六种苔类植物化学成分分离、羽苔素G的全合成及生物活性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苔藓植物在分类学上介于藻类和蕨类之间,从形态学上可以分为苔纲(Hepaticae)、藓纲(Musci)和角苔纲(Anthocerotae)三类。苔类植物在全球约有6000余种,我国约有880余种。近年来,对苔类植物的化学成分研究较多,因为这类植物的细胞中含有独特的油体,其中富含脂溶性萜类和芳香类化合物,而藓纲和角苔纲植物细胞中不含油体。苔类植物中很多次生代谢产物具有良好的生物活性。近年来,从苔类植物中分离得到大量结构新颖而且活性显著的倍半萜、二萜和双联苄类化合物,其中许多化合物具有很好的生物学活性,可以作为药物研发的先导化合物。
     双联苄类化合物是苔类植物中的特征性成分,具有多种显著生物活性。以活性显著地双联苄类化合物为目标进行全合成,并且进一步对其结构进行修饰衍生化,对于发现和研制新型药物具有重要意义。
     本文对采自中国的六种苔类植物,包括采自广西的全缘广萼苔(Chandonanthus birmensis)、斯氏合叶苔(Scapania stephanii)和鳞叶拟大萼苔(Cephaloziella kiaeri),采自云南的齿叶耳叶苔(Frullania serrata),以及采自贵州的尖瓣光萼苔(东亚亚种)(Porella acutifolia subsp. tosana)和短齿羽苔(Plagiochila vexans)的化学成分研究进行了系统的阐述,共从中分离鉴定了61个化合物。综合采用核磁共振、质谱、X射线单晶衍射法、CD激子手性法以及含时密度泛函理论CD计算等方法确定了这些化合物的结构,包括39个二萜、10个倍半萜、2个三萜、6个甾体和4个单联苄,其中新化合物28个,包括25个新的二萜和3个新的倍半萜。对分离得到的化合物进行了初步的生物活性研究,发现西松烷型二萜具有较弱的肿瘤细胞生长抑制活性以及克罗烷型二萜对植物根部生长具有显著的抑制作用。对全缘广萼苔、斯氏合叶苔和鳞叶拟大萼苔的化学成分研究尚属首次。
     从全缘广萼苔中分离并鉴定了7个化合物,包括6个西松烷型二萜,chandonanones B (1). C (2). E (3)、F (4)、chandonanthone (5)和isochandonanthone(6),以及1个朵拉比烷型二萜2,10,14-triacetoxy-7,8,18,19-diepoxydolabell-3(E)-ene(7)。其中西松烷型二萜1-4为新化合物。生物活性实验表明,西松烷型二萜对鼠嗜铬细胞瘤PCl2细胞株、人肺癌NCI-H292细胞株以及人肺癌NCI-H1299细胞株具有较弱的肿瘤细胞生长抑制活性,其IC50范围为19.5-48.7μM。
     从斯氏合叶苔中分离并鉴定了12个顺式克罗烷型二萜,包括stephanialides A-E (8-12)、scaparvins A-C (13-15)、parvitexins B (16)和C (17)、3-chloro-4-hydroxy-parvitexin A (18)以及scapanialide B (19)。其中8-12为新化合物。测定了化合物10、12-14、16和17对拟南芥(Arabidopsis thaliana)、家独行菜(Lepidium sativum)和大白菜(Brassica pekinensis)种子根部生长的化感活性。所测化合物对三种植物种子的根部生长均具有显著的抑制作用,其IC50范围为3.5-30.7μg/mL。
     从鳞叶拟大萼苔中分离纯化并鉴定了21个化合物,这些化合物包括:18个克罗烷型二萜:cephaloziellins A-P (20-35)、amphiacrolide F (36)和cephaloziellin Q(37);2个愈创木烷型倍半萜:4β,6β-dihydroxy-1α,5β(H)-guai-9-ene (38)和teucladiol(39);以及1个香木兰烷型倍半萜:ent-3β-hydroxyspathulenol (40)。其中克罗烷型二萜20-35均为新化合物。
     从齿叶耳叶苔中分离纯化并鉴定了6个化合物,这些化合物包括2个杜松烷型倍半萜[frullanic acid (41)和frullanic acid methyl ester (42)]和4个单联苄[brittonin B (43)、3,3'-dimethoxy-4,5-methylene-dioxybibenzyl (44)、3,4,5,3',4'-penla-methoxy-bibenzyl (45)和(±)-3-(4'-methoxy-benzyl)-5,6-dimethoxyphtbalide (46)]。其中41和42为新化合物。
     从尖瓣光萼苔(东亚亚种)中分离纯化并鉴定了7个化合物,这些化合物包括1个愈创木烷型倍半萜[guaian-3-en-2α,14-6a,12-diolide (47)]和6个甾体[(20R)-6-hydroxystigmasta-4,22-dien-3-one (48)、(20R)-3-hydroxystigmasta-5,22-dien-7-one (49)、7-oxositosterol (50)、(24S)-ethyl-5,22-cholestadien-3(51). ergosterol peroxide (52)和β-sitosterol (53)]。其中化合物47为新化合物。
     从短齿羽苔中分离纯化得到8个化合物,这些化合物包括:3个香木兰烷型的倍半萜:aromadendrane-4α,10α-diol (54)、aromadendrane-4β,10β-diol (55)和aromadendrane-4α,10β-diol (56);1个开环香木兰烷型的倍半萜:ent-2,3-secoalloaromadendra-4(14),10(15)-diene-2,3-diol (57);2个壳梭胞烷型二萜:fusicoauritone (58)和anadensin (59);2个三萜:betulinic acid (60)和oleanolic acid(61)。
     本文以具有显著肿瘤化学预防活性的双联苄化合物plagiochin G为目标,进行了化学全合成,并且制备了4个酯化衍生物。首次发现Plagiochin G及衍生物等大环双联苄类化合物具有比较显著的肿瘤化学预防活性。
Bryophytes are taxonomically placed between the algae and the pteridophytes. Morphologically, they are divided into three classes, liverworts (Hepaticae), mosses (Musci) and hornworts (Anthocerotae). There are more than6000liverworts in the world, about880species of which have been found in China. Among the bryophytes, liverworts have been phytochemically investigated in the most detail, because they possess appealing cellular oil bodies, which are characteristic, membrane-bound cell organelles consisting of ethereal terpenoids and aromatic compounds, while the other two phyla do not. Many of the isolated compounds from liverworts exhibit interesting biological activities. Lots of different types of compounds are isolated from liverworts in the past decades. Now liverworts have been well known as a good source of biologically active comounds.
     Bisbibenzyls, a class of characteristic compounents isolated from liverworts, become to be a synthsis targeting recently because of their wide range of biological significance. So, total syntheses and preparation of bisbibenzyls with excellent biological activities is a good way to develop novel drugs.
     In this research, the liverworts Chandonanthus birmensis, Scapania stephanii and Cephaloziella kiaeri collected from Guangxi Zhuang Autonomous Region, and Frullania serrata collected from Yunnan Province, as well as Porella acutifolia subsp. tosana and Plagiochila vexans collected from Guizhou Province, were phytochemically investigated. A total of61compounds, including39diterpenoids,10sesquiterpenoids,2triterpenoids,6steriods, and4bibenzyls, were isolated and identified on the basis of NMR, MS, single crystal X-ray diffraction analysis, CD exciton chirality method and time-dependent density functional theory (TDDFT) CD calculations.28of them were new compounds, containing25new diterpenoids and3new sesquiterpenoids. Cembrane-type diterpenoids isolated from the liverwort C. birmensis exhibited weak cytotoxic activity. cis-Clerodane-type diterpenoids isolated from S. stephanii showed significant plant growth inhibitory activity. This work represents the first phytochemical investigations on the plants of C. birmensis, S. stephanii and C.kiaeri.
     Separation of the liverwort C. birmensis afforded seven diterpenoids, including six cembrane-type diterpenoids, named chandonanones B (1), C (2), E (3) and F (4), chandonanthone (5), and isochandonanthone (6), and one dolabellane-type diterpenoid2,10,14-triacetoxy-7,8,18,19-diepoxydolabell-3(E)-ene (7). The cytotoxicities of compounds1-7were tested against the human lung carcinoma cell lines NCI-H292and NCI-H1299and rat pheochromocytoma cell line PC12using the MTT method with IC50values ranging from19.5to48.7μM.
     From the liverwort S. stephanii, twelve c/s-clerodane-type diterpenoids, including stephanialides A-E (8-12), scaparvins A-C (13-15), parvitexins B (16) and C (17),3-chloro-4-hydroxy-parvitexin A (18), as well as scapanialide B (19), were isolated. The plant growth inhibitory activities of six compounds (10,12-14,16and17) were tested with models of the seeds of A. thaliana (Thale cress, Brassicaceae), L. sativum (garden cress, Brassicaceae) and B. pekinensis (Chinese cabbage, Brassicaceae). All six compounds could significantly inhibit root elongation of seeds of these three species with IC50values ranging from3.5to30.7μg/mL.
     Twenty one compounds, including eighteen c/s-clerodane diterpenoids, named cephaloziellins A-P (20-35), amphiacrolide F (36) and cephaloziellin Q (37), as well as three sesquiterpenes, named4β,6β-dihydroxy-1α,5β(H)-guai-9-ene (38), teucladiol (39) and ent-3β-hydroxyspathulenol (40), were isolated from the liverwort C. kiaeri. Sixteen cis-clerodane diterpenoids (20-35) were new compounds.
     Two new cadiane-type sesquiterpenes, named frullanic acid (41) and frullanic acid methyl ester (42), and four known bibenzyls, named brittonin B (43),3,3'-dimethoxy-4,5-methylene-dioxybibenzyl (44),3,4,5,3',4'-penla-methoxy-bibenzyl (45), and (±)-3-(4'-methoxy-benzyl)-5,6-dimethoxyphtbalide (46), were isolated from the liverwort F. serrata.
     One new sesquiterpenoid, named guaian-3-en-2a,14-6α,12-diolide (47) and six known steriods,(20R)-6-hydroxystigmasta-4,22-dien-3-one (48),(20R)-3-hydroxystigmasta-5,22-dien-7-one (49),7-oxositosterol (50),(24S)-ethyl-5,22-cholestadien-3(51), ergosterol peroxide (52), and β-sitosterol (53), were isolated from the liverwort P. acutifolia subsp. tosana.
     From the liverwort P. vexans, three known aromandane-type sesquiterpenes, named aromadendrane-4α,10α-diol (54), aromadendrane-4β,10β-diol (55), and aromadendrane-4a,10β-diol (56), one known seco-aromandane-type sesquiterpene ent-2,3-secoalloaromadendra-4(14),10(15)-diene-2,3-diol (57), two known fusicoccane-type diterpenoids, named fusicoauritone (58) and anadensin (59), as well as two known triterpenoids, named betulinic acid (60) and oleanolic acid (61), were isolated.
     Plagiochin G with excenlent cancer chemopreventive activity have been synthsised. Four of its ester derivatives have been prepared. All of them showed good cancer chemopreventive activity.
引文
[1]Asakawa Y, Ludwiczuk A, Nagashima F.2013 Chemical constituents of bryophytes: Bio-and chemical diversity, biological activity, and chemosystematics. Springer.
    [2]Asakawa Y.1994 Highlights in phytochemistry of hepaticae-biologically active terpenoids and aromatic compounds. Pure Appl. Chem.66:2193-2196.
    [3]Asakawa Y.1995 Springer:Chemical constituents of the bryophytes. In Progress in the chemistry of organic natural products, p 1-562.
    [4]Asakawa Y.2001 Recent advances in phytochemistry of bryophytes-acetogenins, terpenoids and bis(bibenzyl)s from selected Japanese, Taiwanese, New Zealand, Argentinean and European liverworts. Phytochemistry 56:297-312.
    [5]Asakawa Y.2004 Chemosystematics of the Hepaticae. Phytochemistry 65:623-669.
    [6]Asakawa Y.2007 Biologically active compounds from bryophytes. Pure Appl. Chem. 79:557-580.
    [7]Asakawa Y.2011 Bryophytes:chemical diversity, synthesis and biotechnology. A review. Flavour Frag. J.26:318-320.
    [8]吴鹏程.1998苔藓植物生物学.北京:科学出版社.
    [9]娄红祥.2006苔藓植物化学与生物学.北京:科学技术出版社.
    [10]Xie CF, Lou HX.2009 Secondary metabolites in bryophytes:an ecological aspect. Chem. Biodivers.6:303-312.
    [11]车未艾.2006苔藓植物提取液的经济价值.生物学通报41:13-14.
    [12]韩国营,赵遵田.2008我国重要药用苔藓植物的药用功效.生物学教学33:4-6.
    [13]Cao T, Zhu R, Tan BC, et al.2006 A report of the first national red list of Chinese endangered bryophytes.
    [14]Kosenkova YS, Polovinka M, Komarova N, et al.2007 Riccardin C, a bisbibenzyl compound from Primula macrocalyx. Chem. Nat. Compd.43:712-713.
    [15]Asakawa Y.2008 Liverworts-potential source of medicinal compounds. Curr. Pharm. Design 14:3067-3088.
    [16]Zinsmeister HD, Becker H, Eicher T.1991 Bryophytes, a source of biologically active, naturally occurring material? Angew. Chem. Int. Ed. Engl.30:130-147.
    [17]Toyota M, Nakaishi E, Asakawa Y.1996 Eudesmane-type sesquiterpenoids from the liverwort Lepidozia vitrea. Photochemistry 41:833-836.
    [18]Bias B, Zapp J, Becker H.2004 ent-Clerodane diterpenes and other constituents from the liverwort Adelanthus lindenbergianus (Lehm.) Mitt. Phytochemistry 65: 127-137.
    [19]Flegel M, Adam K-P, Becker H.1999 Sesquiterpene lactones and bisbibenzyl derivatives from the neotropical liverwort Frullania convoluta. Phytochemistry 52: 1633-1638.
    [20]Hackl T, Konig WA, Muhle H.2006 Three ent-eudesmenones from the liverwort Plagiochila bifaria. Phytochemistry 67:778-783.
    [21]von Reuβ SH, Wu C-L, Muhle H, et al.2004 Sesquiterpene constituents from the essential oils of the liverworts Mylia taylorii and Mylia nuda. Phytochemistry 65: 2277-2291.
    [22]Fukuyama Y, Asakawa Y.1991 Neurotrophic secoaromadendrane-type sesquiterpenes from the liverwort Plagiochila fruticosa. Phytochemistry 30: 4061-4065.
    [23]Nagashima F, Suzuki M, Takaoka S, et al.2001 Sesqui-and diterpenoids from the Japanese liverwort Jungermannia infusca. J. Nat. Prod.64:1309-1317.
    [24]Buchanan MS, Connolly JD, Rycroft DS.1996 Herbertane sesquiterpenoids from the liverworts Herbertus aduncus and H. borealis. Phytochemistry 43:1245-1248.
    [25]Nagashima F, Momosaki S, Watanabe Y, et al.1996 Sesquiterpenoids from the liverworts Bazzania trilobata and Porella canariensis. Phytochemistry 42: 1361-1366.
    [26]Hashimoto T, Nakamura I, Tori M, et al.1995 epi-Neoverrucosane-and ent-clerodane-type diterpenoids and ent-2,3-secoaromadendrane-and calamenene-type sesquiterpenoids from the liverwort heteroscyphus planus. Phytochemistry 38: 119-127.
    [27]Wei H-C, Ma S-J, Wu C-L.1995 Sesquiterpenoids and cyclic bisbibenzyls from the liverwort Reboulia hemisphaerica. Phytochemistry 39:91-97.
    [28]Adio AM, von Reuβ SH, Paul C, et al.2007 Sesquiterpenoid constituents of the liverwort Marsupella aquatica. Tetrahedron: Asymmetr.18:1245-1253.
    [29]Hashimoto T, Irita H, Tanaka M, et al.2000 Pinguisane and dimeric pinguisane-type sesquiterpenoids from the Japanese liverwort Porella acutifolia subsp. tosana. Phytochemistry 53:593-604.
    [30]Guo DX, Zhu RX, Wang XN, et al.2010 Scaparvin A, a novel caged cis-clerodane with an unprecedented C-6/C-11 bond, and related diterpenoids from the liverwort Scapania parva. Org. Lett.12:4404-4407.
    [31]Guo DX, Wang XN, Zhu RX, et al.2012 cis-Clerodane diterpenoids from the Chinese liverwort Scapania parva Steph. Phytochemistry Lett.5:535-540.
    [32]Katayama K, Shimazaki K, Tazaki H, et al.2007 Parvitexins A-E, clerodane-type diterpenes isolated from the in vitro-cultured liverwort, Scapania parvitexta. Biosci. Biotech. Biochem.71:2751-2758.
    [33]Blechschmidt M, Becker H.1992 ent-Labdanes and furanoditerpenes from the liverwort Jamesoniella autumnalis. J. Nat. Prod.55:111-121.
    [34]Tazaki H, Blechschmidt M, Huch V, et al.1994 A furanoditerpenoid from the liverwort Jamesoniella autumnalis. Phytochemistry 37:491-494.
    [35]Tazaki H, Becker H, Nabeta K.1999 Seco-clerodane diterpenoids jamesoniellides H, I and J in axenic cultures of the liverwort Jamesoniella autumnalis. Phytochemistry 51:743-750.
    [36]Sadamori M. Studies on the new biologically active substances of Tahitian and Tokushima's Plagiochila Genus. Master's Thesis. Tokushima Bunri University, Tokushima, Japan,2009.
    [37]Wang Y, Harrison LJ, Tan BC.2009 Terpenoids from the liverwort Chandonanthus hirtellus. Tetrahedron 65:4035-4043.
    [38]Hashimoto T, Toyota M, Koyama H, et al.1998 Novel ent-vibsane- and dolabellane-type diterpenoids from the liverwort Odontoschisma denudatum. Tetrahedron Lett. 39:579-582.
    [39]Buchanan MS, Connolly JD, Kadir AA, et al.1996 Sesquiterpenoids and diterpenoids from the liverwort Jungermannia truncata. Phytochemistry 42: 1641-1646.
    [40]Nagashima F, Tanaka H, Takaoka S, et al.1996 ent-Kaurane-type diterpenoids from the liverwort Jungermannia exsertifolia ssp. cordifolia. Phytochemistry 41: 1129-1141.
    [41]Hashimoto T, Horie M, Toyota M, et al.1994 Structures of five new highly oxygenated labdane-type diterpenoids, ptychantins A-E, closely related.to forskolin from the liverwort Ptychanthus striatus. Tetrahedron Lett.35:5457-5460.
    [42]Hashimoto T, Horie M, Takaoka S, et al.1995 Structures of four novel highly oxygenated labdane-type diterpenoids, ptychantins F-I, from the liverwort Ptychanthus striatus. Chem. Lett.1995:481-482.
    [43]Wu C-L, Wang C-J, Yin M-H.2001 Ptychantins from the liverwort Ptychanthus striatus. J. Chin. Chem. Soc. (Taipei, Taiwan) 48:241-247.
    [44]Toyota M, Nagashima F, Asakawa Y.1988 Labdane type diterpenoids from the liverwort Frullania hamachiloba. Phytochemistry 27:1789-1793.
    [45]Wang LN, Zhang JZ, Li X, et al.2012 Pallambins A and B, unprecedented hexacyclic 19-nor-secolabdane diterpenoids from the Chinese liverwort Pallavicinia ambigua. Organic Lett.14:1102-1105.
    [46]Harrison LJ, Asakawa Y.1989 3α,18-Dihydroxytrachyloban-19-oic acid from the liverwort Jungermannia exsertifolia subsp. cordifolia. Phytochemistry 28: 1533-1534.
    [47]Scher JM, Schinkovitz A, Zapp J, et al.2010 Structure and anti-TB activity of trachylobanes from the liverwort Jungermannia exsertifolia ssp. cordifolia. J. Nat. Prod.73:656-663.
    [48]Harinantenaina L, Asakawa Y.2004 Chemical constituents of Malagasy liverworts, part Ⅱ:mastigophoric acid methyl ester of biogenetic interest from Mastigophora diclados (Lepicoleaceae Subf. Mastigophoroideae). Chem. Pharm. Bull.52: 1382-1384.
    [49]Neves M, Morais R, Gafner S, et al.1999 New sesquiterpene lactones from the Portuguese liverwort Targionia lorbeeriana. Phytochemistry 50:967-972.
    [50]Baek SH, Perry NB, Lorimer SD.2003 ent-Costunolide from the Liverwort Hepatostolonophora paucistipula. J. Chem. Res.2003:14-15.
    [51]Perry NB, Burgess EJ, Baek S-H, et al. 1999 11-Oxygenated cytotoxic 8,9-secokauranes from a New Zealand liverwort, Lepidolaena taylorii. Phytochemistry 50:423-433.
    [52]Perry NB, Burgess EJ, Tangney RS.1996 Cytotoxic 8,9-secokaurane diterpenes from a New Zealand liverwort, Lepidolaena taylorii. Tetrahedron Lett.37: 9387-9390.
    [53]Perry NB, Burgess EJ, Baek S-H, et al.2001 The first atisane diterpenoids from a liverwort: polyols from Lepidolaena clavigera. Org. Lett.3:4243-4245.
    [54]Liu N, Li RJ, Wang XN, et al.2013 Highly oxygenated ent-pimarane-type diterpenoids from the Chinese liverwort Pedinophyllum interruptum and their allelopathic activities. J. Nat. Prod.76:1647-1653.
    [1]Asakawa Y, Lin X, Kondo K, et al.1991 Terpenoids and aromatic compounds from selected East Malaysian liverworts. Phytochemistry 30:4019-4024.
    [2]Shy HS, Wu CL, Paul C, et al.2002 Chemical constituents of two liverworts Metacalypogeia alternifolia and Chandonanthus hirtellus. J. Chin. Chem. Soc. (Taipei, Taiwan) 49:593-598.
    [3]Wang Y, Harrison LJ, Tan BC.2009 Terpenoids from the liverwort Chandonanthus hirtellus. Tetrahedron 65:4035-4043.
    [4]Komala I, Ito T, Nagashima F, et al.2010 Zierane sesquiterpene lactone, cembrane and fusicoccane diterpenoids, from the Tahitian liverwort Chandonanthus hirtellus. Phytochemistry 71:1387-1394.
    [5]Alley MC, Scudiero DA, Monks A, et al.1988 Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res.48:589-601.
    [6]Flack H.1983 On enantiomorph-polarity estimation. Acta Crystallogr. A.39: 876-881.
    [7]Hooft RW, Straver LH, Spek AL.2008 Determination of absolute structure using Bayesian statistics on Bijvoet differences. J. Appl. Crystallogr.41:96-103.
    [1]Callaway RM, Aschehoug ET.2000 Invasive plants versus their new and old neighbors:a mechanism for exotic invasion. Science 290:521-523.
    [2]Field B, Jordan F, Osbourn A.2006 First encounters--deployment of defence-related natural products by plants. New Phytol.172:193-207.
    [3]Kelsey R, Reynolds G, Rodriguez E.1984 Chemistry of biologically active constitutents secreted and stored in plant glandular trichomes. In Biology and chemistry of plant trichomes. p 187-241.
    [4]Rice EL.1984 Allelopathy. Academic press:Orlando, FL.
    [5]Schenk HJ, Callaway RM, Mahall B.1999 Spatial root segregation: are plants territorial? Adv. Ecol. Res.28:145-180.
    [6]Chou CH.2006 Springer: Introduction to allelopathy. In Allelopathy p 1-9.
    [7]Gao XX, Li M, Gao ZJ, et al.2009 Allelopathic effects of Hemistepta lyrata on the germination and growth of wheat, sorghum, cucumber, rape, and radish seeds. Weed Biol. Manag.9:243-249.
    [8]Weidenhamer JD, Hartnett DC, Romeo JT.1989 Density-dependent phytotoxicity: distinguishing resource competition and allelopathic interference in plants. J. Appl. Ecol.26:613-624.
    [9]Yoshikawa H, Ichiki Y, Sakakibara KD, et al.2002 The biological and structural similarity between lunularic acid and abscisic acid. Biosci. Biotech. Biochem.66: 840-846.
    [10]Tazaki H, Hayashida T, Furuki T, et al.1999 Terpenoid from the liverwort Scapania bolandeli. Phytochemistry 52:1551-1553.
    [11]Yoshida T, Toyota M, Asakawa Y.1997 Scapaundulins A and B, two novel dimeric labdane diterpenoids, and related compounds from the Japanese liverwort Scapania undulata (L.) Dum. Tetrahedron Lett.38:1975-1978.
    [12]Mues R, Huneck S, Connolly JD, et al.1988 Scapaniapyrone A, a novel aromatic constituent of the liverwort Scapania undulata. Tetrahedron Lett.29:6793-6796.
    [13]Katayama K, Shimazaki K, Tazaki H, et al.2007 Parvitexins A-E, clerodane-type diterpenes isolated from the in vitro-cultured liverwort, Scapania parvitexta. Biosci. Biotech. Biochem.71:2751-2758.
    [14]Geis W, Buschauer B, Becker H.1999 cis-Clerodandes from axenic cultures of the liverwort Scapania nemorea. Phytochemistry 51:643-649.
    [15]Guo DX, Zhu RX, Wang XN, et al.2010 Scaparvin A, a novel caged cis-clerodane with an unprecedented C-6/C-11 bond, and related diterpenoids from the liverwort Scapania parva. Org. Lett.12:4404-4407.
    [16]Guo DX, Wang XN, Zhu RX, et al.2012 cis-Clerodane diterpenoids from the Chinese liverwort Scapania parva Steph. Phytochemistry Lett.5:535-540.
    [17]Liu N, Zhu RX, Wang S, et al.2013 cis-Clerodane diterpenes from the liverwort Scapania ciliata. Chem. Biodivers.10:1606-1612.
    [18]Matsuo A, Atsumi K, Nakayama M, et al.1984 Isolation of seven verrucosane diterpenoids from the liverwort Scapania bolanderi. Z. Naturforsch. Teil. B.39: 1281-1285.
    [19]Huneck S, Connolly J, Harrison L, et al.1986 New labdane diterpenoids from the liverwort Scapania undulata. J. Chem. Res., Synop.5:162-163.
    [20]Schon B, Becker H.1990 Diterpenoids from in vitro cultures of the liverwort Scapania nemorea. Planta Med.56:544-545.
    [21]DAGLI S.2005 Three sesquiterpenoids from the liverwort Scapania undulata. KSU Journal of Science and Engineering 8:1-2.
    [22]Adio AM, Paul C, Kloth P, et al.2004 Sesquiterpenes of the liverwort Scapania undulata. Phytochemistry 65:199-206.
    [23]Nagashima F, Suda K, Asakawa Y.1994 Cadinane-type sesquiterpenoids from the liverwort Scapania undulata. Phytochemistry 37:1323-1325.
    [24]Nagashima F, Asakawa Y.2001 Sesqui-and diterpenoids from two Japanese and three European liverworts. Phytochemistry 56:347-352.
    [25]Nagashima F, Ohi Y, Nagai T, et al.1993 Terpenoids from some German and Russian liverworts. Phytochemistry 33:1445-1448.
    [26]Nagashima F, Sari Y, Tori M, et al.1993 Sesquiterpenoids from some European liverworts. Phytochemistry 34:1341-1343.
    [27]Nagashima F, Suda K, Okamoto Y, et al.1996 Cadinane-type sesquiterpenoids from the Belgian liverwort (Scapania undulata (L.)) Dum. J. Essent. Oil Res.8: 115-116.
    [28]Asakawa Y.2007 Biologically active compounds from bryophytes. Pure Appl. Chem.79:557-580.
    [29]Cheplogoi PK, Mulholland DA.2003 Tetranortriterpenoid derivatives from Turraea parvifolia (Meliaceae). Phytochemistry 62:1173-1178.
    [30]de la Torre MC, Garcia I, Sierra MA.2002 An approach to furolabdanes and their photooxidation derivatives from R-(+)-sclareolide. J. Nat. Prod.65:661-668.
    [31]Schmidt LE, Deyrup ST, Baltrusaitis J, et al.2009 Hymenopsins A and B and a macrophorin analogue from a Fungicolous Hymenopsis sp. J. Nat. Prod.73: 404-408.
    [32]Zhang F, Wang JS, Gu YC, et al.2012 Cytotoxic and anti-inflammatory triterpenoids from Toona ciliata. J. Nat. Prod.75:538-546.
    [33]McFarland K, Mulholland DA, Fraser L-A.2004 Limonoids from Turraea floribunda (Meliaceae). Phytochemistry 65:2031-2037.
    [34]Shirota O, Nagamatsu K, Sekita S.2006 neo-Clerodane diterpenes from the hallucinogenic sage Salvia divinorum. J. Nat. Prod.69:1782-1786.
    [35]Wang XN, Yin S, Fan CQ, et al.2007 Eight new limonoids from Turraea pubescens. Tetrahedron 63:8234-8241.
    [36]Shiraki R, Sumino A, Tadano K-i, et al.1996 Total synthesis of natural PI-091, a new platelet aggregation inhibitor of microbial origin. J. Org. Chem.61: 2845-2852.
    [37]Fan PH, Hostettmann K, Lou HX.2010 Allelochemicals of the invasive neophyte Polygonum cuspidatum Sieb.& Zucc.(Polygonaceae). Chemoecology 20: 223-227.
    [1]Asakawa Y.2007 Biologically active compounds from bryophytes. Pure Appl. Chem.79:557-580.
    [2]Geis W, Buschauer B, Becker H.1999 cis-Clerodandes from axenic cultures of the liverwort Scapania nemorea. Phytochemistry 51:643-649.
    [3]Tazaki H, Becker H, Nabeta K.1999 Seco-clerodane diterpenoids jamesoniellides H, I and J in axenic cultures of the liverwort Jamesoniella autumnalis. Phytochemistry 51:743-750.
    [4]Toyota M, Omatsu I, Sakata F, et al.2010 Novel terpenoids from the New Zealand liverworts Jamesoniella colorata and Bazzania novae-zelandiae. Nat Prod. Commun.5:999-1003.
    [5]Wang LN, Zhang JZ, Li X, et al.2012 Pallambins A and B, unprecedented hexacyclic 19-nor-secolabdane diterpenoids from the Chinese liverwort Pallavicinia ambigua. Org. Lett.14:1102-1105.
    [6]Guo DX, Zhu RX, Wang XN, et al.2010 Scaparvin A, a novel caged cis-clerodane with an unprecedented C-6/C-11 bond, and related diterpenoids from the liverwort Scapania parva. Org. Lett.12:4404-4407.
    [7]Wu CL, Huang YM, Chen JR.1996 (-)-Ledol from the liverwort Cephaloziella recurvifolia and the clarification of its identity. Phytochemistry 42:611-619.
    [8]Bruno M, Bondi ML, Rosselli S, et al.2002 neo-Clerodane diterpenoids from Teucriumm ontbretii subsp. libanoticum and their absolute configuration. J. Nat. Prod.65:142-146.
    [9]Harraz FM, Pcolinski MJ, Doskotch RW.1996 cis-Clerodane diterpene lactones from Amphiachyris dracunculoides.2. J. Nat. Prod 59:5-14.
    [10]Tazaki H, Zapp J, Becker H.1995 Diterpenes from in vitro cultures of the liverwort Jamesoniella autumnalis. Phytochemistry 39:859-868.
    [11]Mahmoud AA.1997 7-epi-Eudesmanes, eudesmanoic acids, eudesmanolides and other sesquiterpenes from Pluchea dioscoridis. Phytochemistry 45:1633-1638.
    [12]Bruno M, de la Torre MC, Rodriguez B, et al.1993 Guaiane sesquiterpenes from Teucrium leucocladum. Phytochemistry 34:245-247.
    [13]Liu H-J, Wu C-L, Becker H, et al.2000 Sesquiterpenoids and diterpenoids from the Chilean liverwort Lepicolea ochroleuca. Phytochemistry 53:845-849.
    [14]Sun H.1998 COMPASS:An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102:7338-7364.
    [15]Gross E, Dobson J, Petersilka M.1996 Springer: Density functional theory of time-dependent phenomena. In Density Functional Theory II p 81-172.
    [16]Runge E, Gross EKU.1984 Density-functional theory for time-dependent systems. Phys. Rev. Lett.52:997-1000.
    [17]Klamt A, Jonas V.1996 Treatment of the outlying charge in continuum solvation models. J. Chem. Phys.105:9972-9981.
    [18]Klamt A.1995 Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem.99: 2224-2235.
    [19]Stephens PJ, Harada N.2010 ECD cotton effect approximated by the Gaussian curve and other methods. Chirality 22:229-233.
    [1]Asakawa Y, Matsuda R, Cheminat A.1987 Bibenzyl derivatives from Frullania Species. Phytochemistry 26:1117-1122.
    [2]Asakawa Y, Takikawa K, Tori M.1987 Bibenzyl derivatives from the Australian liverwort Frullania falciloba. Phytochemistry 26:1023-1025.
    [3]Toyota M, Nagashima F, Asakawa Y.1988 Labdane type diterpenoids from the liverwort Frullania hamachiloba. Phytochemistry 27:1789-1793.
    [4]Toyota M, Asakawa Y.1990 An eudesmane-type sesquiterpene alcohol from the liverwort Frullania tamarisci. Phytochemistry 29:3664-3665.
    [5]Asakawa Y, Lin X, Kondo K, et al.1991 Terpenoids and aromatic compounds from selected East Malaysian liverworts. Phytochemistry 30:4019-4024.
    [6]Kraut L, Mues R, Sim-Sim M.1993 Acylated flavone and glycerol glucosides from two Frullania species. Phytochemistry 34:211-218.
    [7]Kraut L, Mues R, Sim-Sim M.1994 Sesquiterpene lactones and 3-benzylphthalides from Frullania muscicola. Phytochemistry 37:1337-1346.
    [8]Nagashima F, Takaoka S, Huneck S, et al.1994 Rearranged ent-eudesmane- and ent-eremophilane-type sesquiterpenoids from the liverwort Frullania dilatata. Phytochemistry 37:1317-1321.
    [9]Tori M, Aoki M, Nakashima K, et al.1995 Terpenoids from the liverworts Symphyogyna brasiliensis and unidentified Frullania species. Phytochemistry 39: 99-103.
    [10]Nagashima F, Tanaka H, Takaoka S, et al.1997 Eudesmane-type sesquiterpene lactones from the Japanese liverwort Frullania densiloba. Phytochemistry 45: 555-558.
    [11]Flegel M, Adam K-P, Becker H.1999 Sesquiterpene lactones and bisbibenzyl derivatives from the neotropical liverwort Frullania convoluta. Phytochemistry 52:1633-1638.
    [12]Asakawa Y.2001 Recent advances in phytochemistry of bryophytes-acetogenins, terpenoids and bis(bibenzyl)s from selected Japanese, Taiwanese, New Zealand, Argentinean and European liverworts. Phytochemistry 56:297-312.
    [13]Paul C, Konig WA, Muhle H.2001 Pacifigorgianes and tamariscene as constituents of Frullania tamarisci and Valeriana officinalis. Phytochemistry 57: 307-313.
    [14]Bardon A, Mitre GB, Kamiya N, et al.2002 Eremophilanolides and other constituents from the Argentine liverwort Frullania brasiliensis. Phytochemistry 59:205-213.
    [15]Lou HX, Li GY, Wang FQ.2002 A cytotoxic diterpenoid and antifungal phenolic compounds from Frullania muscicola steph. J. Asian Nat. Prod. Res.4:87-94.
    [16]Asakawa Y, Toyota M, von Konrat M, et al.2003 Volatile components of selected species of the liverwort genera Frullania and Schusterella (Frullaniaceae) from New Zealand, Australia and South America: a chemosystematic approach. Phytochemistry 62:439-452.
    [17]Guo DX, Xiang F, Wang XN, et al.2010 Labdane diterpenoids and highly methoxylated bibenzyls from the liverwort Frullania inouei. Phytochemistry 71: 1573-1578.
    [18]Asakawa Y, Ludwiczuk A, Nagashima F.2013 Phytochemical and biological studies of bryophytes. Phytochemistry 91:52-80.
    [19]Asakawa Y.2004 Chemosystematics of the Hepaticae. Phytochemistry 65: 623-669.
    [20]Datta BK, Rahman MM, Gray AI, et al.2007 Polygosumic acid, a new cadinane sesquiterpene from Polygonum viscosum, inhibits the growth of drug-resistant Escherichia coli and Staphylococcus aureus (MRSA) in vitro. J. Nat. Med.61: 391-396.
    [21]Berova N, Nakanishi K, Woody Y, et al.2000 Exciton chirality method: principles and applications. Circular Dichroism: Principles and Applications 2.
    [22]Harada N, Iwabuchi J, Yokota Y, et al.1981 A chiroptical method for determining the absolute configuration of allylic alcohols. J. Am. Chem. Soc.103:5590-5591.
    [23]Koreeda M, Weiss G, Nakanishi K.1973 Absolute configuration of natural (+)-abscisic acid. J. Am. Chem. Soc.95:239-240.
    [24]Asakawa Y, Tanikawa K, Aratani T.1976 New substituted bibenzyls of Frullania brittoniae subsp. Truncatifolia. Phytochemistry 15:1057-1059.
    [25]Stephens PJ, Harada N.2010 ECD cotton effect approximated by the Gaussian curve and other methods. Chirality 22:229-233.
    [1]Bungert M, Gabler J, Adam K-P, et al.1998 Pinguisane sesquiterpenes from the liverwort Porella navicularis. Phytochemistry 49:1079-1083.
    [2]Tazaki H, Ishikawa F, Soutome H, et al. 1998 Grandilobalides A, B and C, sesquiterpenes from the liverwort Porella grandiloba. Phytochemistry 48: 851-856.
    [3]Cullmann F, Becker H.1999 Sesquiterpenoids from the liverwort Porella canariensis.Z. Naturforsch. C.54:151-155.
    [4]Tazaki H, Hyashida T, Nakasuga I, et al.1999 Terpenoids from the liverworts Bazzania yoshinagana and Porella fauriei. Research Bulletin of Obihiro U.21: 53-59.
    [5]Hashimoto T, Irita H, Tanaka M, et al.2000 Pinguisane and dimeric pinguisane-type sesquiterpenoids from the Japanese liverwort Porella acutifolia subsp. tosana. Phytochemistry 53:593-604.
    [6]Asakawa Y, Toyota M, Nagashima F, et al.2001 Sesquiterpene lactones and acetogenin lactones from the Hepaticae and chemosystematics of the liverworts Frullania, Plagiochila and Porella. Heterocycles 54:1057-1093.
    [7]Van Klink JW, Zapp J, Becker H.2002 Pinguisane-type sesquiterpenes from the South American liverwort Porella recurva (Taylor) Kuhnemann. Z. Naturforsch. C.57:413-417.
    [8]Mitre GB, Kamiya N, Bardon A, et al.2004 Africane-type sesquiterpenoids from the Argentine liverwort Porella swartziana and their antibacterial activity. J. Nat. Prod.67:31-36.
    [9]Du ZX, Wu HE, Li FY, et al.2010 Chemical constituents of volatile oil from Porella setigera (steph.) Hatt. Shizhen Guoyi Guoyao 21:336-338.
    [10]Komala I, Ito T, Yagi Y, et al.2010 Volatile components of selected liverworts, and cytotoxic, radical scavenging and antimicrobial activities of their crude extracts. Nat. Prod. Commun.5:1375-1380.
    [11]Quang DN, Asakawa Y.2010 Chemical constituents of the Vietnamese liverwort Porella densifolia. Fitoterapia 81:659-661.
    [12]Gilabert M, Ramos AN, Schiavone MM, et al.2011 Bioactive sesqui-and diterpenoids from the Argentine liverwort Porella chilensis. J. Nat. Prod.74: 574-579.
    [13]Komala I, Ito T, Nagashima F, et al.2011 Cytotoxic bibenzyls, and germacrane-and pinguisane-type sesquiterpenoids from Indonesian, Tahitian and Japanese liverworts. Nat. Prod. Commun.6:303-309.
    [14]Toyota M, Ueda A, Asakawa Y.1991 Sesquiterpenoids from the liverwort Porella acutifolia subsp. Tosana. Phytochemistry 30:567-573.
    [15]Asakawa Y, Toyota M, Takemoto T.1981 Two guaiane-type sesquiterpene lactones and their related sesquiterpene lactones from Porella japonica. Phytochemistry 20:257-261.
    [16]Della Greca M, Monaco P, Previtera L.1990 Stigmasterols from Typha latifolia. J. Nat. Prod.53:1430-1435.
    [17]Kontiza I, Abatis D, Malakate K, et al.2006 3-Keto steroids from the marine organisms Dendrophyllia cornigera and Cymodocea nodosa. Steroids 71: 177-181.
    [18]Georges P, Sylvestre M, Ruegger H, et al.2006 Ketosteroids and hydroxyketosteroids, minor metabolites of sugarcane wax. Steroids 71:647-652.
    [19]Aliotta G, Monaco P, Pinto G, et al.1991 Potential allelochemicals from Pistia stratiotes L.J. Chem. Ecol.17:2223-2234.
    [20]陈苹,吴娇,戴好富,等.2009海南粗榧内生真菌S26化学成分研究.中国药物化学杂志18:279-283.
    [1]Toyota M, Tanimura K, Asakawa Y.1998 Cytotoxic 2,3-secoaromadendrane-type sesquiterpenoids from the liverwort Plagiochila ovalifolia. Planta Med.64: 462-464.
    [2]Anton H, Schoeneborn R, Mues R.1999 Chemistry and biology of moss. Part 136. Bibenzyls and bisbibenzyls from a neotropical Plagiochila species. Phytochemistry 52:1639-1645.
    [3]Wu C-L, Liou C-S, Ean U-J.2001 Fusicoccane diterpenoids and bisbibenzyls from the liverwort Plagiochila peculiaris. J. Chin. Chem. Soc. (Taipei, Taiwan) 48:1197-1202.
    [4]Adio AM, Koenig WA.2005 Sesquiterpene constituents from the essential oil of the liverwort Plagiochila asplenioides. Phytochemistry 66:599-609.
    [5]Hackl T, Koenig WA, Muhle H.2006 Three ent-eudesmenones from the liverwort Plagiochila bifaria. Phytochemistry 67:778-783.
    [6]Toyota M, Omatsu I, Braggins J, et al. 2006 Lipid constituents of the New Zealand liverwort Plagiochila circinalis. J. Oleo. Sci.55:579-584.
    [7]Morita H, Tomizawa Y, Tsuchiya T, et al.2009 Antimitotic activity of two macrocyclic bis(bibenzyls), isoplagiochins A and B from the Liverwort Plagiochila fruticosa. Bioorg. Med. Chem. Lett.19:493-496.
    [8]Aponte JC, Yang H, Vaisberg AJ, et al.2010 Cytotoxic and anti-infective sesquiterpenes present in Plagiochila disticha (plagiochilaceae) and Ambrosia peruviana (asteraceae). Planta Med.76:705-707.
    [9]Ramirez M, Kamiya N, Popich S, et al.2010 Insecticidal constituents from the Argentine liverwort Plagiochila bursata. Chem. Biodivers.7:1855-1861.
    [10]Manoj GS, Murugan K.2012 Phenolic profiles, antimicrobial and antioxidant potentiality of methanolic extract of a liverwort, Plagiochila beddomei Steph. Indian J. Nat. Prod. Resour.3:173-183.
    [11]Wang S, Liu SS, Lin ZM, et al.2013 Terpenoids from the Chinese liverwort Plagiochila pulcherrima and their cytotoxic effects. J. Asian Nat. Prod. Res.15: 473-481.
    [12]Zhang W, Guo Y-W, Gu Y.2006 Secondary metabolites from the South China Sea invertebrates:chemistry and biological activity. Curr. Med. Chem.13:2041-2090.
    [13]Wu TS, Chan YY, Leu YL.2000 The constituents of the root and stem of Aristolochia heterophylla Hemsl. Chem. Pharm. Bull. (Tokyo) 48:357-361.
    [14]Matsuo A, Atsumi K, Nakayama M, et al.1979 (+)-Ovalifoliene and (-)-hanegokedial, two novel sesquiterpenoids of the ent-2,3-seco-alloaromadendrane skeleton from the liverwort Plagiochila semidecurrens. J. Chem. Soc., Chem. Commun. (22):1010-1012.
    [15]Zapp J, Burkhardt G, Becker H.1994 Sphenolobane and fusicoccane diterpenoids from the liverwort Anastrophyllum auritum. Phytochemistry 37: 787-793.
    [16]Huneck S, Baxter G, Cameron AF, et al.1983 Anadensin, a new fusicoccane diterpenoid from the liverwort Anastrepta orcadensis. Crystal structure analysis. Tetrahedron Lett.24:3787-3788.
    [17]Maillard M, Adewunmi C, Hostettmann K.1992 A triterpene glycoside from the fruits of Tetrapleura tetraptera. Phytochemistry 31:1321-1323.
    [18]Siddiqui S, Hafeez F, Begum S, et al.1988 Oleanderol, a new pentacyclic triterpene from the leaves of Nerium oleander. J. Nat. Prod.51:229-233.
    [1]Asakawa Y.1982 Chemical constituents of the Hepaticae. Springer.
    [2]Asakawa Y, Heidelberger M, Herz W, et al.1982 Progress in the chemistry of organic natural products: Fortschritte der Chemie organischer Naturstoffe. Springer-Verlag.
    [3]Asakawa Y.1995 Springer: Chemical constituents of the bryophytes. In. Progress in the chemistry of organic natural products p 1-562.
    [4]Harrowven DC, Kostiuk SL.2012 Macrocylic bisbibenzyl natural products and their chemical synthesis. Nat. Prod. Rep.29:223-242.
    [5]Asakawa Y, Matsuda R.1982 Riccardin C, a novel cyclic bibenzyl derivative from Reboulia hemisphaerica. Phytochemistry 21:2143-2144.
    [6]Hashimoto T, Tori M, Asakawa Y, et al.1987 Plagiochins A, B, C, and D, new types of macrocyclic bis(bibenzyls) having a biphenyl linkage between the ortho positions to the benzyl methylenes, from the liverwort Plagiochila acanthophylla subsp. Japonica. Tetrahedron Lett.28:6295-6298.
    [7]Speicher A, Groh M, Hennrich M, et al.2010 Syntheses of macrocyclic bis(bibenzyl) compounds derived from Perrottetin E. Eur. J. Org. Chem.2010: 6760-6778.
    [8]Jiang J, Sun B, Wang YY, et al.2012 Synthesis of macrocyclic bisbibenzyl derivatives and their anticancer effects as anti-tubulin agents. Bioorg. Med. Chem. 20:2382-2391.
    [9]Keseru GM, Mezey-Vandor G, Nogradi M, et al.1992 Total synthesis of plagiochins C, and D, macrocyclic bis(bibenzyl) constituents of Plagiochila acantophylla. Tetrahedron 48:913-922.
    [10]Fukuyama Y, Yaso H, Nakamura K, et al.1999 Total synthesis of plagiochin D, A macrocyclic bis(bibenzyl) from liverworts by intramolecular Still-Kelly reaction. Tetrahedron Lett.40:105-108.
    [11]Niu C, Qu JB, Lou HX.2006 Antifungal bis(bibenzyls) from the chinese liverwort Marchantia polymorpha L. Chem. Biodivers.3:34-40.
    [12]Speicher A, Groh M, Zapp J, et al.2009 A synthesis-driven structure revision of 'Plagiochin E',a highly bioactive bisbibenzyl. Synlett 2009:1852-1858.
    [13]Toyota M, Nagashima F, Asakawa Y.1988 Chemosystematics of Bryophytes. Part 27. Fatty acids and cyclic bis(bibenzyls) from the New Zealand liverwort Monoclea forsteri. Phytochemistry 27:2603-2608.
    [14]Cortes Morales JC, Guillen Torres A, Gonzalez-Zamora E.2011 Total synthesis of Plagiochin D by an intramolecular SNAr reaction. Eur. J. Org. Chem.2011: 3165-3170.
    [15]Gravitz L.2011 Chemoprevention:first line of defence. Nature 471:S5-S7.
    [16]Ito Y, Yanase S, Fujita J, et al.1981 A short-term in vitro assay for promoter substances using human lymphoblastoid cells latently infected with Epstein-Barr virus. Cancer lett.13:29-37.
    [17]Itoigawa M, Ito C, Tokuda H, et al.2004 Cancer chemopreventive activity of phenylpropanoids and phytoquinoids from Illicium plants. Cancer Lett.214: 165-169.
    [18]Suzuki M, Nakagawa-Goto K, Nakamura S, et al.2006 Cancer preventive agents. Part 5. anti-tumor-promoting effects of coumarins and related compounds on Epstein-Barr virus activation and two-stage mouse skin carcinogenesis. Pharm. Biol.44:178-182.
    [19]Oh JH, Kim SJ, Kim JH, et al.2010 Photoacid generator, copolymer, chemically amplified resist composition, and method of forming pattern using the chemically amplified resist composition. US20100143843A1.
    [20]Boden RM.1975 A mild method for preparing trans-alkenes; crown ether catalysis of the Wittig reaction. Synthesis 1975:784-784.
    [21]Thompson AL, Kabalka GW, Akula MR, et al. 2005 The conversion of phenols to the corresponding aryl halides under mild conditions. Synthesis:547-550.
    [22]Jourdant A, Gonzalez-Zamora E, Zhu J.2002 Wilkinson's catalyst catalyzed selective hydrogenation of olefin in the presence of an aromatic nitro function: A remarkable solvent effect. J. Org. Chem.67:3163-3164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700