桥梁结构复气动导纳函数与抖振精细化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文首先回顾了气动导纳研究现状以及目前存在的问题,明确了气动导纳是桥梁抖振分析中至关重要的气动参数,它的研究是今后桥梁抖振精细化分析中一个重要的研究方向。本文利用风洞试验、数值模拟和理论分析相结合的方法,对薄平板和三种典型桥梁断面的气动导纳进行了详细和深入的研究。利用实测的气动导纳函数对桥梁结构抖振响应进行了精细化分析,分别提出了考虑气动导纳修正和抖振力空间相关性影响的频域分析方法和时域分析方法。本文还对结构进行了全桥气弹模型风洞试验研究,验证本文提出的抖振分析理论的正确性。最后总结起来本文主要进行了以下几个方面的工作:
     (1)论文通过对气动导纳研究(包括气动导纳的来源、理论研究、试验研究、测量技术、经验公式)结果的回顾和总结,发现目前气动导纳研究的不足,明确论文研究内容;
     (2)对薄机翼基本理论进行了较深入研究,更深刻地理解了气动导纳的物理意义,为以后其它桥梁断面气动导纳的研究以及复气动导纳的提出奠定了理论基础。推导了薄机翼断面的静力三分力系数,给出了风攻角下理想平板的静力三分力系数,为接下来的薄平板模型静力三分力系数的试验、数值模拟研究提供理论参考;
     (3)提出了一种主动格栅技术,可以在风洞中同时产生单一频率的顺风向和竖风向的两个脉动分量。基于该技术推导提出了分离频率识别法下6个复气动导纳的定义式,并通过模拟数值信号检验了它的数值正确性;
     (4)根据提出的主动格栅技术开发了一套主动格栅装置,该装置可以产生顺风向和竖风向单一频率的谐波脉动风场,其紊流积分尺度可以达到几十米,克服了一直以来无法提高紊流积分尺度的困扰。开发了一套双天平水平测力装置,可以直接测定水平放置模型的抖振力。利用开发的主动格栅装置和双天平水平测力装置,实现6个复气动导纳的同时识别。对薄平板和三种典型桥梁断面的气动导纳进行了测量,并对测量结果进行了分析和讨论,得出重要的结论和结果;
     (5)基于分离频率识别方法,实现了气动导纳的CFD数值模拟研究。利用CFD数值模拟技术,对薄平板气动导纳进行研究,并与试验结果进行比较分析,得出一些有意义的结论;
     (6)提出了一种考虑抖振力空间相关性和气动导纳修正的适合于双肢薄壁高墩悬臂结构的抖振频域响应分析方法。以小关桥为例,给出了该桥施工阶段墩底内力的计算公式,分析了各脉动风荷载以及各部位上脉动风荷载对结构抖振响应的贡献,并且分析了抖振力空间相关性和气动导纳函数对结构抖振响应的影响;
     (7)提出了一种新的模拟随机风场的小波方法,该方法可以模拟脉动风的间歇性和局部相似性。目前只实现了一维单变量风场的模拟,有待进一步的拓展;
     (8)提出了一种基于抖振力空间相关性考虑气动导纳影响的抖振时域分析方法。运用该方法对双肢薄壁高墩悬臂结构进行了抖振分析,并将分析结果与频域分析结果进行比较,相互验证了两种方法的正确性;
     (9)开展了双肢薄壁高墩悬臂结构全桥气弹模型风洞试验研究,通过试验和频域、时域计算的结果比较,验证两种抖振分析理论的正确性;
     (10)利用第七章提出的抖振时域方法对东海大桥进行了抖振响应分析,将计算分析结果与相关参考文献结果进行比较,比较结果显示本文时域方法的计算结果与参考文献结果基本一致,验证了本文时域方法的正确性和适用性。
The research status of aerodynamic admittance functions (AAFs) was first reviewed and problems in the research were issued in the thesis. Aerodynamic admittance functions (AAFs) are one of the important aerodynamic parameters affecting buffeting response of long-span bridges. The development of rational AAFs is an important research field towards the refined/improved buffeting theory. This thesis is concerned with modeling and identification of AAFs from wind tunnel testing data for thin plate section and several types of bridge cross sections, the proposal of refined buffeting theory formulated taking into account both the developed AAFs and measured coherence/correlation of buffeting forces in frequency domain and in time domain, and the experimental validation of refined buffeting theory with the use of testing results from the full-scale aeroelastic model of a bridge in wind tunnel. Wind tunnel testing, numerical simulation and theoretical formulation are used in this study. In Sum, the main contents are concluded as follows.
     (1) After a careful and detailed review of the current research status concerning aerodynamic admittance functions, including the origin, theoretical and experimental study, testing setup and empirical formula of AAFs, issues are pinpointed and the content and objectives of the present research are confirmed.
     (2) The forces acting on thin airfoil are re-examined in depth to provide the physical meanings and formulations of aerodynamic admittance functions and to lay down the theory foundation for developing the AAFs of other bridge sections. The aerostatic coefficients of thin airfoil are described. The theoretical aerostatic coefficients of ideal thin plate cross section at different wind attack angle are then derived. The derived coefficients provide the basis for wind tunnel testing and numerical simulation studies of thin plate section addressed in the third and fourth chapters.
     (3) An active turbulence generator technique is developed to generate the longitudinal and vertical components with a harmonic frequency at one time. A frequency-by-frequency method of identifying complex AAFs (CAAFs) is developed and formulas of CAAFs are derived. The method is validated the simulated‘experimental’data.
     (4) The active turbulence generator is devised following above philosophy and generating the oscillating longitudinal and vertical velocity components with a single frequency. The generator has the merit to provide deca-meters order of the turbulent integral scale of the generated harmonic oscillating wind field, which overcomes the difficulty to generate wind field with large turbulent integral scales. A horizontal setup of measuring force with double force balances is developed and used to measure the aerodynamic force acting on sectional models suspended in wind tunnel. Making use of experimental data, six CAAFs are successfully identified. CAAFs of the thin plate section and three kinds of other bridge section models are obtained. Many significant results and suggestions are obtained by comparing the experimental results.
     (5) Based on the frequency-by-frequency identifying method, the investigations of CAAFs using computational fluid dynamics (CFD) technique are carried out in the Chapter 5. CAAFs are investigated using the numerical simulation technique of CFD. The numerical results are compared with the experimental results and many significant results are obtained.
     (6) A frequency-domain method taking into account the modification of AAFs and coherence functions of buffeting forces is presented for analyzing the buffeting response of cantilever structures with twin-legged high piers. Taking Xiaoguan bridge as an example, the displacement responses and the internal forces at the bottom of the left pier of the bridge are obtained. The contributions of each component of the aerodynamic forces and of each part of the structure to buffeting response of the bridge are investigated. In addition, effects of AAFs and coherence of buffeting forces are studied on the buffeting response of the bridge.
     (7) A new wavelet method of simulating wind field is presented. The method can simulate the self-similarity and intermittency of turbulence. Up to now, the method can only simulate one-dimension and single-variant wind field and is worth of further research.
     (8) A time-domain method is formulated also considering the modification of CAAFs and coherence functions of buffeting forces. The buffeting response of cantilever structures with twin-legged high piers is now performed using time-domain method. It validates the consistency of the frequency- and time-domain methods by comparing results obtained from the two methods.
     (9) Aeroelastic model experiments of cantilever structures with twin-legged high piers are carried out in wind tunnel. The experimental results are compared with analytical results and validate the correctness of time-domain and frequency-domain methods presented in this thesis.
     (10) The time-domain method for buffeting analysis of bridges presented in Chapter 7 is extended to analyze buffeting response of Donghai Bridge. The results obtained from the present method of Chapter 7 are compared with the results obtained the results reported in the literature. The closeness of the two sets of results is observed.
引文
[1] 陈政清. 桥梁风工程. 北京: 人民交通出版社, 2005, 1-100
    [2] 项海帆. 现代桥梁抗风理论与实践. 北京: 人民交通出版社, 2005, 110-152
    [3] Sears W.R.. Some aspects of non-stationary airfoil theory and its practical application. Journal of Aeronautical Sciences, 1941, 8(3):104-108
    [4] Davenport A.G.. Buffeting of a suspension bridge by storm winds. Journal of Structural Division, ASCE, 1962, 88(3):233-268
    [5] Davenport A.G.. The causes of wind induced vibration of structures. RILEM, Theme 3, Supplementary Reports, 1963, 10-18
    [6] Vickery B.J.. Load fluctuations in turbulent flow. Journal of the Engineering Mechanics Division, ASCE, 1968, 94(2):31-46
    [7] Vickery B.J.. On the flow behind a coarse grid and its use as a model of atmospheric turbulent in studies related to wind loads on buildings. National Physical Laboratory. Aero Report 1143, 1965, 12-15
    [8] Vickery B.J.. Fluctuating lift and drag on long cylinder of square cross-section in a smooth and in a turbulent stream. Journal of Fluid Mechanics, 1966, 25, part 3:481-494
    [9] Scanlan R.H.. Reexamination of section aerodynamic force functions for building. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14):1257-1266
    [10] Drabble M.J. and Grant I.. The aerodynamic admittance of a square plate in a flow with a fully coherent fluctuation. Phys Fluids A, 1990, 2(6):1005-1013
    [11] Bearman P.W.. An investigation of the forces on flat plates normal to turbulent flow. Journal of Fluid Mechanics, 1971, 46(1):177-198
    [12] Sankaran R. and Jancauskas E.D.. Direct measurement of the aerodynamic admittance of two-dimensional rectangular cylinders in smooth and turbulent flows. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41-44(1):601-611
    [13] Kawashima and Fujimoto. An investigation of the sinusoidal gust loads. In: Proceedings of the 3rd International Conference on Wind Effects on Buildings and Structures, Tokyo, 1971:1049-1087
    [14] Kawatani M. and Kim H.. Evaluation of aerodynamic admittance for buffeting analysis. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41-44(1):613-624
    [15] Sarkar P.P.. New identification method applied to the response of flexible bridges to winds: [Dissertation]. Denmark: Technical University of Denmark, 1997, 70-89
    [16] Larose G.L., Tanaka H., Gimsing N.J. and Dyrbye C.. Direct measurements of buffeting wind forces on bridge decks. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 809-818
    [17] Cigada A., Falco M. and Zasso A.. Development of new systems to measure the aerodynamic forces on section model in wind tunnel testing. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(7-8):725-746
    [18] Cigada A., Diana G. and Zappa E.. On the response of a bridge deck to turbulent wind a new approach. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(10):1173-1182
    [19] Cigada A., Diana G. and Zappa E.. Messina bridge complex aerodynamic admittance function measurement. In: Proceedings of the 11th Conference on Wind Engineering, 2003, Lobbock Texas, 1189-1198
    [20] Diana G., Resta F., and Rocchi D.. Effects of the yaw angle on flutter derivatives and vortex shedding of the Messina Multi-box girder deck section. In: Proceedings of the 11th Conference on Wind Engineering, 2003, Lobbock Texas, 1024-1031
    [21] Diana G., Bruni S., Cigada A., and Zappa E.. Complex aerodynamic admittance function role in buffeting response of a bridge deck. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12-15):2057-2072
    [22] Hatanaka A. and Tanaka H.. New estimation method of aerodynamic admittance function. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12-15):2073-2086
    [23] Peil U. and Behrens M.. Aerodynamic admittance models checked by full scale measurements. In: Proceedings of the 11th Conference on Wind Engineering, 2003, Lobbock Texas, 25-32
    [24] Xie J. and Xiang H.F.. Identification of the aerodynamic admittance functions for bridge road decks. In: Procedings of the 2nd Asia-Pacific Siumposium on Wind Engineering, Beijing, China, 1989, 618-628
    [25] 李明水. 连续大气湍流中大跨度桥梁的抖振响应: [西南交通大学博士学位论文]. 成都: 西南交通大学, 1993, 1-56
    [26] 蒋永林. 斜拉桥抖振响应分析: [西南交通大学博士学位论文]. 成都: 西南交通大学, 2000, 1-43
    [27] 马存明. 流线箱型桥梁断面三维气动导纳研究: [西南交通大学博士学位论文]. 成都: 西南交通大学, 2007, 1-60
    [28] 靳新华. 桥梁断面气动导纳识别理论及试验研究: [同济大学博士学位论文]. 上海: 同济大学, 2003, 1-80
    [29] 张若雪. 桥梁结构气动参数识别的理论和试验研究: [同济大学博士学位论文]. 上海: 同济大学, 1998, 15-49
    [30] 秦仙蓉, 顾明. 桥梁结构气动导纳识别的随机子空间方法. 同济大学学报, 2004, 32(4):421-425
    [31] 顾巍. 钝体和桥梁断面的气动导纳试验技术与研究: [同济大学博士后研究报告]. 上海: 同济大学, 2000, 35-45
    [32] Matsuda K., Hikami Y., Fujiwara T. and Moriysma A.. Aerodynamic admittance and the ‘strip theory’ for horizontal buffeting forces on a bridge deck. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83(1-3):337-346
    [33] Holmes J.D.. Prediction of the response of a cable stayed bridges to turbulence. In: Proceedings of the 4th International Conference on Wind Effects on Buildings and Structures, Heathrow, 1975, 187-197
    [34] Ding, Q. and Lee, P.K.K.. Computer simulation of buffeting actions of suspension bridges under turbulent wind. Computers and Structures, 2000, 76(6): 787-797
    [35] Davenport A.G.. The application of statistical concepts to the wind loading of structures. In: Proceedings of Institute of Civil Engineerer, 1961, 19:449-472
    [36] Davenport A.G. The dependence of wind load upon meteorological parameters. In: Proceedings of the International Research Seminar on Wind Effects on Buildings and Structures, University of Toronto Press, Toronto, 1968, 19-82
    [37] Davenport A.G., et al. A study of wind action on a suspension bridge during erection and completion. Rep. BLWT-3-69, Boundary Layer Wind Tunnel Lab., University of Western Ontario, London, Canada, Maym, 1969, 1-8
    [38] Davenport A.G. The action of wind on suspension bridges. In: Proceedings of International Symposium on Suspension Bridges, 79-100
    [39] Scanlan R.H. Role of indicial functions in buffeting analysis of bridges. Journal of Structure Engineering, ASCE, 1984, 110(7):1433-1446
    [40] Scanlan R.H. Amplitude and turbulence effects on bridge flutter derivatives. Journal of Structure Engineering, 1997, 123(2):232-236
    [41] Scanlan R.H. The action of flexible bridges under wind, Ⅱ: buffeting theory. Journal of Sound and Vibration, 1978, 60(2):201-211
    [42] Scanlan R.H. Indicial aerodynamic functions for bridges decks. Journal of the Engineering Mechanics Division, ASCE, 1974, 100(4):657-672
    [43] Scanlan R.H. Motion of suspended bridges spans under gusty wind. Journal of the Structural Division, ASCE, 1977, 103(9):1867-1883
    [44] Jain A., Jones N.P. and Scanlan R.H. Coupled flutter and buffeting analysis of long-span bridges. Journal of Structure Engineering, ASCE, 1996, 122(7):716-725
    [45] Jain A., Jones N.P. and Scanlan R.H. Coupled aeroelastic and aerodynamic response analysis of long-span bridges. Journal of Wind Engineering and Industrial Aerodynaimcs, 1996, 60(1):69-80
    [46] Lin Y.K. Motion of suspension bridges in turbulent wind. Journal of the Engineering Mechanics Division, ASCE, 1979, 105(6):921-932
    [47] Lin Y.K., Li Q.C. and Su T.C.. Application of a new wind turbulence model in predicting motion stability of wind-excited long-span bridges. Journal of Wind Engineering and Industrial Aerodynaimcs, 1993, 49(1-3):507-516
    [48] Lin Y.K., Ariaratnam S.T.. Self-excited bridge motion in turbulent wind. In: Proceedings of the 3rd U.S. National Conference on Wind Engineering Research. Gainesville, Florida, Feb, 26-Mar. 1, 1978, 367-370
    [49] Lin Y.K., Ariaratnam S.T.. Stability of bridge motion in turbulent wind. Journal of Structure Mechanics, 1980, 108(1):1-15
    [50] Lin Y.K. and Li Q.C. New stochastic theory for bridge stability in turbulent flow. Journal of Engineering Mechanics. 1993, 119(1):113-128
    [51] Lin Y.K. and Yang J.N. Multimode bridge response to wind excitation. Journal of Engineering Mechanics, 1983, 109(2):586-603
    [52] Liepmann H.W. On the application of statistical concepts to the buffeting problem. Journal of Aeronautical Sciences, 1952, 19(12):793-800
    [53] 陈伟. 大跨度桥梁抖振反应谱研究: [同济大学博士学位论文].上海: 同济大学, 1993, 1-56
    [54] Katsuchi H., Jones N.P. and Scanlan R.H.. Multimode coupled flutter and buffeting of the Akashi-Kaikyo bridge. Journal of Structure Engineering., ASCE, 1999, 125(1):60-70
    [55] Katsuchi H., Saeki S. Miyata T. and Sato H. Analytical assessment in wind-resistant design of long-span bridges in Japan. Bridge Aerodynamics, 1998 Balkema, Rotterdam, ISBN, 1-105
    [56] Sun D.K., Zhi H., Zhang W.S., Lin J.H. and Xu Y.L. Highly efficient and accurate buffeting analysis of complex structures. Communication in Numerical Methods in Engineering, 1998, 14(6):559-567
    [57] Xu Y.L., Sun D.K., Ko J.M. and Lin J.H. Buffeting analysis of long-span bridges:a new algorithm. Computers and Structures, 1998, 68(4):303-313
    [58] Lin J.H. A fast CQC algorithm of PSD matrices for random seismic responses. Computers and Structures, 1992, 44(3):683-687
    [59] 林家浩, 李建俊, 郑浩哲. 任意相关多激励随机响应. 应用力学学报, 1995, 12(1):97-103
    [60] 林家浩等. 关于虚拟激励法与结构随机响应的注记. 计算力学学报, 1998, 15(2):217-223
    [61] Chen X., Matsumoto M. and Kareem A. Aerodynamic coupled effects on flutter and buffeting of bridges. Journal of Engineering Mechanics, ASCE, 2000, 126(1):17-26
    [62] Chen X., Matsumoto M. and Kareem A. Time domain flutter and buffeting response analysis of bridges. Journal of Engineering Mechanics, ASCE, 2000, 126(1):7-16
    [63] 丁泉顺. 大跨度桥梁耦合颤抖振响应的精细化分析: [同济大学博士学位论文]. 上海: 同济大学, 2001, 1-105
    [64] Wagner H. Ueber die entstehung des dynamischen auftriesbes von tragflugeln. Zeitschrift fuer Angewandte Mathematik und Mechanik, 1925, 5(1):17-35
    [65] 周述华. 大跨度悬索桥空间非线性抖振响应仿真分析: [西南交通大学博士学位论文]. 成都: 西南交通大学, 1993, 1-110
    [66] 刘春华. 大跨度桥梁抖振响应的非线性时程分析: [同济大学博士学位论文]. 上海: 同济大学, 1995, 1-106
    [67] 刘春华, 项海帆, 顾明. 大跨度桥梁抖振响应的空间非线性时程分析法. 同济大学学报, 1996, 24(4):380-385
    [68] 曹映泓. 大跨度桥梁非线性颤振和抖振时程分析: [同济大学博士学位论文]. 上海: 同济大学, 1999, 1-90
    [69] 曹映泓. 大跨度桥梁随机风场的模拟. 土木工程学报, 1998, 31(3):72-79
    [70] Miyata T., Yamada H., Boonyapinyo V. and Santos J.C.. Analytical investication on the response of a very long suspension bridge under gust wind. In: Proceedings of Ninth International Conference on Wind Engineering, New Delhi, India, 1995, 1006-1017
    [71] Miyata T., Yamada H., et al. On a application of the direct flutter FEM analysis for long-span bridges. In: Proceedings of Ninth International Conference on Wind Engineering, New Delhi, India, 1995, 1006-1017
    [72] 项海帆. 桥梁风工程研究的未来. 见: 第十二届全国结构风工程学术会议论文集. 西安, 2003, 1-3
    [73] 于向东. 大跨度桥梁颤振导数识别的强迫振动法研究: [中南大学博士学位论文]. 长沙: 中南大学, 2002, 19-36
    [74] 阿尔然尼可夫等著. 空气动力学 上册(译自俄文). 北京:高等教育出版社, 1956, 1-98
    [75] Duncan W. L., Thom A. S. and Young A. D.. Mechanics of Fluids. London: Edward Arnold (Publishers) Ltd., 1978, 1-109
    [76] 米尔恩-汤姆逊著. 理论流体力学(译自英文). 北京: 机械工业出版社, 1984, 1-206
    [77] Ashley H., Landahl M.. The Aerodynamics of Wings and Bodies. Reading, Massachusetts: Addison-Wesley Publishing Co., 1965, 1-104
    [78] Küssner H.G. and Schwarz L.. The oscillating wing with aerodynamically balanced elevator. NACA Tech. Memo. 991 (1941). Translated from Luftfahrt-Forsch.17, 1940, 337-354
    [79] Jones W. P.. Aerodynamic forces on an oscillating aerofoil-aileron-tab combination. Aeronaut. Research Com. R. & M. 1948 (1941), 56-89
    [80] Theodorsen, Th. General theory of aerodynamic instability and the mechanism of flutter. NACA Rept. 496 , 1934, 1-99
    [81] Theodorsen Th. and Garrick I. E.. Nonstationary flow about a wing-aileron-tab combination including aerodynamic balance. NACA Rept. 736 , 1942, 1-87
    [82] Fung Y.C.. An introduction to the theory of aeroelasticity. New Your: Dover Press, 1995, 1-56
    [83] Dowell E.H., Curtiss H.C. and Robert H.. Scanlan and Fernando Sisto. A modern course in aeroelasticity. SIJTHOFF AND NOORDHOFF, Alphen aan den Rijn, The Netherlands, 1978, 1-124
    [84] Glauert H.. The elements of aerofoil and airscrew theory. 2d Ed. London: Cambridge Univ. Press, and Macmillan Co., 1947, 1-112
    [85] Zhu Ledong. Buffeting responses of long span cable-supported bridges under skew winds: field measurement and analysis: [Dissertation]. Hong Kong: The Hong Kong Polytechnic University, 2002, 1-402
    [86] Li M.S. and He D.X.. Aerodynamic admittance of bridge deck sections. In: Proceedings of the 2nd Eurpeaon-Afriaca Cofnerence on Wind Engineering, Genova, Italy, 1997, 1585-1592
    [87] Turbulent Flow Instrument.Getting Started Series 100 Cobra Probe, 2007, 1-45
    [88] Chen J., Haynes B.S. and Fletcher D.F.. Cobra probe measurements of mean velocities, Reynolds stresses and higher-order velocity correlations in pipe flow,Experimental Thermal and Fluid Science, 2000, 21(4): 206-217
    [89] Milbank J., Watkins S. & Kelso R.. Development of a small-scale aeroacoustic open jet, open return wind tunnel for cavity noise and component testing. in Vehicle Aerodynamics, SP-1524, (SAE 2000-01-0867), Society of Automotive Engineers - International, Detroit, USA, 2000, 195-206
    [90] Saunders J.W. and Mansour R.B.. On-road and wind tunnel turbulence and its measurement using a four-hole dynamic probe ahead of several cars. in Vehicle Aerodynamics, SP-1524, (SAE 2000-01-0350), Society of Automotive Engineers - International, Detroit, USA, 2000, 5-24
    [91] Hooper J.D. and Musgrove A.R.. Reynolds stress, mean velocity, and dynamic static pressure measurement by a four-hole pressure probe, Journal of Experimental Thermal and Fluid Science, 1997, 15(4):375-383
    [92] Murakami S.. Current status and future trends in computational wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67-68:3-34
    [93] 陶文锉. 数值传热学(第二版). 西安: 西安交通大学出版社, 2001, 1-188
    [94] 顾明,杨伟. 上海铁路南站屋盖结构平均风荷载的数值模拟. 同济大学学报(自然科学版), 2004, 32(2): 141-146
    [95] 杨伟. 基于 RANS 的结构风荷载和响应的数值模拟研究: [同济大学博士学位论文]. 上海: 同济大学, 2004, 28-98
    [96] Glück M., Breuer M., Durst F., et al. Computaion of fluid-structure interaction on lightweight structures. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14-15):1351-1368
    [97] 王福军. 计算流体动力学分析. 北京: 清华大学出版社, 2004, 1-106
    [98] 李加武. 桥梁断面雷诺数效应及其控制研究: [同济大学博士学位论文]. 上海: 同济大学, 2003, 1-116
    [99] Michael Chi-ho, Hui. Turbulent wind action on long-span bridges with separated twin-girder decks: [同济大学博士学位论文]. 上海:同济大学, 2006, 1-289
    [100] 李开言. 双肢薄壁高墩刚构桥悬臂施工稳定性与风效应研究: [中南大学博士学位论文]. 长沙: 中南大学, 2005, 86-108
    [101] Mende P.A. and Branco F.A.. Unbalanced wind buffeting effects on bridges during double cantilever erection stages. Wind & Structures, 2001, 4(1):45-62
    [102] Kasperski M.. Extreme wind load distributions for linear and nonlinear design. Engineering Structures, 1992, 14(1):27-34
    [103] Holmes J.D.. Along-wind response of lattice tower:part Ⅰ-derivation of expressions for gust response factors. Engineering Structures, 1994, 16(4):287-292
    [104] Davenport A.G.. How can we simplify and generalize wind loads[J]. Journal of Wind Engineering and Industrial Aerodynanmics, 1995, 54-55:657-669
    [105] Schmidt S. and Solari G.. 3D wind-excited response of slender structures: closed-form solution. Journal of Strctural Engineering, 2000, 126(8):936-943
    [106] Zhengqing Chen, Yan Han, Zhiwen Zhu, Kaiyan Li. Wind load & effects of rigid frame bridges with twin-legged high piers at erection stages. Proceedings of APCWE VI , 2005, 2383-2403
    [107] Davenport A.G.. The application of statistical concepts to wind loading of structures. In: Proceedings of the Institution of Civil Engineers, 1961, 19, 449-472
    [108] Davenport, A.G.. Gust loading factors. Journal of the Structural Division, ASCE, 1967, 93(3), 187-196
    [109] Piccardo G. and Solari, G.. Closed form prediction of 3-D wind-excited response of slender structures. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76:697-708
    [110] 项海帆. 公路桥梁抗风设计指南. 北京: 人民交通出版社, 1996, 53-59
    [111] 埃米尔. 希缪, 罗伯特. H. 斯坎伦著, 刘尚培, 项海帆, 谢霁明译. 风对结构的作用. 上海: 同济大学出版社, 1992, 1-324
    [112] Simiu, E., and Scanlan, R. H.. Wind Effects on Structures: Fundamentals and Applications to Design, 3rd edition, New York: John Wiley Press, 1996, 1-189
    [113] Schmidt, S. and Solari, G.. 3-D wind-induced effects on bridges during balanced cantilever erection stages. Wind and Structures, 2003, 6(1), 1-22
    [114] Vickery B.J. and Clark W.. Lift or across-wind response of tapered stacks. Journal of the Structural Division, ASCE, 1972, 98(1):1-20
    [115] Shinozuka M. and Deodatis G.. Simulation of stochastic processes by spectral representation. Applied Mechanics Review, 1991, 44(4): 191-204
    [116] 韩万水, 陈艾荣, 胡晓伦. 大跨度斜拉桥抖振时域分析理论实例验证及影响因素分析. 土木工程学报, 2006, 39(6):66-71
    [117] Macdonald J.H.G.. Evaluation of buffeting predictions of a cable-stayed bridge from full-sacle measurements. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(12-15):1465-1483
    [118] Namini A.. Analytical modeling of flutter derivatives as finite elements. Computers and Structures, 1991, 41 (5): 1055-1064
    [119] 华旭刚,陈政清,祝志文. 一种在 ANSYS 中实现颤振时域分析的方法. 中国公路学报, 2002, 15 (4): 32-34
    [120] X. G. Hua, Z. Q. Chen, Y. Q. Ni, and J. M. Ko.. Flutter analysis of long-spanbridges using ANSYS. Wind and Structures, 2007, 10(1): 61-82
    [121] Gerch W. and Yonemoto J.. Synthesis of multi-variate random vibration systems: a two-stage least squares ARMA model approach. Journal of Sound and Vibration, 1977, 52(4):553-565
    [122] Reed D.A. and Scanlan R.H.. Time series analysis of cooling tower wind loading. Journal of Structural Egineering Division, ASCE, 1983, 109(2):538-554
    [123] Iazzunni A. and Spinell P.. Artificial wind generation and structural response. Journal of Structural Enineering Division, ASCE, 1987, 113(12):2383-2397.
    [124] Huang Z., Chalabi, Z. S. and Bedford U. K.. Use of time-series analysis to model forecast wind speed. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 56(2-3):311-322
    [125] Deodatis G. Simulation of ergodic multivariate stochastic processes. Journal of Engineering Mechanics, ASCE, 1996, 122(8):778-787
    [126] 张志田. 大跨度桥梁非线性抖振及其对抗风稳定性影响的研究: [同济大学博士学位论文]. 上海: 同济大学, 2004, 1-85
    [127] Yamada M., Ohkitani K.. Orthonormal wavelet analysis of turbulence. Fluid Dynamics Research, 1991, 8(2): 101-115
    [128] Kitagawa T., Nomura T.. A wavelet-based method to generate artificial wind fluctuation data. Journal of Wind Engineering Industrial Aerodynanics, 2003, 91(7):943-964
    [129] 王毅, 陈艾荣. 基于小波方法的随机脉动风模拟. 见: 第十一届全国结构风工程学术会议论文集, 三亚, 2003: 91-96
    [130] Anselment F., Gangne Y., Hopfinger E.J. and Antonia R.A.. High-order velocity structure functions in turbulence shear flow. Journal of Fluid Mechanics, 1984, 140(1): 63-89
    [131] Dubrulle B.. Intermittency in fully developed turbulence: log-poisson statistics and generalized scale covariance. Phys. Rev. Lett., 1994, 73(7): 959-962
    [132] She Z., Leveque E.. Universal scaling laws in fully developed turbulence. Phys. Rev. Lett., 1994, 72(3): 336-339
    [133] 胡昌华, 张军波等. 基于 MATLAB 的系统分析与设计-小波分析. 西安: 西安电子科技大学出版社, 1992, 1-87
    [134] 中交公路规划设计院. 公路桥梁抗风设计规范. 北京: 人民交通出版社, 2004, 89-106
    [135] 胡晓伦. 大跨度斜拉桥颤抖振响应及静风稳定性分析: [同济大学博士学位论文]. 上海: 同济大学, 2006, 1-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700