1)维的斜压位涡方程,从相关低维方程的解出发构造了此高维方程丰富的严格解,解释了大气运动中带有丰富垂直结构的Rossby波和一些经典的径向环流现象。
     第三章发展了非局域的对称理论和相关应用。将发展的非局域对称理论应用于不同形式的KdV方程,分别通过对Backlund变换、Darboux变换和双线性变换取无穷小形式得到了不同形式的非局域对称。一方面,成功构造了KdV方程丰富的精确解,并首次发现了KdV方程椭圆周期波和孤立子的相互作用以及Painleve波和孤立子的相互作用的严格解表达式;另一方面,给出了势KdV方程的负可积梯队和其他新的可积系统。
     第四章讨论了Bell多项式和相关可积性。将双Bell多项式方法推广到含四个任意参数的广义NNV方程和非等谱变系数的mKdV方程,系统地给出了方程的Hirota双线性形式、双线性Backlund变换、Lax对和无穷多守恒律。这种代数方法只用到维数分析和基本组合知识,不需要很多技巧性的猜测工作。
     第五章考虑了对称理论中一维最优系统的算法问题。针对有限维Lie代数一维最优系统的构造,我们通过总结和分析看似随意和经验性的分类过程,首次给出了一个机械化算法,并在Maple上开发了相应的算法实现程序包,从而节省了大量人工重复繁琐的计算。最后以实例说明了该算法的有效性和实用性。
     第六章对全文的工作进行了总结和概括,并对下一步需要进行的研究工作进行了展望。
Based on symbolic computation, this dissertation investigates the theory with appli-cation of the symmetry and integrability of nonlinear mathematical physics. The main work is carried out in four aspects:the classical symmetry methods are applied to study some important nonlinear models in fluid mechanics as well as the atmosphere and ocean; the theory of nonlocal symmetry is developed and some related applications are real-ized; Bell polynomials are used to analyze the integrability of nonlinear evolution equa-tions with arbitrary parameters; a package of one-dimensional optimal system for finite-dimensional Lie algebra is developed.
     Chapter1is an introduction to review the theoretical background and development of symmetry theory, integrable system and symbolic computation. The main works of this dissertation are also illustrated.
     Chapter2concentrates on applying the classical symmetry theory in fluid mechanics as well as atmospheric and oceanic dynamics. Firstly, a novel nonlinear model in fluid mechanics called resonant Davey-Stewartson (DS) system, which is relevant to nonlinear Schrodinger equation, is investigated by some classical symmetry methods. Its continuous and discrete symmetry properties are discussed and three types of reduced equations are obtained. Then, an important nonlinear high-dimensional model in the atmospheric and oceanic dynamics, namely (3+1)-dimensional baroclinic potential vorticity equation is studied. Kinds of exact solutions are obtained from its corresponding lower-dimensional equation. According to these explicit solutions, the Rossby wave with rich vertical struc-ture of the atmospheric motion and some classical radial circulation phenomenons are explained.
     Chapter3is devoted to developing a new theory of nonlocal symmetry and related applications. Applying the developed nonlocal symmetry method to KdV equation in different forms, many nonlocal symmetries are obtained by taking infinitesimal forms from Backlund transformation, Darboux transformation and bilinear transformation re-spectively. On one hand, abundant explicit solutions of KdV equation are constructed successfully, among which the interactions of elliptic periodic wave and soliton as well as Painleve wave and soliton are firstly discovered. On the other hand, the negative hier-archies of potential KdV equation and other new integrable systems are presented.
     Chapter4deals with Bell polynomials and related integrabilities. The binary Bell polynomials method is extended to a generalized NNV equation with four arbitrary pa-rameters as well as a nonisospectral and variable-coefficient mKdV equation respectively. Their corresponding Hirota bilinear representation, bilinear Backlund transformation, Lax pair and infinite conservation laws are obtained step by step. This algebraic approach only considers dimensional analysis and elementary combinatorics, without too much clever guesswork.
     Chapter5focuses on the algorithm of one-dimensional optimal system in symmetry theory. The mechanical algorithm for constructing one-dimensional optimal system of finite-dimensional Lie algebra is firstly provided and corresponding implementation of software package on Maple is accomplished. We summarize and analyze the seemingly random and empirical classification process to design a rule which can be achieved on the computer. Due to our algorithm, a large number of repetitive and tedious calculations are avoided. Lastly, two examples are given to illustrate the effectiveness and practicality of this algorithm.
     Chapter6concerns the summary and discussion of the whole dissertation, and the prospect for the future work is also put forward.
引文
[1]Yaglom I M, Klein F and Lie S. Evolution of the idea of symmetry in the nineteenth century:Birkhauser Boston, Inc., Boston, MA,1988.
    [2]Lie S. On integration of a class of linear partial differential equations by means of definite integrals, Arch. Math VI,3 (1881) 328-368.
    [3]Lie S. Sophus Lie's 1880 transformation group paper, Translation by M. Ackerman, Comments by R. Hermann. Mathematical Science Press, Brookline,1975.
    [4]Lie S. Sophus Lie's 1884 differential invariant paper, Translation by M. Ackerman, Comments by R. Hermann. Mathematical Science Press, Brookline,1976.
    [5]Olver P J. Applications of Lie groups to differential equations.2nd ed., Springer, New York,1993.
    [6]Noether E. Invariant variations probleme, Nachr. Konig. Gesell. Wissen. Gottingen, Math. phys. Kl.,1918,235-257.
    [7]Garder C S, Greene J M, Kruskal M D and Miura R M. Korteweg-de Vries equation and generalizations. VI. Methods for exact solution, Comm. Pure Appl. Math.,27 (1974)97-133.
    [8]Olver P J. Evolution equations possessing infinitely many symmetries, J. Math. Phys.,18(1977)1212-1215.
    [9]Focas A S. Generalized symmetries and constants of motion of evolution equations, Lett. Math. Phys.,3 (1979) 467-473.
    [10]Focas A S and Santini P. Recursion operators and bi-Hamiltinion structure in multi-dimensions, Commun. Math. Phys.,116 (1988) 449-474.
    [11]Fuchssteiner B. Application of hereditary symmetries to nonlinear evolution equa-tions, Nonlinear Anal. Theory Meth. Appl.,3 (1979) 849-862.
    [12]Vinogradov A M and Krasil'shchik I S. A method of calculating higher symme-tries of nonlinear evolutionary equations and nonlocal symmetries. Dokl. Akad. NaukSSSR,253 (1980) 1289-1293 (in Russian).
    [13]Kaptsov O V. An extension of the symmetry of evolution equations, Dokl. Akad. Nauk SSSR,262 (1982) 1056-1059 (in Russian).
    [14]Mikhailov A V, Shabat A B and Sokolov V V. The symmetry approach to classifica-tion of integrable equations. In:What is integrability, V. E. Zakharov (ed.), Springer Ser. Nonlinear Dynam., Springer, Berlin,1991,115-184.
    [15]Bluman G W and Kumei S. Symmetry-based algorithms to relate partial differential equations. II. Linearization by nonlocal symmetries, J. Appl. Math.,1 (1990) 217-223.
    [16]Bluman G W, Kumei S and Reid G J. New classes of symmetries for partial differ-ential equations, J. Math. Phys.,29 (1988) 806-811.
    [17]Bluman G W and Kumei S. Symmetries and differential equations, Springer, New York,1989.
    [18]Krasil'shchik I S and Vinogradov A M. Nonlocal symmetries and the theory of cov-erings:An addendum to AM Vinogradov's local symmetries and conservation law, Acta Appl. Math.,2 (1984) 79-96
    [19]Krasil'shchik I S and Vinogradov A M. Nonlocal trends in the geometry of differen-tial equations:Symmetries, conservation laws, and Backlund transformations, Aata Appl. Math.,15 (1989) 161-209.
    [20]Galas F. New non-local symmetries with pseudopotentials, J. Phys. A:Math. Gen., 25(1992)L981-L986.
    [21]Schiff J. Symmetries of KdV and loop groups, Preprint, solv-int/9606004.
    [22]Leo M, Leo R A, Soliani G and Tempesta P. Nonlocal Backlund transformations for Harry Dym and Korteweg-de Vries equations. In:Nonlinearity, Integrability and all that:Twenty years after NEEDS'79', M. Boiti et al. (eds.), World Sci., Singapore, (2000)318-324.
    [23]Leo M, Leo R A, Soliani G and Tempesta P. On the relation between Lie symme-tries and prolongation structures of nonlinear field equations-Nonlocal symmetries, Progr. Theoret. Phys.,105 (2001) 77-97.
    [24]Kiso K. Pseudopotentials and symmetries of evolution equations, Hokkaido Math. J.,18(1989) 125-136.
    [25]Adler M. On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg-de Vries type equations, Invent. Math.,50 (1978/79) 219-248.
    [26]Reiman A G and Semenov-Tjan-Sanskii M A. Algebras of flows and nonlinear par-tial differential equations, Dokl. Akad. Nauk SSSR,251 (1980) 1310-1314 (in Rus-sian).
    [27]Faddeev L D and Takhtajan L A. Hamiltonian Methods in the Theory of Solitons, Springer Series in Soviet Math., Springer, Berlin,1987.
    [28]Clarkson P A and Kruskal M D. New similarity solutions of the Boussinesq equa-tions, J. Math. Phys.,30 (1989) 2201-2213.
    [29]Clarkson P A. Nonclassical symmetry reductions of the Boussinesq equation, Chaos, Soliton and Fractals,5 (1995) 2261-2301.
    [30]Lou S Y and Ma H C. Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method, J. Phys. A:Math. Gen.,38 (2005) L129-L137.
    [31]Ma H C and Lou S Y Solutions generated from the symmetry group of the (2+1)-dimensional Sine-Gordon system, Z. Naturforsch. A,60a (2005) 229-236.
    [32]Lou S Y. Conformal invariance and integrable models, J. Phys. A:Math. Phys.,30 (1997)4803-4813.
    [33]Lou S Y and Hu X B. Non-local symmetries via Darboux transformations, J. Phys. A:Math. Gen.,30 (1997) L95-L100.
    [34]Lou S Y and Hu X B. Infinitely many Lax pairs and symmetry constraints of the KP equation, J. Math. Phys.,38 (1997) 6401-6427.
    [35]Hu X B, Lou S Y and Qian X M. Nonlocal symmetries for bilinear equations and their applications, Stud. Appl. Math.,122 (2009) 305-324.
    [36]Ovsiannikov L V. Group analysis of differential equations, Academic, New York, 1982.
    [37]Galas F. Diplomarbeit (Thesis, in German), Institut furMathematische Physik der Technischen Universitiit Braunschweig, Germany,1988.
    [38]Ibragimov N H. Lie group analysis of differential equations, CRC Press, Boca Ra-ton,1994.
    [39]Kotz H. ZurAhnlichkeitsanalyse des Vlassov-Poisson-Systems und des Vlassov-Maxwell-Systems, PhD thesis, TU Braunschweig,1993.
    [40]Patera J, Winternitz P and Zassenhaus H. Continuous subgroups of the fundamental groups of physics. I. General method and the Poincare group, Journal of Mathemat-ical Physics,16 (1975) 1597-1614.
    [41]Chou K S, Li G X and Qu C Z. A note on optimal systems for the heat equation, Journal of Mathematical Analysis and Applications,261(2) (2001) 741-751.
    [42]Liu R C, He W L, Zhang S L and Qu C Z. One-parameter optimal systems for the nonlinear evolution equation, Journal of Northwest University (Nature Science Edition),33(4) (2003) 383-388.
    [43]董仲周,非线性数学物理及符号计算,博士学位论文,华东师范大学,2010.
    [44]Hu X R, Dong Z Z, Huang F and Chen Y, Symmetry reductions and exact solutions of the (2+1)-dimensional Navier-Stokes equations, Z. Naturforsch.,65a (2010) 504-510.
    [45]Dong Z Z, Huang F and Chen Y, Symmetry reductions and exact solutions of the two-layer model in atmosphere, Z. Naturforsch.,66a (2011) 75-86.
    [46]Fan E G. Integrable systems of derivative nonlinear Schrodinger type and their multi-Hamiltonian structure, J. Phys. A:Math. Gen.,34 (2001) 513-519.
    [47]谷超豪,孤立子理论与应用,浙江科学技术出版社,1990.
    [48]陈登远,孤子引论,科学出版社,2006.
    [49]Garder C S, Greene J M, Kruskal M D and Miura R M. Method for solving the Korteweg-de vries equation, Physical Review Letters,19 (1967) 1095-1097.
    [50]Ablowitz M J, Ramani A and Segur H. Nonlinear evolution equations and ordinary differential equations of Painleve type, Lett. Nuovo Cimento,23 (1978) 333-338.
    [51]Ablowitz M J, Ramani A and Segur H. A connection between nonlinear evolution equations and ordinary differential equations of P-type I, J. Math. Phys.,21 (1980) 715-721.
    [52]Weiss J, Taboe M and Garnevale G. The Painleve property for partial differential equations, J. Math. Phys.,24 (1983) 522-526.
    [53]Jimbo M, Kruskal M D and Miwa T. Painleve test for the self-dual Yang-Mills equa-tion, Phys. Lett. A.,92 (1982) 59-60.
    [54]Conte R. Invariant Painleve analysis of partial differential equations, Phys. Lett. A., 140 (1989) 383-390.
    [55]Pickering A. A new truncation in Painleve analysis, J. Phys. A:Math. Gen.,26 (1993) 4395-4405.
    [56]Lou S Y. Extended Painleve expansion, nonstandard truncation and special reduc-tions of nonlinear evolution equations, Z. Naturforsch A.53a (1998) 251-258.
    [57]Lou S Y. Symmetries of the 1+1 dimensional classical Liouville field theory, J. Math. Phys.,35(1994)2336-2348.
    [58]Calogero F and Eckhaus W. Nonlinear evolution equations, rescalings, model PDES and their integrability:I, Inverse Problems,3 (1987) 229-262.
    [59]Calogero F and Eckhaus W. Nonlinear evolution equations, rescalings, model PDEs and their integrability:II, Inverse Problems,4 (1988) 11-33.
    [60]Calogero F and Ji X D. C-integrable nonlinear partial differentiation equations. I, J. Math. Phys.,32 (1991) 875-887.
    [61]Calogero F and Ji X D. C-integrable nonlinear PDEs. II, J. Math. Phys.,32 (1991) 2703-2717.
    [62]楼森岳,唐晓艳,非线性数学物理方法,科学出版社,2006.
    [63]谷超豪,胡和生,周子翔,孤立子中的Darboux变换及其几何应用,上海科技出版社,1999.
    [64]Zhou Z X. Binary Darboux transformations for Manakov triad, Phys. Lett. A,195 (1994) 339-345.
    [65]Zhou Z X. Darboux transformations for twisted so(p,q) system and local isometric immersion of space forms, Inverse Problems,14 (1998),1353-1370.
    [66]Fan E G. Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation, J. Phys. A,33 (2000) 6925-6933.
    [67]Fan E G. Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation, J. Math. Phys.,41 (2000) 7769-7782.
    [68]Cao C W. Nonlinearization of the Lax system for AKNS hierarchy, Science in china A,33 (1990) 528-536.
    [69]Cao C W. A classical integrable system and the involutive representation of solutions of the KdV equation, Acta Mathematica Sinica,7 (1991) 216-223.
    [70]Cao C W, Wu Y T and Geng X G. Relation between the Kadometsev-Petviashvili equation and the confocal involutive system, J. Math. Phys.,40 (1999) 3948-3970.
    [71]Zhou R G, Lax representation,7-matrix method, and separation of variables for the Neumann-type restricted flow, J. Math. Phys.,39 (1998) 2848-2858.
    [72]李翊神,孤子与可积系统,上海科技教育出版社,1999.
    [73]田畴,李群及其在微分方程中的应用,科学出版社,2001.
    [74]Lou S Y, Generalized dromion solutions of the (2+1)-dimensional KdV equation, J. Phys. A:Math. Gen.,28 (1995) 7227-7232.
    [75]Lou S Y, Tang X Y and Lin J, Similarity and conditional similarity reductions of a (2+1)-dimensional KdV equation via a direct method, J. Math. Phys.,41 (2000) 8286-8303.
    [76]Hu X B. Rational solutions of integrable equations via nonlinear superposition for-mula, J. Phys. A:Math. Gen.,30 (1997) 8225-8240.
    [77]Hu X B and Zhu Z N. A Backlund transformation and nonlinear superposition for-mula for the Belov-Chaltikian lattice, J. Phys. A:Math. Gen.,31 (1998) 4755-4761.
    [78]Liu Q P. Darboux transformations for supersymmetric Korteweg-deVries equations, Lett. Math. Phys.,35 (1995) 115-122
    [79]Liu Q P and Manas M. Darboux transformations for supersymmetric KP hierarchies, Phys. Lett. B,485(2000),293-300.
    [80]张大军,离散孤子系统的Hamilton结构、守恒律及mKdV-SineGordon方程的孤子解,博士学位论文,上海大学,2002.
    [81]Bell E T. Exponential polynomials, Ann. Math.,35 (1934) 258-277.
    [82]Gilson C, Lambert F, Nimmo J and Willox R. On the combinatorics of the Hirota D-operators, Proc. R. Soc. Lond. A,452 (1996) 223-234.
    [83]Lambert F and Springael J. Construction of Backlund transformations with binary Bell polynomials, J. Phys. Soc. Jpn.,66 (1997) 2211-2213.
    [84]Lambert F, Loris I and Springael J. Classical Darboux transformations and the KP hierarchy, Inverse Probleme,17 (2001) 1067-1074.
    [85]Lambert F and Springael J. On a direct procedure for the disclosure of Lax pairs and Backlund transformations, Chaos, Solitons and Fractals,12 (2001) 2821-2832.
    [86]Lambert F and Springael J. Soliton equations and simple combinatorics, Acta Appl. Math.,102 (2008) 147-178.
    [87]Fan E G. arXiv:1008.4194 (2010).
    [88]Fan E G. The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials, Phys. Lett. A,375 (2011) 493-497.
    [89]Fan E G. New Bilinear Backlund transformation and Lax pair for the supersymmet-ric two-boson equation, Studies in Applied Mathematics,127 (2011) 284-301.
    [90]Fan E G and Hon Y C. Super extension of Bell polynomials with applications to supersymmetric equations, Journal of Mathematical Physics,53 (2012) 013503.
    [91]吴文俊,几何定理机械证明的基本原理,科学出版社,1984.
    [92]Li Z B and Liu Y P. RATH:A Maple package for finding travelling solitary wave solution of nonlinear evolution equations, Compu. Phys. Commun.,148 (2002) 256-266.
    [93]Xu G Q and Li Z B. A maple package for the painleve test of nonlinear evolution equations, Chin. Phys. Lett.,20 (2003) 975-978.
    [94]Yao R X and Li Z B. CONSLAW:A Maple package to construct the conservation laws for nonlinear evolutions, Appl. Math. Comput.,173 (2006) 616-635.
    [95]Zhou Z J and Li Z B. An implementation for the algorithm of Hirota binlinear form of PDE in the Maple system, Appl. Math. Comput.,183 (2006) 872-877.
    [96]范恩贵,可积系统与计算机代数,科学出版社,2004.
    [97]陈勇,孤立子理论中的若干问题的研究及机械化实现,博士学位论文,大连理工大学,2003.
    [98]谢福鼎,Wu-Ritt消元法在偏微分代数方程中的应用,博士学位论文,大连理工大学,2002.
    [99]李彪,孤立子理论中若干精确求解方法的研究及应用,博士学位论文,大连理工大学,2005.
    [100]Yao R X and Lou S Y. A maple package to compute lie symmetry groups and symmetry reductions of (1+1)-dimensional nonlinear systems, Chin. Phys. Lett.,25 (2008) 1927-1930.
    [101]闫振亚,非线性波与可积系统,博士学位论文,大连理工大学,2002.
    [102]Lou S Y. Symmtry analysis and exact solutions of the 2+1 dimensional Sine-Gordon system, J. Math. Phys.,41 (2000) 6509-6524.
    [103]David D, Kamran N, Levi D and and Winternitz P. Subalgebras of loop algebras and symmetries of the Kadomtsev-Petviashvili equation, Phys. Rev. Lett.,55 (1985) 2111-2113.
    [104]David D, Kamran N, Levi D and and Winternitz P. Symmetry reduction for the Kadomtsev-Petviashvili equation using a loop algebra, J. Math. Phys.,27 (1986) 1225-1237.
    [105]Tang X Y, Chow K W and Rogers C. Propagating wave patterns for the resonant Davey-Stewartson system, Chaos, Solitons and Fractals., 42 (2009) 2707-2712.
    [106]Ablowitz M J and Segur H. Solitons and the inverse scattering transform, Studies in Applied Mathematics, Philadelphia, 1981.
    [107]Akhmediev N N and Ankiewicz A. Solitons: nonlinear pulses and beams, Chap-man and Hall, New York, 1997.
    [108]Kivshar Y S and Agrawal G P. Optical solitons: from fibers to photonic crystals, Academic Press, New York, 2003.
    [109]Benney D J and Roskes G J. Wave instabilities, Stud. Appl. Math., 48 (1969) 377-385.
    [110]Davey A and Stewartson K. On three-dimensional packets of surface waves, Proc. Roy. Soc. Lond. Ser. A, 338 (1974) 101-110.
    [111]Boiti M, Leon J, Marina J and Pempinelli F. Scattering of localized solitons in the plane, Phys. Lett. A, 132(1988) 432-439.
    [112]Fokas A S and Santini P M. Coherent structures in multidimensions, Phys. Rev. Lett., A 63 (1989) 1329-1333.
    [113]Chow K W and Lou S Y. Propagating wave patterns and "peakons" of the Davey-Stewartson system, Chaos, Soliton and Fractals, 27 (2006) 561-567.
    [114]Liu J, Dai Z D and Lin S Q. Heteroclinic breather-wave solutions for Davey - Stewartson equation, Commun. Theor. Phys., 53 (2010) 947-951.
    [115]Lee J H, Pashaev O K, Rogers C and Schief W K. The resonant nonlinear Schrodinger equation in cold plasma physics, application of Backlund-Darboux transformations and superposition principles, J. Plasma. Phys., 73 (2007) 257-272.
    [116]Pashaev O K and Lee J H. Resonance solitons as black holes in Madelung fluid, Mod. Phys. Lett. A, 17 (2002) 1601-1619.
    [117]Rogers C and Schief W K. The resonant nonlinear Schrodinger equation via an integrable capillarity model, II Nuovo Cimento B, 114 (1999) 1409-1412.
    [118]Liang Z F and Tang X Y. Painleve analysis and exact solutions of the resonant Davey-Stewartson system, Phys. Lett. A,374 (2009) 110-115.
    [119]Gao Y and Tang X Y. Symmetry analysis and similarity solutions of a resonant Davey-Stewartson system, Commun. Theor. Phys.,52 (2009) 581-587.
    [120]Goddard P and Olive D. Kac-Moody and Virasoro algebras, Advanced Series in Mathematical Physics,3. World Scientific Publishing Co., Singapore,1988.
    [121]Pedlosky J. Geophysical Fluid Dynamics, Springer, New York,1979.
    [122]Luo D H. Envelope solitary Rossby waves and modulational instabilities of uniform Rossby wave trains in two space dimensions, Wave Motion,24 (1996) 315-325.
    [123]Luo D H. Derivation of a higher order nonlinear Schrodinger equation for weakly nonlinear Rossby waves, Wave Motion,33 (2001) 339-347.
    [124]Huang F and Lou S Y. Analytical inverstigation of Rossby waves in atmospheric dynamics, Phys. Lett. A,320 (2004) 428-437.
    [125]Zhang H P, Li B, Chen Y and Hang F. Three types of generalized Kadomtsev Petvi-ashvili equations arising from baroclinic potential vorticity equation, Chin. Phys. B, 19(2010)020201.
    [126]Edelen D G. Isovector methods for equations of balance, Alphen aam den Rijn: Sijthoff and Noordhoff,1980
    [127]Fuchssteiner B, Application of hereditary symmetries to nonlinear evolution equa-tions, Nonlinear Analysis TMA,3 (1979) 849-862.
    [128]Fuchssteiner B. The Lie algebra structure of nonlinear evolution equations admit-ting infinite dimensional abelian symmetry groups, Prog. Theor. Phys.,65 (1981) 861-876.
    [129]Lou S Y. Integrable models constructed from the symmetries of the modified KdV equation, Phys. Lett. B,302 (1993) 261-264.
    [130]Lou S Y. Symmetries of the KdV equation and four hierarchies of the integrodif-ferential KdV equation, J. Math. Phys.,35 (1994) 2390-2396.
    [131]Lou S Y. A 2+1 dimensional extensions of the Sine-Gordon equation, J. Phy. A: Math. Gen.,26 (1993) L789-L791.
    [132]Lou S Y. Recursion operator and symmetries of the Kawamoto-type equation, Phys.Lett.A,181(1993)13-16.
    [133]Lou S Y. Negative Kadomtsev-Petviashvili equation and extension of Sinh-Gordon equation, Phys. Lett. A,187 (1994) 239-242.
    [134]Lou S Y. Symmetries and Lie algebras of the Harry-Dym hierarchy, Solitons, Chaos and Fractals,4 (1994) 1961-1964.
    [135]Ruan H Y and Lou S Y. New symmetries of the Jaulent-Miodek hierarchy, J. Phys. Soc. Japan,62 (1993) 1917-1921.
    [136]Han P and Lou S Y. Symmetry algebras of the Kaup-Kupershmidt, Acta Phys. Sinica (in Chinese),43 (1994) 1041-1049.
    [137]Lou S Y and Chen W Z. Inverse recursion operator of the AKNS hierarchy, Phys. Lett. A,179(1993)271-274.
    [138]Wahlquist H D and Estabrook F B. Backlund transformation for solutions of the Korteweg-de Vries equation, Phys. Rev. Lett.,31 (1973) 1386-1390.
    [139]Lou S Y. Negative Kadomtsev-Petviashvili hierarchy, Physica Scripta,57 (1998) 481-485.
    [140]Hone A N and Wang J W. Prolongation algebras and Hamiltonian operators for peakon equations, Inverse Problems,19 (2003) 129-145.
    [141]Verosky J M. Negative powers of Olver recursion operators, J. Math. Phys.,32 (1991) 1733-1736
    [142]Guthrie G A. More nonlocal symmetries of the KdV equation, J. Phys. A:Math. Gen.,26 (1993) L905-L908.
    [143]Guthrie G A and Hickman M S. Nonlocal symmetries of the KdV equation, J. Math. Phys.,26 (1993) 193-205.
    [144]Guthrie G A. Recursion operators and non-local symmetries, Phys. R. Soc. Lond. A,446 (1994) 107-114.
    [145]Lou S Y. (2+1)-dimensional integrable models from the constraints of the KP equa-tion, Commun. Theor. Phys.,27 (1997) 249-252.
    [146]Lou S Y and Hu X B. Nonlocal Lie-Baclund symmetries and Olver symmetries of the KdV equation, Chin. Phys. Lett.,10(1993) 577-580.
    [147]Lou S Y, Ruan H Y, Chen W Z, Wang Z L and Chen L L. New exact solutions of the CDGSK equation related to a non-Local symmetry, Chin. Phys. Lett.,11 (1994) 593-596.
    [148]Levi D. On a new Darboux transformation for the construction of exact solutions of the Schrodinger equation, Inverse Problems,4 (1988) 165-172.
    [149]Ince E L. Ordinary differential equations, Dover, New York,1956.
    [150]Umemura H and Watanabe H. Solutions of the second and fourth Painleve equa-tions I, Nagoya Math. J.,148 (1997) 151-198.
    [151]Wadati M, Sanuki H and Konno K. Relationships among inverse method, Backlund transformation and an infinite number of conservation laws, Prog. Theor. Phys.,53 (1975)419-436.
    [152]Matveev V B and Salle M A. Darboux transformations and solitons, Springer, Berlin,1990.
    [153]Gu C H, Hu H S and Zhou Z X. Soliton theory and its application, Zhejiang Pub-lishing House of Science and Technology, Hangzhou,1990.
    [154]Hirota R. Direct methods in soliton theory, Springer-verlag, Berlin,2004.
    [155]Boiti M, Leon P J, Manna M and Pempinelli F. On the spectral transform of a KdV equation in two spatial dimensions, Inverse Problems,2 (1986) 271-279.
    [156]Radha R and Lakshmanan M. Singularity analysis and localized coherent structures in (2+1)-dimensional generalized Korteweg de-Vries equations, J. Math. Phys.,35 (1994)4746-4756.
    [157]Peng Y Z. A class of doubly periodic ware solutions for the generalized Nizhnik-Novikov-Veselov equation, Physics Letters A,337 (2005) 55-60. the inverse problem, Sov. Phys. Dokl.,25 (1980) 706-708.
    [159]Novikov S P and Veselov A P. Two-dimensional Schrodinger operator:inverse scattering transform and evolutional equations, Physica D,18 (1986) 267-273.
    [160]Lou S Y. On the coherent structures of Nizhnik-Novikov-Veselov equation, Phys. Lett. A,277 (2000) 94-100.
    [161]杨云青,可积系统与混沌系统中若干问题的符号计算研究,博士学位论文,华东师范大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700