桥梁高墩结构的运动稳定性及影响因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科学技术日新月异的发展,桥梁跨径越来越大,桥墩越来越高,结构受力空间性增强,同时,桥梁中的桥墩结构越来越多的采用高强材料和薄壁结构,使得桥墩稳定问题日益突出,特别是现代超高墩桥梁的桥墩部分长细比越来越大,分析其稳定性显得尤为重要。
     对桥墩结构稳定性的研究,当前通行的方法是取最不利状态进行分析,例如计算最大悬臂施工状态下的稳定系数,这是一种静力分析的方法,相对而言,动力分析尚处于理论为主的阶段。
     本文首先导出了桥墩结构在轴向荷载作用下的运动平衡方程,然后以李雅普诺夫运动稳定性理论为基础,在不同的边界条件下选取不同的试函数来模拟变形曲线,推导了运动稳定区和不稳定区的界限,分析材料常数、截面形式和边界条件对其的影响。
     尝试改进原有弱参数激励的限制,寻求新的求解参激问题的方法:先沿用传统方法,在弱参数激励的前提下进行分析,得到相应的近似解和过渡曲线。然后,突破参数激励幅值的限值,通过表达式转换得到另一个小参数替换前者,确定任意激励幅值下的稳定区和不稳定区。并将传统方法和改进方法的计算结果进行对比,证实了改进方法有可取之处。
     继而,引入非线性项,建立非线性微分方程。考虑轴向荷载产生的轴向变形影响,忽略高阶小项,运用加权残值法进行转换,得到一般形式的运动方程。用多尺度法进行定性分析,分别讨论了基本参数共振和主参数共振下的非线性问题,两者都将出现Hopf分岔。
     实例分析时,选取某高墩特大桥为研究对象进行线性和非线性的分析。将规范规定的荷载合理的转化为动载,对不同模型根据时长分别确定载荷步,以基本参数共振和主参数共振时的动力响应来对比相关因素的影响程度。特别是针对成桥状态,将墩底的边界条件转换为不同的支撑刚度进行数字试验,分别进行线性和非线性的分析,得出了有益于工程设计的结论。
The stability of bridge structure is one of the main problems in the safety and economy. It has the same importance with the strength. With the rapid development of modern science and technology, more and more high strength materials and thin wall structures are used in the piers. Therefore the stability of bridge structure is becoming increasingly prominent. Especially the pier structure slenderness ratio of modern very high-pier bridge is being larger and larger, so analysis of its stability is particularly important.
     For the stability of pier structure, the current popular method is to focus on the most unfavorable state, for example, to calculate stability coefficient under cantilever construction state. This is a static analysis method. Relatively, dynamic analysis is still in the theory stage.
     This paper first derives the dynamic equilibrium equation of pier structure under axial loads, then based on the Lyapunov stability theory, according to different boundary conditions, chooses different trial functions to imitate the deformation curve, deduces the boundary of stable and unstable regions, and analyses the influence of material constants, section forms and boundary conditions. Then the nonlinear terms are introduced, and the multi-scale method is used for qualitative analysis. The nonlinear problem of fundamental parametric resonance and principal parametric resonance are discussed respectively, and both will lead to the Hopf bifurcation.
     In addition, this paper tries to break the original weak parametric excitation limitation, and looks for new methods to solve the parametric excitation problem. With the traditional method, using small parameter, the approximate solution and the transition curve are obtained. Then, to replace small parametric excitation amplitude with another small parameter by equation transformation, the stable and unstable regions under arbitrary excitation amplitude can be determined. Moreover, compared the calculation results of the traditional method and the improved method, the advantage of the improved method is advisable.
     At the case study, taking the current first high pier bridge in Asia—Hezhang super large bridge as an example, whose piers are195m high, different from the static analysis in the existing literature data, this paper transforms reasonably loads from the code to dynamic loads, compares the influence of the related factors according to the dynamic response of fundamental parametric resonance and principal parametric resonance. Especially aiming at finished bridge state, converting the boundary conditions of pier bottom to different support stiffness in digital test, analysing respectively the linear and nonlinear problems, some useful conclusions for engineering design are obtained.
引文
[1]秦元勋,王联,王暮秋.运动稳定性理论与应用[M].北京:科学出版社,1962.
    [2]高为炳.运动稳定性基础[M].北京:高等教育出版社,1987.
    [3]邹经湘.结构动力学[M].哈尔滨:哈尔滨工业大学出版社,1996.
    [4]武际可,苏先樾.弹性系统的稳定性[M].北京:科学出版社,1994.
    [5]崔德刚.结构稳定性设计手册[M].北京:航空工业出版社,1996.
    [6]廖晓昕.稳定性的理论、方法和应用[M].武汉:华中理工大学出版社,1999.
    [7]周绪红.结构稳定性理论[M].北京:高等教育出版社,2010.
    [8]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,2002.
    [9]马保林.高墩大跨连续刚构桥[M].北京:人民交通出版社,2001.
    [10]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001.
    [11]王孟鸿.钢结构非线性分析与动力稳定性研究[M].北京:中国建筑工业出版社,2011.
    [12]张家忠.非线性动力系统的运动稳定性、分岔理论及其应用[M].西安:西安交通大学出版社,2010.
    [13]廖晓昕.动力系统的稳定性理论与应用[M].北京:国防工业出版社,2000.
    [14]舒仲周,张继业,等.运动稳定性[M].北京:中国铁道出版社,2001.
    [15]玛尔德纽克,孙振琦,等.非精确动力系统:运动的稳定性与控制[M].北京:科学出版社,2012.
    [16]褚亦清,李翠英,等.非线性振动分析[M].北京:北京理工大学出版社,1996.
    [17]李文华,贺拴海,鲁洁.高墩大跨弯连续刚构桥空间稳定性的解析解[J].西安建筑科技大学学报(自然科学版),2011(01):36-43.
    [18]刘爱荣,禹奇才,等.地震作用下斜靠式拱桥的动力稳定性[J].深圳大学学报(理工版),2010,27(3):286-290.
    [19]易壮鹏,赵跃宇,等.几何缺陷对拱结构动力稳定性的影响[J].地震工程与工程振动.2009,29(2):29-34.
    [20]易壮鹏.几何缺陷对拱结构力学性能的影响[D].长沙:湖南大学,2007.
    [21]吴玉华.大跨度钢管混凝土拱桥抗震性能及动力稳定研究[D].杭州:浙江大学,2009.
    [22]韩强,张善元,杨桂通.弹性直杆中一类动力屈曲问题的渐近解[J].应用数学和力学,1999(08):42-47.
    [23]王应槐,张若钢,等.大跨度连续刚构桥稳定性分析[J].公路交通运输,2009(5):43-46.
    [24]殷诗峻.薄壁高墩连续刚构桥的稳定性分析[J].公路与汽运,2008(4):148-150.
    [25]余钱华,周伟,等.高墩大跨预应力连续刚构桥稳定性分析[J].公路与汽运,2006(5):91-93.
    [26]陈怀勇,汤兆新,等.高墩连续刚构桥稳定性分析[J].交通标准化,2010(11):83-85.
    [27]王述超,万成宏,等.高墩连续梁桥的稳定分析[J].信阳师范学院学报(自然科学版),2009,22(4):598-602.
    [28]吕毅刚,余钱华,等.能量法分析高墩大跨连续刚构桥稳定性[J].长沙理工大学学报(自然科学版),2005,2(4):22-27.
    [29]王钧利,贺栓海.大跨径连续刚构桥高墩设计与稳定分析[J].长安大学学报(自然科学版),2006,26(5):34-39.
    [30]李开言,陈政清,等.双肢薄壁高墩施工过程稳定性分析的快速算法[J].铁道学报,2004,26(5):86-90.
    [31]张伟,付大喜,等.高墩稳定性计算[J].公路交通计算,2006(3):55-57.
    [32]刘进.高墩稳定影响因素分析[J].四川建筑,2009,29(4):156-158.
    [33]李衡山,于大涛,等.石马河特大桥高墩稳定性分析[J].中外公路,2006,26(6):71-73.
    [34]熊文.高墩大跨径连续刚构桥的计算稳定性分析[D].成都:西南交通大学,2006.
    [35]陈群.高墩大跨径桥梁稳定性仿真分析[D].西安:长安大学,2003.
    [36]崔永杰.单线铁路高墩大跨连续刚构桥的稳定性分析[D].成都:西南交通大学,2007.
    [37]陈浩.大跨高墩连续刚构桥的稳定性分析[D].成都:西南交通大学,2007.
    [38]梁锦锋.连续刚构桥高墩施工稳定性分析[D].长沙:湖南大学,2006.
    [39]杨善奎.高墩大跨预应力价连续刚构桥施工稳定性分析[D].长沙:湖南大学,2007.
    [40]陈铨恺.大跨连续刚构桥的双肢薄壁高墩施工稳定性分[D].长沙:湖南大学,2007.
    [41]刘娇.高墩大跨连续刚构桥非线性稳定分析[D].大连:大连理工大学,2007.
    [42]王宏.高墩大跨连续刚构桥稳定性和精力分析[D].大连:大连理工大学,2007.
    [43]李遥玉.连续刚构桥变截面高墩的稳定性分析[D].长沙:中南大学,2007.
    [44]蒋孝辉.连续刚构桥施工阶段高墩稳定性分析[D].长沙:中南大学,2008.
    [45]蛾德成.弹性结构非线性动力学与稳定性问题的个研究方法[J].南京工学院学报,1982(4):18-32.
    [46]李忠学,沈祖炎,等.杆系钢结构非线性动力稳定性识别与判定标准[J].同济大学学报,2000,28(2):148-151.
    [47]张瑰,项杰.关于动力稳定性研究中的数学方法综述[J].气象科学,2006,26(4):467-472.
    [48]卓曙君,周科健.结构动力稳定性的若干问题[J].国防科技大学学报,1988,10(3):100-115.
    [49]吴德伦,张志鹏.结构非线性动力稳定性与矩阵函数法[J].重庆建筑大学学报,1994,16(1):9-18.
    [50]傅衣铭,宋丽霞.开口薄壁杆的非线性动力稳定性分析[J].湖南大学学报,1998,25(4):9-14.
    [51]丁方允,丁睿.粘弹性柱的若干动力学性质——数值实验[J].兰州大学学报(自然科学版),1997,33(1):22-27.
    [52]李忠学,李元齐,等.结构非线性动力稳定研究中的关键问题探讨[J].空间结构,2000,6(4):29-35.
    [53]彭凡,傅衣铭.粘弹性板的非线性动力稳定性分析方法[J].动力学与控制学报,2005,3(4):60-65.
    [54]曲淑英,张瑞丰,等.阻尼与纵向共振对结构动力稳定的影响[J].应用力学学报,2002,19(2):94-97.
    [55]赵洪金,刘超,等.周期荷载作用下组合压杆动力稳定性分析[J].建筑结构,2011,41(2):68-71.
    [56]郭明伟,葛修润,等.基于矢量和方法的边坡动力稳定性分析[J].岩石力学与工程学报,2011,30(3):572-579.
    [57]孙强.直杆的动力稳定性分析之一[J].安徽工业建筑学院学报,1996,4(1):38-43.
    [58]孙强.直杆的动力稳定性分析之二[J].安徽工业建筑学院学报,1996,4(2):14-18.
    [59]孙强.直杆的动力稳定性分析之三[J].安徽工业建筑学院学报,1996,4(3):46-50.
    [60]孙强,杨大军.弹性介质中杆的动力稳定性研究[J].工程力学,1997,14(1):87-91.
    [61]孙强,蔡四维.斜杆的动力稳定性研究[J].力学与实践,1997,19(5):43-45.
    [62]孙强.变截面杆的动力稳定性研究[J].四川建筑科学研究,1999,24(2):44-46.
    [63]杨春秋,曲乃泗,等.弹性结构动力稳定研究[J].大连大学学报,2000,21(6):48-50.
    [64]李根国,朱正佑.具有分数导数型本构关系的粘弹性柱的动力稳定性[J].应用数学和力学,2001,22(3):250-258.
    [65]冯振宇,王忠民,等.粘弹性垫支承粘弹性桩的动力稳定性分析[J].中国公路学报,2006,19(1):67-70.
    [66]李黎,廖萍,等.高墩薄壁大跨度连续刚构桥的非线性稳定性分析[J].工程力学,2006,23(5):119-124,88.
    [67]李黎,张行,等.地震作用下高墩大跨连续刚构桥的弹性动力稳定性能研究[J].工程抗震与加固改造,2008,30(6):84-88.
    [68]王述超,张行.超限高层建筑地震作用下的动力稳定性分析[J].振动与冲击,2009,28(4):149-152,172.
    [69]李黎,刘文静,等.地震作用下隔震桥梁的动力稳定分析[J].工程力学,2010,27(2):289-293.
    [70]王钧利,贺栓海.高墩大跨径连续刚构桥弯桥全过程非线性稳定分析[J].长安大学学报(自然科学版),2008,28(3):49-52.
    [71]王钧利,贺栓海.高墩大跨径弯桥在悬臂施工阶段刚构的非线性稳定分析[J].交通运输工程学报,2006,6(2):30-34.
    [72]王钧利.高墩大跨径连续刚构弯桥全过程稳定性分析[D].西安:长安大学,2006.
    [73]龙晓鸿.斜拉桥及连续梁桥空间地震反应分析[D].武汉:华中科技大学,2004.
    [74]陈志军.高速铁路桥梁动力学问题分析及控制策略研究[D].武汉:华中科技大学,2006.
    [75]张行.地震作用下高墩刚构桥动力稳定性研究[D].武汉:华中科技大学,2010.
    [76]晏汀.固体力学中的非线性问题与分岔[D].武汉:武汉理工大学,2007.
    [77]Movchan A. The Direct Method of Liapunov in Stability Problems of Elastic Systems[J]. Journal of Applied Mathematics and Mechanics,1959,23:670-686.
    [78]Budiansky B, Roth S R. Axisymmetric Dynamic Buckling of Clamped Shallow Spherical Shells[C]. Collected Papers on Stability of Shell Structures. USA:NASA,1962:597-609.
    [79]Hsu C S. On Dynamic Stability of Elastic Bodies with Prescribed Initial Condition[J]. International Journal of Engineering Science,1996,4:1-21.
    [80]Simites G J. Suddenly-loaded Structural Configuration[J]. Journal of Engineering Mechanics,ASCE,1984,110(9):1320-1334.
    [81]Simites G J. Effect of Static Preloading on the Dynamic Stability of Structure[J]. AIAA,1980,21(8):1174-1180.
    [82]Akkas N. Asymmetric Buckling Behavior of Spherical Caps under Uniform Step Pressure[J]. Journal of Applied Mechanics,1972,39:293-294.
    [83]Peng J L, Pan A D, Rosowsky D V. High Clerance Scaffold Systems during Construction-I:Structual Modeling and Modes of Failure[J].Engineering Structures,1996,18 (3): 247-257.
    [84]Peng J L, Pan A D, Rosowsky D V. High Clerance Scaffold Systems during Construction-Ⅱ:Structural Analysis and Development of Design Guidelines[J].Engineering Structures,1996,18 (3):258-267.
    [85]G. E. landford. Review of Progressive Failure Analysis for Truss Structures[J]. Journal of Structural Engineering,1997,123 (2):122-129.
    [86]A. Y. Leung. Stability Boundaries for Parametrically Excited Systems by Dynamic Stuffiness[J]. Journal of Sound and Vibration.1989,31 (2):265-273.
    [87]L. Y. Li. Iteration of Force and Parametrically Excited Vibrations[J].Computers & Structures,1991,40 (3):615-618.
    [88]S. D. Kim, M. M. Kang, J. J. Kwun, Y. Hangai. Dynamic Instability of Shell-like Shallow Trusses Considering Damping[J]. Computers & Structures,1997,64 (1):481-489.
    [89]A. N. Kounadis, C. Gantes, G. Simitses. Nonlinear Dynamic Buckling of Multi-DOF Structure Dissipative Systems under Impact Loading[J]. International Journal of Impact Engineering,1997,19 (1):63-80.
    [90]J. Levitas, J. Singer, T. Weller. Global Dynamic Stability of a Shallow Arch by Poincare-like Simple Cell Mapping[J].International Journal of Nonlinear Mechanics,1997,32 (2):411-424.
    [91]J. Simmitses. Instability of Dynamical Loaded Structures[J]. Applied Mechanics Reviews,1987,40 (10):403-408.
    [92]L. Y. Li. Molyneaux Dynamic Instability Criteria for Structures Subjected to Sudden Step Loads[J]. International Journal of Pressure Vessels and Piping,1997,70 (2):121-126.
    [93]G. T. Michaltsos, D. S. Sophianopoulos. Nonlinear Dynamic Buckling of Asymmetrical Suspended Roofs under Step Loading[J]. Computational Mechanics,1998,21 (4): 390-397.
    [94]B. A. Izzudin, A. S. Elnashai, P. L. Dowling. Large Displacement Nonlinear Dynamic Analysis of Space Frames[A]. Structure Dynamics[C].1990.
    [95]K. Ishikawa, S. Kato. Elastic-plastic Dynamic Buckling Analysis of Reticular Domes Subjected to Earthquake Motion[J]. International Journal of Space Structures,1997,12 (3):205-215.
    [96]S. Kato, M. Murata. Dynamic Elastic-plastic Buckling Simulation System for Single Layer Reticular Domes with Semi-rigid Connections under Multiple Loading[J]. International Journal of Space Structures,1997,12(3):161-172.
    [97]Li Zhongxue, Shen Zuyan, Deng Changgen. Nonlinear Dynamic Stability Analysis of Frames under Earthquake Loading[A]. Proceedings of the 3rd International Conference on Nonlinear Mechanics[C]. Shanghai:Shanghai University press,1998:287-292.
    [98]V. Gioncu. Buckling of Reticulated Shells:State-of-art[J]. International Journal of Space Structures,1995,10 (1):1-46.
    [99]K. J. Bathe, H. Ozdemir. Elastic-plastic Large Deformation Static and Dynamic Analysis[J]. Computers & Structures,1976,6 (2):81-92.
    [100]ALGOR User'Manual for Revision[M].August,1998.
    [101]ANSYS应用技术报告[M].美国ANSYS公司.
    [102]MARC软什技术报告[M].美国MARC分析研究公司.
    [103]G. M. Barsan, C. G. Chiorean. Computer Program for Large Deflection Elastic-plastic Analysis of Simi rigid Steel Frameworks[J]. Computers & Structures,1999,72 (6): 699-711.
    [104]G. E. Blandford. Large Deformation Analysis of Inelastic Space Truss Structures[J]. Journal of Structure Engineering,1996.122 (.4):407-415.
    [105]M. Papadrakis. Inelastic Postbuckling Analysis of Trusses[J]. Journal of the Structural Division,1983,109 (9):2129-2147.
    [106]K. Ikeda, S. A. Mahin. A Refined Physical Theory Model for Predicting the Seismic Behavior of Braced Steel Frames[A]. Report No.UCB/EERC-84/12,Earthquake Engineering University of California,Berkcley.Califonia,1984.
    [107]P. Soroushian, M. S. Alawa. Hysteretic Modeling of Steel Structures:a Refined Physical Theory Approach[J]. Journal of Structure Engineering,ASCE,1990.116(11):2903-2916.
    [108]D.Hatzis. The Influence of Imperfections on the Behavior of Shallow Single-layer Lattice Domes[D].University of Cambridge,1987.
    [109]V.Ciioncu,N.Balut.Instability Behavior of Single-layer Reticulated Shells[J]. International Journal of Space Structures,1992,7 (4):243-253.
    [110]C.Borri,S.Chiostrini. Numerical Approaches to the Nonlinear Stability Analysisi of Single-layer Reticulated and Grid-shell Structures[J]. International Journal of Space Structures,1992,7 (4):285-298.
    [111]L.A.Tegola. Ultimate Limit States of Space Reticular Structures with Random Behavior Elemcnts[J]. International Journal of Space Structures.1992.7 (4):345-352.
    [112]O.M.Sadig.A.O.Abatan. Stability Analysis of Space Truss Systems Under Element Imperfections[J]. Space Structures,1993,4:108-115.
    [113]N.Balut. A Suggestion for Separate of Geometrical and Mechanical Inperfections[A]. In Stability of Steel Structures[C]. Conf. Budapest,1990:237-244.
    [114]N.Balut,D.Porumb,V.Gioncu. Some Aspects Concerning the Behavior and Analysis of Single-layer Latticed Roof Structures[A]. Stability of Metal Structures[C],Int Coll Paris,1983:133-140.
    [115]Li Z.X. Analysis of Nonlinear Dynamic Instability of Lattice Structure with Initial Geometrical Imperfections[A]. International Conference on Advances in Structural Dynamics[C]. HongKong:Elsevier Science Press,2000.
    [116]H.J.Jung,M.C.Kim,I.W.Lee. An Improved Subspace Iteration Method with Shifting[J]. Computers & Structures,1999,70 (6):625-633.
    [117]V.Vadal,G.Verdu,D.Ginestar,J.L.Munoz Cobo. Variational Acceleration for Subspace Iteration Method Application to Nuclear Power Reactors[J]. International Journal of Numerical Methods in Engineering,1998,41:391-407.
    [118]Wills R. The Effect Produced by Causing Weights to Travel Over Elastic Bars, Appendix to the Report of the Commissions Appointed to Inquire into the Application of Iron to Railway Structures[J]. London:H M Stationery office,1949.
    [119]Stroke G G. Discussions of a Differential Equation Related to the Breaking of Railway Bridges. Trans Cambridge Phil Soc V 8 Part 5,1896.
    [120]KpBIJIOB A H. Uber die Erzwungene Schwingungen von Gleichformigen Elastischen Staben. Math Ann V 61,1905.
    [121]Timoshenko S. Erzwungene Schwingungen Prismatische Stabe. Z Math u Phys V 59,1911.
    [122]Timoshenko S. On the Transverse Vibrations of Bars of Uniform Cross Section. Phill Mag V 43,1922.
    [123]Inglis C E. A Mathematical Treatise on Vibrations in Railway Bridges. Cambridge univ Press,1934.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700