苏云金芽胞杆菌MC28基因组完成图及其杀虫功能基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽胞杆菌Bacillus thuringiensis,Bt)MC28是从四川盆地沐川原始森林土壤中分离得到的,能在芽胞形成期产生大量球形伴胞晶体蛋白,对鳞翅目和双翅目昆虫具有明显的杀虫活性。前期研究采用PCR-RFLP (restricted fragment length polymorphisms, RFLP)鉴定方法从MC28中鉴定并克隆了5个杀虫晶体蛋白基因cry30Fa1、 cry53Ba1、cry54Aa1和cyt2Aa3),其中cry54Aa1编码蛋白对棉铃虫Helicoverpa armigera, Lepidoptera)、甜菜夜蛾(Laphygma exigua, Lepidoptera)和伊蚊(Aedes aegypti, Diptera)具有特异的杀虫活性;cry30Fa1编码蛋白对水稻褐飞虱(Nilaparvata lugens, Homoptera)具有特异的杀虫活性。
     为了研究MC28的基因组结构和进化特点,我们采用Illumina GA Ⅱ测序技术对MC28菌株进行全基因组测序。全基因组测序获得原始reads并过滤得到18,324,961个双末端reads,其对基因组的覆盖度达到451倍。采用SOAPdenovo组装软件将大约97.13%的reads组装成113个scaffolds。通过PCR、长片段PCR扩增以及构建Fosmid文库等策略对Scaffold内部和scaffold之间的gaps进行补洞,最终获得大小为6.68Mb的基因组完成图。
     利用Glimmer3.02对Bt MC28全基因组进行基因的预测,然后使用blast软件,将预测得到的蛋白序列与NR库进行比对,选择最好的比对结果作为相对应蛋白的注释,最终,MC28基因组总共注释得到6,555个蛋白。采用perl+SVG工具对Bt MC28和BtCT43及Bt YBT-020分别做共线性分析,结果表明:MC28与CT-43及YBT-020具有非常相似的基因组结构和共线性关系。采用MEGA和SplitsTree软件分别对Bt MC28和其它相关菌株构建系统发育树,两个结果均表明:Bt MC28菌株同其它Bt菌株在进化上距离较远,而是同Be Rock3-28、Bc Rock4-18、Bc Rock1-3和Be Rock3-29处在一个独立的分支上
     Bt MC28全基因组由8个环状复制子构成(1个染色体DNA和7个内生质粒),总长为6.68Mb。其中环状染色体DNA长度为5,414,461bp,编码5,279个预测的开放阅读框(ORFs),染色体DNA的G+C的百分含量为35.41%;7个环状内生质粒分别为pMC8、pMC54、pMC95、pMC183、pMC189、pMC319和pMC429,这些质粒共编码1,278个预测的开放阅读框(ORFs),其G+C的百分含量在32.11%和34.78%之间。Bt MC28基因组共编码74个tRNA和45个rRNA。通过Bt MC28全基因组测序,我们从中发现了3个编码杀虫晶体蛋白基因的质粒,而且从这些质粒上发现了6个新型的杀虫晶体蛋白基因分别为cry54Ab1、cry68Aa1、cry69Aa1、cry69Aa2、cry70Ba1和cyt1Da1,至此在Bt MC28菌株中共得到11个新型杀虫晶体蛋白基因。其中质粒pMC189上共携带了7个杀虫晶体蛋白基因分别为cry30Fa1、cry53Ab1、cry54Aa1、cry54Ab1、cry68Aa1、, cyt1Da1和cyt2Aa3;而质粒pMC95上共携带有3个杀虫晶体蛋白基因分别cry4Cc1、 cry69Aa1和cry70Ba1;质粒pMC183上仅含有一个与cry69Aa1同源性为96.2%的杀虫晶体蛋白基因cry69Aa2。
     cry68Aa1、cry70Ba1和cyt1Da1的长度分别为2,511bp、2,427bp和1,527bp。为了研究这三个基因编码蛋白的杀虫活性,我们通过PCR扩增将这三个基因分别插入到原核表达载体pET-28a中,再转入到原核表达感受态细胞BL21(DE3)pLysS中,通过IPTG诱导表达,cry68Aa1, cry70Ba1和cyt1Da1基因分别产生约95kDa、90kDa和60kDa的表达产物,这与其预测表达蛋白的大小一致。生物活性测定结果表明:Cry68Aa1和Cry70Ba1均只对鳞翅目的甜菜夜蛾幼虫具有杀虫活性,其LC50分别为20.16μg/ml(95%的置信区间为16.34-35.72μg/ml)和30.22μg/ml(95%的置信区间为27.15-36.53μg/ml),而两者对鳞翅目的棉铃虫和双翅目的蚊虫无杀虫活性;Cyt1Da1对所测的昆虫均无杀虫活性。
     cry69Aa1基因全长为3,651bp,编码1,216个氨基酸,其预测编码蛋白大小约为137.1kDa,与已知的Cry4Ba蛋白的同源性最高,但仅为39%。比较结果表明:Cry69Aa1和已知大分子量的Cry蛋白均含有8个保守区域(见图5-1),因此,Cry69Aa1蛋白属于大分子量Cry蛋白中的一类新型Cry蛋白。为了研究cry69Aa1基因编码蛋白的杀虫活性,我们将扩增得到cry69Aa1全长基因插入到穿梭载体pSTK中,再转入到Bt无晶体突变株HD73-中。重组菌株的扫描电镜(SEM)观察结果表明:cry69Aa1在Bt无晶体突变株HD73-中表达时,能够形成大量的球形伴胞晶体。生测结果表明:重组菌株的芽胞晶体混合物对双翅目的致倦库蚊(Culex quinquefasciatus)幼虫具有明显杀虫活性,其LC5o为23.7μg/ml,95%的置信区间为20.5-26.4μg/ml。
     cry54Ab1操纵子是由两个相同编码方向的ORFs组成的,第一个ORF是与ory54A类似的cry基因,长度为2,232bp,其编码743个氨基酸,预测编码蛋白分子量84.5kDa,根据编码蛋白的同源性,这个cry基因被命名为cry54Ab1;第二个ORF位于cry54Ab1的下游,两者之间被一个长67bp的非编码区所间隔,这个ORF在本研究中暂命名为orf2基因,该基因长1,524bp,编码503个氨基酸,其预测蛋白分子量为58.2kDa。为了研究cry54Ab1操纵子的杀虫活性,我们将cry54Ab1基因、orf2基因以及完整的cry54Ab1操纵子通过PCR扩增后分别插入到穿梭载体pSTK上,再转入到Bt无晶体突变株HD73-中表达。重组菌株的扫描电镜观察表明:当完整的cryS4Ab1操纵子在Bt无晶体突变株HD73-中表达时,能够形成大量的球形伴胞晶体;当cry54Ab1基因或orf2基因单独在Bt无晶体突变株HD73-中表达时,均不能形成伴胞晶体。SDS-PAGE电泳分析结果表明:完整的cry54Ab1操纵子在Bt无晶体突变株HD73-中表达时,两个ORFs均能够大量表达,然而当cry54Ab1基因和orf2基因单独表达时,两个基因的表达量非常低,尤其是orf2基因几乎不表达。另外生测结果表明:完整的cry54Ab1操纵子和cty54Ab1基因的表达产物均对双翅目的致倦库蚊有杀虫活性,但是完整的cry54Ab1操纵子表达产物的杀虫活性是cry54Ab1基因单独表达时的杀虫活性的10倍之多。由以上结果可知,orf2基因的表达不仅能够使Cry54Ab1蛋白形成球形伴胞晶体,而且能够提高Cry54Ab1蛋白的杀虫活性。
Bacillus thuringiensis (Bt) strain MC28was isolated from Mu Chuan virgin forest in Sichuan Province of China. It can form spherical parasporal crystals during the sporulation stage and exhibit a broad insecticidal activity against Dipteran and Lepidopteran pests. In previous study,5insecticidal crystal protein genes were identified and cloned using PCR-RFLP (restricted fragment length polymorphisms, RFLP) method. Among these genes, Cry54Aal protein has insecticidal activity against Helicoverpa armigera.(Lepidoptera), Laphygma exigua (Lepidoptera) and Aedes aegypti (Diptera); Cry30Fal protein was toxic to Nilaparvata lugens (Homoptera).
     For studying genomic structure and evolutionary relationship of Bt strain MC28, whole-genome sequencing of MC28was performed using Illumina GA II sequencing technology. A total of18,324,961filtered paired-end reads were obtained and451-fold coverage of the genome was achieved using an Illumina Solexa GA II. About97.13%of the reads were assembled into113scaffolds using the SOAPdenovo alignment tool. Gaps within and between the scaffolds were confirmed and closed using primer walks, long-distance PCR amplification, and the construction of a fosmid library using an ABI3730capillary sequencer. Finally, the6.68Mb whole-genome sequence of MC28was obtained.
     The gene prediction of the whole-genome of Bt MC28was performed using the Glimmer3.02software. Then, the blast software was used to compare the predicted protein with the Nr (non-redundant protein sequences) databases. The best alignment results were as the annotation of the corresponding proteins. Synteny of Bt MC28, Bt CT-43, and Bt YBT-020was performed using the perl+SVG tool. The results indicated that Bt MC28, Bt CT-43, and Bt YBT-020had similar genomic structure and significant genomic synteny. Both the MEGA and the Splits Tree softwares were used to structure phylogenetic tree of Bt MC28and other relatived strains. These results all showed that there was further evolutionary distance between Bt MC28and other Bt strains. But Bt MC28, Be Rock3-28, Be Rock4-18, Be Rock1-3, and Be Rock3-29were in a in a separate branch.
     The6.68Mb genome of MC28is found to contain8replicons:a circular chromosome (5,414,461bp) encoding5,279predicted open reading frames (ORFs), and7circular plasmids:
     pMC8, pMC54, pMC95, pMC183, pMC189, pMC319and pMC429, These plasmids contain a total of1,278predicted ORFs (Table1). The G+C content of the chromosome is35.41%, and those of the plasmids range from32.11%to34.78%(Table1). The MC28genome encodes74tRNA and45rRNA operons. Based on Bt MC28genome, we found three plasmids which all contain insecticidal crystal protein genes from Bt strain MC28, and other six novle insecticidal crystal protein genes (cry54Ab1, cry68Aa1, cry69Aa1, cry69Aa2, cry70Bal, and cytlDa1) also were found from these plasmids. So far, eleven insecticidal crystal protein genes have been found from Bt strain MC28. Plasmid pMC189is found to harbor seven insecticidal crystal genes:cry30Fal, cry53Ab1, cry54Aa1, cry54Ab1, cry68Aa1, cyt1Da1, and cyt2Aa3. Plasmid pMC95is found to harbor three cry genes:cry4Cc1, cry69Aa1, and cry70Ba1. Plasmid pMC183is found to contain only one cry gene, cry69Aa2whose encoding protein is96.2%identical with Cry69Aal protein.
     Length of cry68Aa1, cry70Ba1, and cytlDal gene is2,511bp,2,427bp and1,527bp, respectively. In order to study insecticidal activity of these genes, these genes were amplified by PCR and inserted into prokaryotic expression vector pET-28a, respectively. Then, recombinant plasmids were transferred into E. coli BL21(DE3) pLysS and expressed by induction of IPTG. The molecular weight of expressed products of cry68Aa1, cry70Ba1, and cytlDal were95kDa,90kDa, and60kDa, respectively. These were the same as deduced molecular mass of Cry68Aal, Cry70Ba1, and CytlDal, respectively. Results of insect toxicity assay indicated that both Cry68Aal and Cry70Bal were toxic to L. exigua (Lepidoptera) with LC50as20.16μg/ml (95%confidence limit16.34-35.72μ/ml) and30.22μg/ml (95%confidence limit27.15-36.53μg/ml), but were no toxic to H. armigera (Lepidoptera) and A. aegypti (Diptera). The CytlDal protein had no any insecticidal activity against these insects.
     The cry69Aa1gene (3,651bp) encoded1,216amino acids. It had a deduced molecular mass of137.1kDa and39%identity with Cry4Ba protein as indicated by amino acid homology. Sequence analysis indicated that Cry69Aal and other known large Cry proteins contain eight conserved blocks. So Cry69Aal is a novel member of large Cry protein. For studying insecticidal activity of Cry69Aa1protein, the full-length sequence of cry69Aa1gene was inserted into a shuttle vector, pSTK, and expressed in a crystalliferous mutant Bt subsp. kurstaki HD73-. The transformant was examined with scanning electron microscope (SEM). The result showed that when cry69Aa1gene was expressed in the crystalliferous mutant Bt HD73-, it could form a large number of spherical parasporal crystals. The bioassay results inicated that spore-crystal complex of the transformants was highly toxic to the larvae of Culex quinquefasciatus (Diptera)(LCso=23.7μug/ml,95%confidence:20.5-26.4μg/ml).
     The cry54Ab1operon is composed of two ORFs oriented in the same direction. The first ORF, a cry54A-like gene, encoded743amino acids and it had a deduced molecular mass of84.5kDa. Based on encoded amino acid sequence homology, this cry gene was classified as cry54Ab1. The second ORF, located downstream of cry54Ab1, was separated from the cry54Ab1gene by a67bp untranslated gap. It is here called orf2. The orf2gene corresponded to a polypeptide of503amino acids and it had a deduced molecular mass of58.2kDa. In order to study insecticidal activity of cry54Ab1operon, the cry54Ab1, orf2, and the whole cry54Ab1operon were used to construct recombinant plasmid using shuttle vector pSTK, respectively. These recombinant plasmids were then expressed in the crystalliferous mutant Bt HD73-. The transformant was examined with SEM. The result showed that when the whole cry54Ab1operon were expressed in the crystalliferous mutant Bt HD73-, it could form a large number of spherical parasporal crystals. However, expression of cry54Abl or orf2alone in the crystalliferous mutant Bt HD73-did not produce any parasporal crystals. SDS-PAGE analysis indicated that when the whole cry54Ab1operon were expressed in the crystalliferous mutant Bt HD73-, it could produce a protein of approximately80kDa Cry54Ab1and another protein of approximately60kDa ORF2. However, expression of cry54Ab1or orf2alone in the crystalliferous mutant Bt HD73-, less expressed products were observed. The orf2gene even was not expressed in the crystalliferous mutant Bt HD73-. The bioassay results showed that the transformants expressing either the whole cry54Ab1operon or the cry54Abl gene alone showed larvicidal activity against C. quinquefasciatus (Diptera). However, transformants contained recombinant plasmid pSTK-orf2showed no larvicidal activity against C. quinquefasciatus. Transformants expressing the cry54Ab1gene alone had less than one-tenth the insecticidal activity of transformants expressing the whole cry54Ab1operon. Thus, ORF2protein can not only contribute to formation of parasporal crystals of Cry54Abl protein but also enhance the insecticidal activity of Cry54Ab1.
引文
[1]闻玉梅,微生物基因组研究进展及其意义.《中华微生物学和免疫杂志》,1999,19:353-355.
    [2]Collins, F. S., Green, E. D., Guttmacher, A. E., et al. A vision for the future of genomics research. Nature,2003,422:835-847.
    [3]Fleischmann, R. D., Adams, M. D., White, O., et al. Whole-genome random sequencing and assembly of Hoemphilus influenzae Rd. Science,1995,269(5223):496.
    [4]Bao, Q., Tian, Y., Li, W., et al. A complete sequence of the T. tengcongensis genome. Genome Res.,2002,12:689-700.
    [5]Ren, S., Fu, G., Jiang, X., et al. Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature,2003,422: 888-893.
    [6]Qian, W., Jia, Y., Ren, S., et al. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res., 2005,15:757-767.
    [7]Hu, X., Fan, W., Han, B., Complete genome sequence of the mosquitocidal bacterium Bacillus sphaericus C3-41 and comparion with those of closely related Bacillus species. J. Bacteriol.,2008,190(8):2892-2902.
    [8]Hood, D. W., Deadman, M. E., Allen, T., et al. Use of the complete genome sequence information of Haemophilus influenzae strain Rd to investigate lipopolysaccharide biosynthesis. Mol Microbiol.,1996,22:951-965.
    [9]Hood, D. W., Deadman, M. E., Jennings, M. P., et al. DNA repeats identify novel virulence genes in Haemophilus influenzae. Proc Natl Acad Sci USA,1996,93: 11121-11125.
    [10]Huber, R., Langworthy, T. A., Konig, H., et al. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90℃. Arch Microbiol.,1986,144(4):324-333.
    [11]Anderson, A. W., Nordan, H. C., Cain, R. F., et al. Studies on a radio-resistant micrococcus. I. isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technol.,1956,10(1):575-577.
    [12]Clark, D. P., Dunlap, P. V., Madigan, M. T., et al. Brock biology of microorganisms. San Francisco:Pearson,2009,481p.
    [13]Makarova, K. S., Aravind, L., Wolf, Y. I., et al. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol R.,2001,65(1):44-79.
    [14]周冬生,杨瑞馥.细菌比较基因组学和进化基因组学.微生物学杂志.2003,23(5):31-35.
    [15]Cai, H., Thompson, R., Budinich, M. F., et al. Genome sequence and comparative genome analysis of Lactobacillus casei: insights in their niche-associated evolution. Genome. Biol. Evol.,2009,1:239-257.
    [16]Wei, J., Goldberg, M. B., Burland, V., et al. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect. Immun.,2003, 71(5):2775-2786.
    [17]Lorenz, P., Eck, J., Metagenomics and industrial applications. Nat Rev Microbiol., 2005,3:510-516.
    [18]Oh, H. J., Cho, K. W., Jung, I. S., Expanding functional spaces of enzymes by utilizing whole genome treasure for library const ruction. J. Mol Catal B:Enzymatic.,2003, 26(3):241-250.
    [19]Kurokawa, K., Itoh, T., Kuwahara, T., et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res.,2007,14:168-181.
    [20]Pennisi, E., Metagenomics. Massive microbial sequence project proposed. Science, 2007,315:1781.
    [21]Tringe, S. G., von Mering, C., Kobayashi, A., et al. Comparative metagenomics of microbial communities. Science,2005,308:554-557.
    [22]Daniel, R., The metagenomics of soil. Nat Rev Microbiol.,2005,3:470-478.
    [23]Kacar, Y., Arpa, C., Tan, S., et al. Biosorption of Hg(II) and Cd(II) from aqueous solutions:Comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochoete chrysosporium. Process Biochem.,2002,37(6):601-610.
    [24]Jensen, G. B., Hansen, B. M., Eilenberg, J., et al. The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol.,2003,5(8):631-640.
    [25]Helgason, E., Okstad, O.A., Caugant, D.A., et al. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis - one species on the basis of genetic evidence. Appl. Environ. Microbiol.,2000,166:2627-2630.
    [26]Daffonchio, D., Cherif, A., and Borin, S., Homoduplex and heteroduplex polymorphisms of the amplified ribosomal 16S-23S internal transcribed spacers describe genetic relationships in the''Bacillus cereus group'. Appl. Environ. Microbiol.,2000,66: 5460-5468.
    [27]Mikesell, P., Ivins, B. E., Ristroph, J. D., et al. Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect. Immun.,1983,39:371-376.
    [28]Benjamin, L., Portnoy, J., Goepfert, M., et al. An outbreak of Bacillus cereus food poisoning resulting from contaminated vegetable spouts. Am. J. Epidemiol.,1976,103: 589-594.
    [29]Han, C. S., Xie, G., Challacombe, J. F., et al. Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J. Bacteriol.,2006,188:3382-3390.
    [30]Rasko D.A., Aitherr M.R., Han C.S., and Ravel J., Genomics of the Bacillus cereus group of organisms, FEMS Microbiol. Rev.,2005,29(2):303-329.
    [31]谭寿湖,张文飞,叶大为,苏云金芽胞杆菌基因组研究概况,基因组学与应用生物学,2009,28(1):202-208.
    [32]Challacombe, J. F., Altherr, M. R., Xie, G., et al. The complete genome sequence of Bacillus thuringiensis Al Hakam. J. Bacteriol.,2007,189(9):3680-3681.
    [33]Zhu, Y., Shang, H., Zhu, Q., et al. Complete genome sequence of Bacillus thuringiensis serovar. finitimus strain YBT-020. J. Bacteriol.,2011,193(9):2379-2380.
    [34]He, J., Wang, J., Yin, W., et al. Complete genome sequence of Bacillus thuringiensis subsp. chinensis strain CT-43. J. Bacteriol.,2011,193(13):3407-3408.
    [35]Ibarra. J. E., del Rincon, M. C., Orduz, S., et al. Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species. Appl. Environ. Microbiol.,2003,69(9):5269-5274.
    [36].朱军,谭芙蓉,余秀梅等.四川盆地生态区苏云金芽胞杆菌cry基因的鉴定及新 型模式cry基因的克隆.微生物学报,2009,49(3):324-330.
    [37]Faust, R. M., Abe, K., Held, G. A. et al. Evidence for plasmid-associated crystal toxin production in Bacillus thuringiensis subsp. Israelensis. Plasmid,1983,9:98-103.
    [38]李荣森,陈涛.几种苏云金芽胞杆菌的毒力及形态结构.微生物学报,1981,21(3):311-317.
    [39]Donovan, W. P., GonzalezJ, M. J., Gilbert, M. P., et al. Isolation and characteriza-tion of EG2158, a new strain of Bacillus thuringiensis toxic to Coleopteran larvae, and nucleotide sequence of the toxin gene. Mol. Gen. Genet.,1988,214(3):365-372.
    [40]Rodriguez-Padilla, C., Galan-Wong, L., de Barjac, H., et al. Bacillus thuringiensis subspecies neoleonensis serotype H-24, a new subspecies which produces a triangular crystal. J. Invertebr. Pathol.,1990,56(2):280-282.
    [41]Gao, M., Li, R., Dai, S., et al. Diversity of Bacillus thuringiensis strains from soil in China and their pesticidal activities. Biological Control.,2008,44:380-388.
    [42]Jouzani, G. S., Abad, A. P., Seifinejad, A., et al. Distribution and diversity of dipteran-specific cry and cyt genes in native Bacillus thuringiensis strains obtained from different ecosystems of Iran. J. Ind Microbiol Biotechnol.,2008,35:83-94.
    [43]Calabrese, D. M., Nickerson, K. W., Lane, L. C., et al. A comparison of protein crystal subunit sizes Bacillus thuringiensis. Can. J. Microbiol.,1980,26:1006-1010.
    [44]任改信,冯喜吕,冯维熊.苏云金杆菌伴胞晶体的形态及抗原特性体.微生物学报,1983,23(1):57-62.
    [45]Tounsi, S. and Jaoua, S., Characterization of a novel cry2Aa-type gene from Bacillus thuringiensis subsp. kurstaki. Biotechnol Lett.,2003,25:1219-1223.
    [46]Baroy, F., Lecadet, M. M., Deleluse, A. Cloning and sequencing of three new putative toxin genes from Clostridium befermentans. Gene,1998,211:293-295.
    [47]Yu, H., Zhang, J., Huang, D. F. et al. Characterization of Bacillus thuringiensis strain Bt185 toxic to the Asian cockchafer:Holotrichia parallela. Curr. Microbiol.,2006, 53:13-17.
    [48]Balasubramanian, P., Jayakumar, R., Shambharkar, P., et al. Cloning and characterization of the crystal protein-encoding gene of Bacillus thuringiensis subsp. yunnanensis. Appl. Environ. Microbiol.,2002,68(1):408-411.
    [49]Guo, S.X., Liu, M., Peng, D.H., et al. New strategy for isolating novel nematicidal crystal protein genes from Bacillus thuringiensis strain YBT-1518. Appl. Environ. Microbiol.,2008,74(22):6997-7001.
    [50]Sekar, V., Thompson, D. V., Maroney, M. J., et al. Molecular cloning and characterization of the insecticidal crystal protein gene of Bacillus thuringiensis var. tenebrionis. Proc. Natl. Acad. Sci.,1987,84:7036-7040.
    [51]Kotze, A. C., O'Grady, J., Gough, J. M., et al. Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. Int. J. Parasitol., 2005,35:1013-1022
    [52]Zheng, D.S., Valdez-Cruz, N.A., Armengol, G. Co-expression of the mosquitocidal toxins Cyt1Aa and CryllAa from Bacillus thuringiensis Subsp. israelensis in Asticcacaulis excentricus. Curr Microbiol.,2007,54:58-62.
    [53]Crickmore, N., Zeigler, D. R., Feitelson, J. et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Mol. Boil. Rev.,1998,62:807-813.
    [54]Vazquez-Padron, R. I., Riva, G., Aguero, G., et al. Cryptic endotoxic nature of Bacillus thuringiensis CrylAb insecticidal crystal protein. FEBS Letters.,2004,570: 30-36.
    [55]Kalman, S., Kiehne, K. L., Libs, J. L., et al. Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Appl. Environ. Microbiol.,1993,59(4): 1131-1137.
    [56]Pinto, L. M., Azambuja, A. O., Diehl, E. et al. Pathogenicity of Bacillus thuringiensis isolated from two species of Acromyrmex(Hymenoptera, Formicidae). Braz. J. Biol., 2003,63(2):301-306.
    [57]Ohba, M., Mizuki, E., and Uemori, A., Parasporin, a new anticancer protein group from Bacillus thuringiensis. Anticancer Res.,2009,29:427-434.
    [58]Yamashita, S., Katayama, H., Saitoh, H., et al. Typcal three-domain Cry proteins of Bacillus thuringiensis strain A1462 exhibit cytocidal activity on limited human cancer cells. J Biochem.,2005,138:663-672.
    [59]苏旭东,张伟,袁耀武等.河北省部分地区苏云金芽胞杆菌菌株多样性的研究.安徽农业科学,2007,35(18):5540-5541.
    [60]Wang, J., Boets, A., Van, R. J. et al. Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China. J. Invertebr. Pathol.,2003,82 (1):63-71.
    [61]Schnepf, H. E., Wong, H. C., Whiteley, H. R., et al. The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence. J. biol. chem.,1985,260:6264-6272.
    [62]Hofte, H., Whiteley, H. R., Insecticidal crystal protein of Bacillus thuringiensis. Microbiol. Rev.,1989,53:242-255.
    [63]Crickmore, N., Zeigler, D. R., Feitelson, J. et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Mol. Boil. Rev.,1998,62:807-813.
    [64]Crickmore, N., Zeigler, D. R., Schnepf, H. E. et al. Bacillus thuringiensis toxin nomenclature.2001.
    [65]Grochulski, P., Masson, L., Borisova, S., et al. Bacillus thuringiensis Cry1A(a) insecticidal toxin:crystal structure and channel formation. J. Mol. Biol.,1995,254: 447-464.
    [66]Derbyshire, D. J., Ellar, D. J., and Li, J., Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine. Acta Crystallogr D Biol Crystallogr,2001,57:1938-1944.
    [67]Morse, R. J., Yamamoto, T., Stroud R. M., Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure,2001,9:409-417.
    [68]Li, J., Carroll, J., Ellar, D. J., Crystal structure of insecticidal 8-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature,1991,353:815-821.
    [69]Boonserm, P., Davis, P., Ellar, D. J., Li, J., Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J. Mol. Biol.,2005,348(2):363-382.
    [70]Guo, S., Ye, S., Liu, Y., et al. Crystal structure of Bacillus thuringiensis Cry8Ea1:an insecticidal toxin toxic to underground pests, the larvae of holotrichia parallela. J. Struct. Biol.,2009,168(2):259-266.
    [71]Grochulski, P., Masson, L., Borisova, S., et al. Bacillus thuringiensis CrylA(a) insecticidaltoxin:crystal structure and channel formation. J. Mol. Biol.,1995,254: 447-464.
    [72]Corp, M., Diego, S. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev.,1998,62 (3):775-806.
    [73]Manasherob, R., Itsko, M., Sela-Baranes, N., et al. Cyt1Ca from Bacillus thuringiensis subsp. israelensis: production in Escherichia coli and comparison of its biological activities with those of other Cyt-like proteins. Microbiology,2006,152: 2651-2659.
    [74]MacKinnon, R. and Miller, C. Mutant potassium channels with altered binding of charybdot-oxin, a pore-blocking peptide inhibitor. Science,1989,245:1382-1385.
    [75]English, L., Slatin, S. L. Mode of action of delta-endotoxins from Bacillus thuringiensis. a comparison with other bacterial toxins. Insect Biol.1992.22 (1):1-7.
    [76]Knowles, B. H., Blat, M. R., Tester, M., et al. A cytolitic delta-endotoxin from Bacillus thingiensis var.israelensis forms cation-selective channals in planar lipid bilayes. FEBS Lett.,1989,244:259-262.
    [77]Promdonkoy, B., Ellar, D. J., Structure-function relationships of a membrane pore forming toxin revealed by reversion mutagenesis. Mol. Membr. Biol.,2005,22(4): 327-337.
    [78]Butko, P., Cytolytic toxin Cyt1A and its mechanism of membrane damage:data and hypotheses. Appl. Environ. Microbiol.,2003,69(5):2415-2422.
    [79]Crikmore, N., Bone, E. J., Williams, J. A., et al. Contribution of the individual components of the δ-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbiol. Lett.,1995,131:249-254.
    [80]Bhalla, R., Dalal, M., Panguluri, S. K., et al. Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. FEMS Microbio. Lett.,2005,243:467-472.
    [81]Selvapandiyan, A., Arora, N., Rajagopal, R., et al. Toxicity analysis of N- and C-terminus deleted vegetative insecticidal protein from Bacillus thuringiensis. Appl. Environ. Microbiol.,2001,67:5855-5858.
    [82]Yu, C. G., Mullins, A., Warren, G. W., et al. The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl. Environ. Microbiol.,1997,63:532-536.
    [83]Estruch, J. J., Warren, G. W., Mullins, M. A., et al. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA,1996,93:5389-5394.
    [84]Rang, C., Gil, P., Neisner, N., et al. Novel Vip3-related protein from Bacillus thuringiensis. Appl. Environ. Microbiol.,2005,71:6276-6281.
    [85]Palma, L., Hernandez-Rodriguez, C. S., Maeztu, M., et al. Vip3C, a novel class of vegetative insecticidal proteins from Bacillus thuringiensis. Appl. Environ. Microbiol., 2012,78:7163-7165.
    [86]Lee, M. K., Walters, F. S., Hart, H., et al. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-endotoxin. Appl. Environ. Microbiol.,2003,69:4648-4657.
    [87]Han, S., Craig, J. A., Putnam, C. D., et al. Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat. Struct. Biol.,1999,6:932-936.
    [88]Farkas, J., Sebesta, K., Horska, K., et al. The structure of exotoxin of Bacillus thuringiensis var. gelechiae. Coll. Czech. Chem. Com.,1969,34:1118-1120.
    [89]Sebesta, K., Horska, K., et al. Mechanism of inhibition of DNA-dependent RNA polymerase by exotoxin of Bacillus thuringiensis. Biochim. Biophys. Acta.,1970,209: 357-376.
    [90]Esoinasse, S., Gohar, M., Lereclus, D., et al. An extracytoplasmic-function sigma factor is involved in a pathway controlling β-exotoxin I production in Bacillus thuringiensis subsp. thuringiensis Strain 407-1. J. Bacteriol.,2004,184:3108-3116.
    [91]Burgerjon, A., Biache, G., Cals, P., Teratology of the Colorado potato beetle, Leptinotarsa decemlineata, as provoked by larval administration of the thermostable toxin of Bacillus thuringiensis. J. Invertebr. Pathol.,1969,14:274-278.
    [92]Beebee, T., Korner, A., Bond, R. P., Differential inhibition of mammalian ribonucleic acid polymerases by an exotoxin from Bacillus thuringiensis. the direct observation of nucleoplasmic ribonucleic acid polymerase activity in intact nuclei. Biochem. J.,1972,127: 619-634.
    [93]Mackedonski, V. V., Nikolaev, N., Sebesta, K., et al. Inhibition of ribonucleic acid biosynthesis in mice liver by the exotoxin of Bacillus thuringiensis. Biochim. Biophys. Acta.,1972,272:56-66.
    [94]Beveridge, T. J., Pouwels, P. H., Sara, M., et al. Fuction of S-layers. FEMS Microbiol. Rev.,1997,20:99-149.
    [95]Pena, G., Miranda-Rios, J., de la Riva, G., et al. A Bacillus thuringiensis S-layer protein involved in toxicity against Epilachna varivestis (Coleoptera:Coccinellidae). Appl. Environ. Microbiol.,2006,72(1):353-360.
    [96]Guo, G., Zhang, L., Zhou, Z., et al. A new group of parasporal inclusions encoded by the S-layer gene of Bacillus thuringiensis. FEMS Microbiol. Lett.,2008,282:1-7.
    [97]Emmert, E. A., Klimowicz, A. K., Thomas, M. G., et al. Genetics of zwittermicin A production by Bacillus cereus. Appl. Environ. Microbiol.,2004,70(1):104-113.
    [98]Silo-Suh, L. A., Stabb, E. V., Raffel, S. J., et al. Target range of zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Curr. Microbiol.,1998,37(1):6-11.
    [99]Zhao, C., Zeng, H., Yu, Z., et al. N-Acyl homoserine lactonase promotes prevention of erwinia virulence with zwittermicin A-producing strain Bacillus cereus. Bitechnol. Bioeng.,2008,100(3):599-603.
    [100]Broderick, N. A., Goodman, R. M., Raffa, K. F., et al. Synergy between zwittermicin A and Bacillus thuringiensis subsp. kurstaki against gypsy moth (Lepidoptera: Lymantriidae). Environ. Entomol.,2000,29:101-107.
    [101]Damgaard, P. H., Diarrhoeal enterotoxin production by strains of Bacillus thuringiensis isolated from commercial Bacillus thuringiensis-based insecticides. FEMS Immunol. Med. Microbio.l,1995,12:245-250.
    [102]Hansen, B. M., Hendriksen, N. B., Detection of enterotoxin Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol.,2001,67: 185-189.
    [103]Klimowicz, A. K., Benson, T. A., Handelsman, J., A quadruple-enterotoxin-deficient mutant of Bacillus thuringiensis remains insecticidal. Microbiology,2010,156: 3575-3583.
    [104]Mizuki, E., Ohba, M., Akao, T., et al. Unique activity associated with non-insecticidal Bacillus thuringiensis paraporal inclusions:in vitro cell-killing action on human cancer cells. J. Appl. Microbiol.,1999,86:477-486.
    [105]Johnston, P. R., Crickmore, N., Gut Bacteria Are Not Required for the Insecticidal Activity of Bacillus thuringiensis toward the Tobacco Hornworm, Manduca sexta. Appl. Environ. Microbiol.,2009,75:5094-5099.
    [106]Wiwat, C., Thaithanum, S., Pantuwatana, S., et al. Toxicity of chitinase-producing Bacillus thuringiensis ssp. kurstaki HD-1 (G) toward Plutella xylostella. J. Invertebr. Pathol.,2000,76:270-277.
    [107]Sampson, M. N., Gooday, G. W., Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. Microbiology,1998,144:2189-2194.
    [108]Luo, X., Chen, L., Huang, Q., et al. Bacillus thuringiensis metalloproteinase Bmpl functions as a nematicidal virulence factor. Appl. Environ. Microbiol.,2013,79:460-468.
    [109]Reyes-Ramirez, A., Ibarra, J. E., Plasmid patterns of Bacillus thuringiensis type strains. Appl. Environ. Microbiol.,2008,74:125-129.
    [110]刘贵明.苏云金芽胞杆菌YBT-1520全基因组测序和比较基因组学研究[博士学位论文].浙江杭州市,浙江大学,2007.
    [111]Gonzalez, J. M., Dulmage, H. T., Carlton, B. C. Correlation between specific plasmids and δ-endotoxin in production in Bacillus thuringiensis. Plasmid,1981,5: 351-365.
    [112]Kronstad, J. W., Schnepf, H. E., Whiteley, H. R., Diversity of locations for Bacillus thuringiensis crystal protein genes. J. Bacteriol.,1983,154:419-428.
    [113]Srinivas, G., Vennison, S. J., Sudha, S. N., et al. Unique regulation of crystal protein production in Bacillus thuringiensis subsp. yunnanensis is mediated by the cry protein-encoding 103-Megadalton plasmid. Appl. Environ. Microbiol.,1997,63(7): 2792-2797.
    [114]Ward, E. S., Ellar, D. J., Assignment of the 8-endotoxin gene of Bacillus thuringiensis var. israelensis to a specific plasmid by curing analysis. FEBS Lett.,1983, 158:45-49.
    [115]Ben-Dov, E., Einav, M., Peleg, N., et al. Restriction map of the 125-kilobase plasmid of Bacillus thuringiensis subsp. israelensis carrying the genes that encode delta-endotoxins active against mosquito larvae. Appl. Environ. Microbiol.,1996,62:3140-3145.
    [116]Berry, C., O'Neil, S., Ben-Dov, E., et al. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol.,2002,68(10):5082-5095.
    [117]Levinson, B. L., Kasyan, K. J., Chiu, S. S., et al. Identification of β-exotoxin production, plasmids encoding β-exotoxin, and a new exotoxin in Bacillus thuringiensis by using high-performance liquid chromatography. J. Bacteriol.,1990,172:3172-3179.
    [118]Park, H. W., Bideshi, D. K., Federici, B. A., The 20-kDa protein of Bacillus thuringiensis subsp. israelensis enhances Bacillus sphaericus 2362 bin toxin synthesis. Curr Microbiol.,2007,55(2):119-124.
    [119]Leonard C., Chen, Y., Mahillon, J., Diversity and differential distribution of IS231, IS232 and IS240 among Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides. Microbiology,1997,143:2537-2547.
    [120]Baum, J. A., Tn5401, a new class II transposable element from Bacillus thuringiensis. J. Bacteriol.,1994,176:2835-2845.
    [121]Amadio, A. F., Benintende, G. B., Zandomeni, R. O., Complete sequence of three plasmids from Bacillus thuringiensis INTA-FR7-4 environmental isolate and comparison with related plasmids from the Bacillus cereus group. Plasmid,2009,62(3):172-182.
    [122]Van der Auwera, G. A., Timmery, S., Hoton, F., et al. Plasmid exchanges among members of the Bacillus cereus group in foodstuffs. Int. J. Food Microbiol.,2007,113: 164-172.
    [123]Battisti, L., Green, B. D., Thorne, C. B., Mating system for transfer of plasmids among Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. J. Bacteriol.,1985, 162:543-550.
    [124]Wilcks, A., Jayaswal, N.; Lereclus, D., Characterization of plasmid pAW63, a second self-transmissible plasmid in Bacillus thuringiensis subsp. kurstaki HD73. Microbiology,1998,144:1263-1270.
    [125]Timmery, S., Modrie, P., Minet, O., et al. Plasmid capture by the Bacillus thuringiensis conjugative plasmid pXO16. J. Bacteriol.,2009,191:2197-2205.
    [126]Abdoarrahem, M. M., Gammon, K., Dancer, B. N., et al. Genetic basis for alkaline activation of germination in Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol.,2009,75:6410-6413.
    [127]Benoit, T. G., Wilson, G. R., Bull, D. L., Plasmid-associated sensitivity of Bacillus thuringiensis to UV light. Appl. Environ. Microbiol.,1990,56:2282-2286.
    [128]余健秀,庞义,邓日强,高毒广谱杀虫苏云金芽胞杆菌工程菌TnY.中国病毒学,2000,15:242-243.
    [129]Downing, K. J., Leslie, G., Thomson, J. A., Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl. Environ. Microbiol.,2000, 66:2804-2810.
    [130]吕颂雅,刘子铎,戴经元等.苏云金芽胞杆菌杀虫基因在鱼腥藻中克隆和表达的初步研究.水生生物学报,1999,23(2):174-178.
    [131]Vaeck M., Reynaerts A., Hofte H., et al. Transgenic plants protected from insect attack. Nature,1987,328:33-37.
    [132]Fischhoff, D.A., Bowdisch, K.S., Perlak, F.J., et al. Insect tolerant transgenic tomato plants. Biotechnol.,1987,5:807-813.
    [133]Delannay, S., LaVallee, B. J., Proksch, R. K., et al. Field performance of transgenic tomato plants expressing the Bacillus thuringlensis var. kurstaki insect control protein. Bio/Technology,1989,7:1265-1269.
    [134]Bergvinson, D., Willcox, M., Hoisington, D., Efficacy and deployment of transgenic plants for stemborer management. Insect Sci Applic.,1997,17(1):157-167.
    [135]Singsit, C., Adang, M. J., Lynch, R. E., et al. Expression of a Bacillus thuringiensis cry1A(c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Res.,1997,6(2):169-176.
    [136]Benedict, J. H., Sachs, E. S., Altman, D. W., et al. Field performance of Cottons expressing transgenic CrylA insecticidal proteins for resistance to Heliothis virescns and Helicoverpa zea (Lepidoptera:Noctuidae). J. Econ. Entomol.,1996,89:230-238.
    [137]Jansens, S., Cornelissen, M., de Clercq, R., Phthorimaea operculella (Lepidoptera: Gelechiidae) resistance in potato by expression of the Bacillus thuringiensis CryIA(b) insecticidal crystal protein. J. Econ. Entomol.1995,88(5):1469-1476.
    [138]倪万潮,黄骏麒,郭三堆.转Bt杀虫蛋白基因的抗棉铃虫棉花新品质.江苏农业学报,1996,12(1):1-6.
    [139]朱军,四川盆地苏云金芽胞杆菌cry和cyt基因的鉴定及其新型模式cry基因研究[博士学位论文].四川省成都市,四川农业大学,2010.
    [140]Tan, F., Zheng, A., Zhu, J., et al. Rapid cloning, identification, and application of one novel crystal protein gene cry30Fal from Bacillus thuringiensis. FEMS. Microbiol Lett.,2010,302:46-51.
    [141]Tan, FR, Zhu J, Tang J, et al. Cloning and characterization of two novel crystal protein genes, cry54Aa1 and cry30Fa1, from Bacillus thuringiensis strain BtMC28. Curr. Microbiol.,2009,58(6):654-659.
    [142]Delcher, A. L., Harmon, D., Kasif, S., et al. Imroved microbial gene identification with GLIMMER. Nucleic. Acids. Res.,1999,27:4636-4641.
    [143]Lowe, T. M., and Eddy, S. R., tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence. Nucleic. Acid.s Res.,1997,25:955-964.
    [144]Lagesen, K., Hallin, P. Rodland, E. A., et al. RNAmmer:consistent and rapid annotation of ribosomal RNA genes. Nucleic. Acids. Res.,2007,35:3100-3108.
    [145]Grigoriev, A., Analyzing genomes with cumulative skew diagrams. Nucleic. Acids. Res.,1998,26:2286-2290.
    [146]Benson, G. Tandem repeats finder:a program to analyze DNA sequences. Nucleic. Acids. Res.,1999,27(2):573-580.
    [147]Altschul, S. F., Madden, T. L., Schaffer, A. A., et al. Gapped BLAST and PSI-BLAST:A new generation of protein database search programs. Nucleic. Acids. Res., 1997,25:3389-3402.
    [148]Enright, A. J., Van Dongen, S., Ouzounis, C. A., An efficient algorithm for large-scale detection of protein families. Nucleic. Acids. Res.,2002,30(7):1575-1584.
    [149]Edgar, R. C., MUSCLE:A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics,2004,5:113.
    [150]Talavera, G., Castresana, J., Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol.,2007,56: 564-577.
    [151]Tamura, K., Peterson, D., Peterson, N., et al. (2011) MEGA5:Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol.,2011,28(10):2731-2739.
    [152]Letunic, I., Bork, P., Interactive Tree Of Life (iTOL):An online tool for phylogenetic tree display and annotation. Bioinformatics,2007,23:127-128.
    [153]Huson, D. H., Kloepper, T. H., Computing recombination networks from binary sequences. Bioinformatics,2005,21:ⅱ159-ⅱ165.
    [154]Lovgren, A., Zhang, M., Engstrom, A., et al. Molecular characterization of immune inhibitor A, a secreted virulence protease from Bacillus thuringiensis. Mol. Microbiol., 1990,4:2137-2146.
    [155]Dalhammar, G., and Steiner, H., Characterization of inhibitor A, a protease from Bacillus thuringiensis which degrades attacins and cecropins, two classes of antibacterial proteins in insects. Eur. J. Biochem.,1984,139:247-252.
    [156]Rahman, S. M., Pu, M. Y., Yi, H., et al. Promotion of cytotoxic T-cell generation in mixed leukocyte culture by phosphatidylinositol-specific phospholipase C from Bacillus thuringiensis. Infect. Immun.,1995,63:259-263.
    [157]Sara, M., and Sleytr, U. B., S-layer proteins. J. Bacteriol,2000,182:859-868. Mesnage, S., Tosi-Couture, E., Mock, M., et al. Molecular characterization of the Bacillus anthracis main S-layer component:evidence that it is the major cell-associated antigen. Mol. Microbiol.,1997,23:1147-1155.
    [158]Tanada, Y., Inoue, H., Hess, R. T., et al. Site of action of a synergistic factor of agranulosis virus of the armyworm, Pseudaletia unipuncta. J. Invertebr. Pathol.,1980,35: 249-255.
    [159]Dan, Z., Guo, W., Sun, W., et al.Indentification of a novel enhancing-like gene from Bacillus thuringiensis. Frontiers of Agriculture in China,2011,5(4):423-429.
    [160]Liu, M., Cai, Q., Liu, H., Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. J. Appl. Microbiol.,2002,93:374-379.
    [161]Jones, S., Yu, B., Bainton,N. J., et al. The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J.,1993,12:2477-2482.
    [162]Passador, L., Cook, J. M., Gambello, M. J., et al. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science,1993,260: 1127-1130.
    [163]Fray, R. G., Throup, J. P., Daykin, M., et al. Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nat. Biotechnol.,1999,17: 1017-1020.
    [164]Lee, S. J., Park, S., Lee, J., et al. Gene encoding the N-Acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl. Environ. Microbiol.,2002,68:3919-3924.
    [165]Smith, H., Keppie, J., Observations on experimental anthrax:demonstration of a specific lethal factor produced in vivo by Bacillus anthracis. Nature,1954,173 (4410): 869-870.
    [166]Manhart, C. M., McHenry, C. S., The PriA replication restart protein blocks replicase access prior to helicase assembly and directs template specificity through its ATPase activity. J. Biol. Chem.,2013,288(6):3989-3999.
    [167]Brown, N. L., Stoyanov, J. V., Kidd, S. P., et al. The MerR family of transcriptional regulators. FEMS. Microbiol. Rev.,2003,27:145-163
    [168]Barragan, M. J., Blazquez, B., Zamarro, M. T., et al. BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. J. Biol. Chem.,2005,20(11):10683-10694.
    [169]Lee, S. J., Engelmann, A., Horlacher, R., et al. TrmB, a sugar-specific transcriptional regulator of the trehalose/maltose ABC transporter from the hyperthermophilic Archaeon Thermococcus litoralis. J. Biol. Chem.,2003,278(2):983-990.
    [170]Maddocks, S. E., and Oyston, P. C. F., Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology,2008,154:3609-3623.
    [171]Busenlehner, L. S., Pennella, M. A., Giedroc, D. P., The SmtB/ArsR family of metalloregulatory transcriptional repressors:structural insights into prokaryotic metal resistance. FEMS. Microbiol. Rev,2003,27:131-143.
    [172]Ramos, J. L., Martinez-Bueno, M., Molina-Henares, A. J., et al. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev.,2005,69(2):326-356.
    [173]Nguyen, C. C., and Saier, M. H., Phylogenetic, structural and functional analyses of the LacI-GalR family of bacterial transcription factors. FEBS. Lett.,1995,277:98-102.
    [174]van der Mee-Marquet, N., Domelier, A. S., Mereghetti, L., et al. Prophagic DNA fragments in Streptococcus agalactiae strains and association with neonatal meningitis. J. Clin. Microbiol.,2006,44(3):1049-1058.
    [175]Schroder, G., Krause, S., Zechner, E. L., et al. TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system:inner membrane gate for exported substrates? J. Bacteriol.,2002,184(10):2767-2779.
    [176]Park, H. W., Tang, M., Sakano, Y., et al. A 1.1-kilobase region downstream of the bin operon in Bacillus sphaericus strain 2362 decreases bin yield and crystal size in strain 2297. Appl. Envirol. Microbiol.,2009,75(3):878-881.
    [177]Elgrably-Weiss, M., Schlosser-Silverman, E., Rosenshine, I., et al. DeoT, a DeoR-type transcriptional regulator of multiple target genes. FEMS. Microbiol. Lett.,2006, 254:141-148.
    [178]Fineran, P. C., Everson, L., Slater, H., et al. A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia. Microbiology,2005,151: 3833-3845.
    [179]Gallegos, M. T., Schleif, R., Bairoch, A., et al. Arac/XylS family of transcriptional regulators. Microbiol. Mol. Biol. Rev.,1997,61(4):393-410.
    [180]Wirth, M. C, Yang, Y., Walton, W. E., et al. Mtx toxins synergize Bacillus sphaericus and Cry11Aa against susceptible and insecticide-resistant Culex quinquefasciatus larvae. Appl. Environ. Microbiol.,2007,73(19):6066-6071.
    [181]Stolt, P., and Stoker, N. G., Protein DNA interactions in the ori region of the Mycobacterium fortuitum plasmid pAL5000.J. Bacteriol.,1996,178:6693-6700.
    [182]Aiba, H., Mechanism of RNA silencing by Hfq-binding small RNAs. Curr. Opin. Microbiol.,2007,10(2):134-139.
    [183]Wilcks, A., Smidt, L.,(?)kstad, O. A., et al. Replication mechanism and sequence analysis of the replicon of pAW63, a conjugative plasmid from Bacillus thuringiensis. J. Bacteriol.,1999,181(10):3193-3200.
    [184]Koetje, E. J., Hajdo-Milasinovic, A., Kiewiet, R., et al. A plasmid-borne Rap-Phr system of Bacillus subtilis can mediate cell-density controlled production of extracellular proteases. Microbiology,2003,149:19-28.
    [185]Abdullah, M. A., Alzate, O., Mohammad, M., et al. Introduction of Culex toxicity into Bacillus thuringiensis Cry4Ba by protein engineering. Appl. Environ. Microbiol., 2003,69(9):5343-5353.
    [186]Ito, T., Ikeya, T., Sahara, K., et al. Cloning and expression of two crystal protein genes, cry30Bal and cry44Aal, obtained from a highly mosquitocidal strain, Bacillus thuringiensis subsp. entomocidus INA288. Appl. Environ. Microbiol.,2006,72(8): 5673-5676.
    [187]Ito, T., Sahara, K., Bando, H., et al. Cloning and expression of novel crystal protein genes cry39A and 39orf2 from Bacillus thuringiensis subsp. aizawai Bun 1-14 encoding mosquitocidal proteins. J. Insect. Biotechnol. Sericol.,2002,71:123-128.
    [188]Guo, S., Liu, M., Peng, D., et al. New strategy for isolating novel nematicidal crystal protein genes from Bacillus thuringiensis strain YBT-1518. Appl. Environ. Microbiol., 2008,74:6997-7001.
    [189]Zhang, F., Peng, D., Ye, X., et al. In vitro uptake of 140 kDa Bacillus thuringiensis nematicidal crystal proteins by the second stage juvenile of meloidogyne hapla. Plos One, 2012,7(6):e38534.
    [190]Manasherob, R., Itsko, M., Sela-Baranes, N., et al. Cyt1Ca from Bacillus thuringiensis subsp. israelensis:production in Escherichia coli and comparison of its biological activities with those of other Cyt-like proteins. Microbiology,2006,152: 2651-2659.
    [191]Berry, C., O'Neil, S., Ben-Dov, E., et al. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol.,2002,68:5082-5095.
    [192]Perez, C, Fernandez, L. E., Sun, J., et al. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. PNAS., 2005,102:18303-18308.
    [193]Hernandez-Soto, A., Del Rincon-Castro, M. C., Espinoza, A. M., et al. Parasporal body formation via overexpression of the CrylOAa toxin of Bacillus thuringiensis subsp. israelensis, and CrylOAa-Cyt1Aa synergism. Appl. Environ. Microbiol.2009,75: 4661-4667.
    [194]Eleazar Barboza, J., Park, H.W., Bideshi, D. K., et al. The 60-kDa protein encoded by orf2 in the cry19A operon of Bacillus thuringiensis subsp. jegathesan functions like a C-terminal crystallization domain. Appl. Environ. Microbiol.,2012,78(6):2005-2012.
    [195]Ohgushi, A., Saitoh, H., Wasano, N., et al. Cloning and characterization of two novel genes, cry24B and s1orf2, from a mosquitocidal strain of Bacillus thuringiensis serovar sotto. Curr. Microbiol,2005,51:131-136.
    [196]Rosso, M. L., Delecluse, A., et al. Contribution of the 65-Kilodalton protein encoded by the cloned gene cryl9A to the mosquitocidal activity of Bacillus thuringiensis subsp. Jegathesan. Appl. Environ. Microbiol.,1997,63(11):4449-4455.
    [197]Thorne, L., Garduno, F., Thompson, T., et al. Structural similarity between the Lepidoptera- and Diptera-specific insecticidal endotoxin genes of Bacillus thuringiensis subsp. "kurstaki" and "israelensis" J. Bacteriol.,1986,166:801-811.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700