川芎嗪对人肝癌多药耐药细胞ABC家族的抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分人肝癌多药耐药细胞系BEL-7402/ADM的建立
     一、人肝癌多药耐药细胞株BEL-7402/ADM的建立
     方法:以文献方法采用体外低浓度梯度递增联合大剂量间断冲击诱导的模式,建立人肝癌BEL-7402/ADM耐药细胞株。取对数生长期的亲本细胞BEL-7402,常规消化细胞,按2×10~6个/瓶进行分瓶,加入终浓度为50nmol/L的阿霉素(adriamycin,ADM),24h换液,用PBS冲洗,胰酶进行消化,根据生长情况选择传代周期。低浓度持续诱导,弃去上清和死亡悬浮的细胞,加入新鲜培养液脱药培养,在细胞重新生长并达到覆盖2/3瓶壁时,加入含ADM浓度为2000 nmol/L的培养液进行大剂量冲击诱导,待存活细胞恢复生长增殖后,加入含ADM 200 nmol/L的培养液继续诱导,同上步骤依次建立ADM诱导浓度为600、800、1000、2000nmol/L的人肝癌BEL-7402/ADM耐药细胞,实验最终采用ADM浓度为2000nmol/L的培养液中生长的BEL-7402/ADM耐药细胞为本次实验的耐药细胞组。
     结果:成功诱导人肝癌耐药细胞BEL-7402/ADM。倒置显微镜下人肝癌耐药细胞BEL-7402/ADM的细胞形态学观察结果,耐药细胞多为分片状、群集性增殖,细胞的多角性改变,棱角变少,呈梭形,胞浆的折光性变大,细胞易被消化。
     二、MTT法测定人肝癌多药耐药细胞系BEL-7402/ADM的耐药倍数
     方法:取亲本细胞及耐药细胞,用0.25%胰酶消化处理对数生长期细胞,用含8%FCS的RPMI 1640培养液配成细胞悬液,每孔接种200μL,即2×10~4个/mL,接种在96孔板上,设有空白对照组、阴性对照组、ADM组、5-FU组、VCR组和CDDP组,以上给药组均设5个浓度。在酶联免疫检测仪上选定490nm波长处测定OD值,参比波长为620nm。按下列公式计算细胞生长抑制率:生长抑制率=(1—给药组平均OD值/对照组平均OD值)×100%.公式计算IC_(50)值:lgIC_(50)=Xm-I[P-(3-Pm-Pn)/4],Xm:1g最大剂量;I:1g(最大剂量/相邻剂量);P:阳性反应率之和;Pm:最大阳性反应率:Pn:最小阳性反应率。耐药倍数(RI)=(IC Resistance group)/(IC Parental group)×100%.
     结果:MTT实验结果表明,ADM对亲本的BEL-7402以及耐药的BEL-7402/ADM的IC_(50)值分别是(1.47±0.28)、(7.62±0.51)μmol/L;5—FU的IC_(50)值分别是(4.56±0.72)、(21.53±2.47)μmol/L;VCR的IC_(50)值分别是(8.98±0.30)、(80.27±11.22)μmol/L;CDDP的IC_(50)值分别是(1.2±0.04)、(10.67±2.14)μmol/L,对各药物的耐药倍数分别为:ADM 5.18倍、5-FU 4.72倍、VCR 8.94倍、CDDP 8.89倍。
     三、ADM不同诱导浓度对人肝癌细胞系BEL-7402中P-gp表达的影响
     方法:以Western-blot法检测在200、600、800、1000、2000 nmol/L不同ADM浓度诱导至稳定增殖的肝癌BEL-7402细胞的P-gp的表达。结果以各组P-gp/α-tublin与未诱导的亲本细胞(control组)的比值百分率(均值±标准差,X±SD)表示。
     结果:以200、600、800、1000、2000 nmol/L不同ADM浓度稳定增殖的肝癌BEL-7402细胞,其P-gp的蛋白表达以亲本细胞P-gp/α-tublin(control组)为100%计,分别为(99.37±1.63)、(112.36±1.59)、(105.01±1.93)、(102.12±1.16)、(102.84±2.18)%,其中阿霉素浓度为200nmol/L时,P-gp表达与control组无差异,但当阿霉素浓度为600、800、1000、2000nmol/L时,蛋白表达明显增加(P<0.05)。
     四、细胞周期分析
     方法:取对数生长期的BEL-7402、BEL-7402/ADM细胞于流式细胞仪测定DNA含量并进行细胞周期分析。
     结果:细胞周期结果显示,耐药细胞G_0/G_1缩短,而G_2/M、S期增加(P<0.05)(n=3)。
     五、流式细胞仪检测亲本细胞及耐药细胞内阿霉素的蓄积
     方法:将对数生长期的BEL-7402、BEL-7402/ADM细胞以8 000 nmol/LADM培养2 h后,流式细胞仪检测细胞内ADM平均荧光强度。
     结果:FCM检测结果,以BEL-7402内荧光强度为100%计,耐药细胞BEL-7402/ADM内的平均荧光强度为(82.08±6.89)%(P<0.01),表明耐药细胞内阿霉素摄入减少。
     六、细胞贴壁率与平板克隆形成率的检测
     方法:收集BEL-7402亲本细胞及BEL-7402/ADM多药耐药细胞,制备成单细胞悬液。以载玻片进行台盼蓝染色活细胞计数,各按每瓶1×10~6个分别接种于6个培养瓶内。每间隔1 h取1组细胞,吸弃未贴壁的细胞,消化贴壁细胞,进行细胞计数。根据以下公式计算细胞贴壁率:细胞贴壁率=(贴壁细胞数/接种细胞数)×100%。细胞平板克隆形成率参考文献实验方法。
     结果:台盼蓝染色活细胞计数结果,两组细胞贴壁率均随时间增加而增加,在2h时两组有差异,亲本细胞的贴壁率大于耐药细胞(P<0.05)。平板克隆形成率BEL-7402与耐药细胞BEL-7402/ADM分别为:(68.28±8.06)%、(54.44±5.83)%,两者有统计学差异(P<0.05)。
     结论
     1.本研究采用体外低浓度梯度递增联合大剂量间断冲击诱导的模式,成功建立了人肝癌BEL-7402/ADM耐药细胞株,实验结果表明,该细胞株虽然为ADM所诱导耐药,但该耐药株不仅对ADM产生了较高的耐药性,对5—FU、VCR及CDDP亦有不同程度的耐药性,证实了其类型为多药耐药。耐药细胞株经冻存后复苏并连续脱药培养1个月后,其耐药性可有所有下降,但通过短暂的药物再次诱导,耐药性仍能恢复至冻存之前的水平,与文献报道一致。
     2.从Western blot结果看,当阿霉素诱导浓度在200 nmol/L时,对BEL—7402细胞P-gp的表达无影响。当浓度在600 nmol/L以上时,P-gp表达显著升高,但P-gp的表达量并不随诱导剂量增加而显著增加,而是耐药表型随着药物的增加而逐渐稳定。由于肿瘤多药耐药机制非常复杂,可能存在多机制联合作用导致耐药,有待下一步实验证实。
     3.有关肿瘤耐药细胞周期与其亲本细胞的区别,文献报道不一。本研究中细胞周期实验结果显示,耐药细胞与亲本细胞存在一定差异。表现在耐药细胞G0/G1比值减小,而G2/M、S期增加。各实验室结果差异除了可能与实验条件不尽相同、诱导方法、操作误差等都有关系。此外,耐药的肝癌细胞在贴壁率、平板克隆形成率、细胞形态上与亲本细胞还存在差异。
     4.流式细胞仪检测结果,说明阿霉素诱导的多药耐药细胞耐药的机制与外排药物有关。结合Western blot结果,考虑可能P-gp参与了这一机制。
     第二部分川芎嗪逆转人肝癌多药耐药细胞BEL-7402/ADM的作用及机制
     一、MTT法测定川芎嗪对人肝癌多药耐药细胞BEL-7402/ADM的逆转倍数
     方法:将BEL-7402/ADM以TMP(400和600μmol/L)、VRP(5和10μmol/L)分别培养于96孔板至24 h,然后分别加入浓度为0.3,0.6,1.2,2.4,4.8μmol/L的ADM至72 h。其中维拉帕米(Verapamil,VRP)为阳性对照。分别计算IC_(50)值、耐药倍数、逆转倍数。其中IC_(50)值的计算按第一部分“MTT法测定人肝癌多药耐药细胞系BEL-7402/ADM的耐药倍数”计算。逆转倍数=(IC_(50) Resistance group)/(IC_(50) TMP/VRP group)×100%.
     结果:MTT实验证明,TMP对耐药细胞的逆转倍数分别为3.79(P<0.01)(TMP浓度为400μmol/L)、14.65(P<0.01)(TMP浓度为600μmol/L),与VRP结果相似,并呈浓度依赖性。
     二、荧光显微镜观察川芎嗪对人肝癌多药耐药细胞BEL-7402/ADM中ADM蓄积的影响
     方法:将生长良好的BEL-7402/ADM及其亲本细胞于培养瓶中培养过夜,分为6组,阴性亲本组、阴性耐药组、亲本组、耐药组、TMP逆转组、阳性对照组(VRP)。接种于培养瓶中,逆转组加入川芎嗪至终浓度为600μmol/L,阳性对照组(VRP),加入VRP至终浓度为5μmol/L,逆转组及阳性对照组在TMP或VRP中预培养3 h,再与亲本组、耐药组平行加入8 000 nmol/L ADM培养2 h,阴性亲本组、阴性耐药组加入新鲜培养液,不加任何药物;各组以冰冷的PBS洗3次,荧光显微镜下直接观察细胞内阿霉素的含量。激发光(λex)为480nm,发射光(λem)为575 nm。
     结果:荧光显微镜下观察,ADM在荧光镜下发红色荧光。镜下可见,ADM红色荧光信号强弱顺序依次为:Resistance +VRP+ADM组>Resistance +TMP+ADM组>亲本细胞>Resistance+ADM组。实验表明,未加药的亲本细胞及耐药细胞无阿霉素的红色荧光,各组中亲本细胞中的阿霉素荧光最强,耐药组有所减弱,经TMP、VRP预处理后的耐药组荧光有所增强,说明TMP、VRP可使细胞内阿霉素的蓄积量增加。
     三、流式细胞仪检测川芎嗪对人肝癌多药耐药细胞BEL-7402/ADM中ADM蓄积的影响
     方法:设阴性组、耐药组、TMP组、VRP组。接种于培养瓶中,阴性对照组加入新鲜培养液,逆转组加入川芎嗪至终浓度为600μmol/L,阳性对照组(VRP),加入VRP至终浓度为5μmol/L,继续培养24h,加入ADM 8000nmol/L,培养2 h,以冰冷的PBS洗3次,胰酶消化为单个细胞悬液(不低于10~6个/mL),流式细胞仪检测细胞内ADM平均荧光强度。激发光(λex)为480 nm,发射光(λem)为575 nm.
     结果:FCM检测结果,Parental组,Resistance+TMP组和Resistance+VRP组平均荧光强度分别为耐药细胞Resistance组的(121.83±23.2)%(P<0.01)、(163.78±39.5)%(P<0.01)、(320.1±47.18)%(P<0.01)。表明TMP能使细胞内的阿霉素蓄积增加,与VRP相似。
     四、HPLC法检测TMP对细胞内ADM浓度的影响
     方法:设亲本组、耐药组、TMP组、VRP组。将TMP组、VRP组分别在TMP(600μmol/L)或VRP(5μmol/L)中预培养3 h,所有组再以8 000 nmol/LADM培养2h,以HPLC检测细胞内ADM浓度。以目标药与内标的峰面积的比值为横坐标,以药物的浓度为纵坐标,做标准曲线,并考察重现性、精密度、加样回收率、稳定性等。实验结果以盐酸阿霉素(分子量579.99)浓度单位折算为nmol/L。
     结果:HPLC结果显示,ADM在0.1-40000ng/mL的范围内具有良好的线性关系。检测限(LOD)为0.05ng/mL,RSD为0.407。标准曲线为:C=47.73A+23.62(r=0.998),其中C为阿霉素浓度,A为阿霉素与alprazolam的峰面积比值。实验数据显示,亲本细胞摄入阿霉素的量为(2.45±0.52)μmol/L,耐药细胞对阿霉素摄入减少至(2.06±0.40)μmol/L,TMP可逆转耐药情况而使阿霉素的蓄积量超过亲本细胞的水平。实验数据还表明,川芎嗪在使细胞内阿霉素浓度蓄积增加的同时,川芎嗪本身在细胞内的蓄积并未增加,说明川芎嗪并非P-gp底物,它使细胞内阿霉素浓度增加并非属于与阿霉素竞争受体结合位点所致。
     五、川芎嗪对人肝癌多药耐药细胞BEL-7402/ADM中MDR1、MRP2、MPP3、MRP5 mRNA表达的影响
     方法:设耐药组、TMP组、VRP组。将TMP组、VRP组分别在TMP(600μmol/L)或VRP(5μmol/L)中预培养3 h,所有组再以8 000 nmol/L ADM培养2 h,采用PCR检测MDR1,MRP2,MRP3和MRP5 mRNA表达水平。
     结果:实验结果以耐药组(resistance)为100%,计算得各组值。结果显示,TMP可使MDR1,MRP2,MRP3和MRP5 mRNA表达分别达到耐药组的(0.67±0.03)、(0.85±0.10)、(0.90±0.04)、(0.63±0.11),与耐药组比较均有统计学差异(P<0.05),但VRP组除MDR1 mRNA表达与阴性对照组有差异外,其余组无差异(P<0.05)。
     六、川芎嗪对人肝癌多药耐药细胞BEL-7402/ADM中P-gp、MRP2、MRP3、MRP5蛋白表达的影响
     方法:细胞分设耐药组、TMP组、VRP组。将TMP组、VRP组分别在TMP(600μmol/L)或VRP(5μmol/L)中预培养3 h,所有组再以8 000 nmol/LADM培养2 h,采用免疫印迹检测P-gp、MRP2、MRP3、MRP5蛋白表达水平。
     结果:结果表明TMP可使MDR1,MRP2,MRP3和MRP5蛋白表达分别下调至阴性对照组(以1.0计)的(0.49±0.04)、(0.61±0.13)、(0.38±0.14)、(0.68±0.07)(P<0.01)。P-gp、MRP2、MRP3及MRP5蛋白表达下降。(P<0.05)但VRP组除P-gp表达下降(0.44±0.08)(P<0.01)外,其余蛋白表达无差异,与mRNA结果一致。
     结论
     1.川芎嗪(Tetramethylpyrazine,TMP)自中药川芎中分离,有研究表明其对HCC的耐药有作用,可能与逆转P—gp有关,但仍然未见是否与逆转其它蛋白有关。本研究探讨了TMP对人肝癌多药耐药细胞BEL-7402/ADM MDR的逆转作用。研究发现:TMP可浓度依赖性逆转肝癌多药耐药细胞BEL-7402/ADM的MDR。
     2.TMP作用后,耐药细胞内的ADM蓄积增加,推测可能是由于TMP影响了ABC家族成员的一种或数种蛋白的表达及功能所致。
     3.Realtime PCR及Western blot结果证实,TMP作用于多药耐药细胞后MDR1、MRP2、MRP3及MRP5在肝癌耐药株细胞中mRNA及蛋白高表达可能发挥联合耐药作用,并可被TMP所抑制。
     4.研究还发现:TMP和第一代逆转剂VRP均可以抑制MDR1,但川芎嗪对MRP2,MRP3,MRP5亦有效,不同于VRP;研究还发现:TMP和第一代逆转剂VRP均可以抑制MDR1,但川芎嗪对MRP2,MRP3,MRP5亦有效,不同于VRP;TMP在使细胞内阿霉素浓度蓄积增加的同时,川芎嗪本身在细胞内的蓄积并未增加,说明川芎嗪并非P-gp底物,它使细胞内阿霉素浓度增加并非属于与阿霉素竞争受体结合位点所致。其机制值得进一步研究。
     综上所述,川芎嗪(Tetramethylpyrazine,TMP)对HCC的多药耐药有逆转作用,其机制与抑制P—gp的表达有关;实验还表明MDR1,MRP2,MRP3及MRP5在肝癌耐药株细胞中高表达可能发挥联合耐药作用,并能被TMP浓度依赖性逆转。研究还发现:TMP和第一代逆转剂VRP均可以抑制MDR1/P-gp,但川芎嗪对MRP2,MRP3,MRP5亦有效,不同于VRP;川芎嗪并非P-gp底物,它使细胞内阿霉素浓度增加并非属于与阿霉素竞争受体结合位点所致。其机制值得进一步研究。
PartⅠEstablishment of ADM-induced resistant human hepatocellular carcinoma cell line BEL-7402/ADM
     1.Establishment of ADM-induced resistant human hepatocellular carcinoma cell line BEL-7402/ADM
     Methods:High-dose pulse therapy combined with continuous stepwise exposure to adriamycin(ADM) to induce resistant HCC cell line BEL-7402/ADM was conducted. The parental human hepatocellular carcinoma cells BEL-7402 was cultured,digested, and washed,and then cultured at the population of 2×10~6 per culture bottle,ADM was added at the end concentration of 50nmol/L,the culture media was changed after 24 hours,washed by phosphate buffer solution(PBS),digested by 0.25%trypsin, subculture period was ensured according to the proliferation of cells.When the HCC had been induced continuously with a low concentration of ADM for a few months, the suspended and the dead cells and the media had been discarded before the fresh media without drug was added.At the time of that HCC cells were covered on the two-thirds area of the plate,the media containing 2000 nmol/L ADM was added for pulse therapy,followed by continuous stepwise exposure in the media containing 200 nmol/L ADM.The steps repeated by using 600,800,1000 and 2000nmol/L of ADM, until drug-resistant BEL-7402/ADM cells were well grown in the media with 2000nmol/L ADM.
     Results:HCC cell line BEL-7402/ADM was established.BEL-7402/ADM cells were clustered and scattered,with less multiangular,increased refractivity in cytoplasm,more shuttle,and more easily digested compared with BEL-7402.
     2.Determination of reversal index of human hepatocellular carcinoma cells /ADM by MTT(3-(4,5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide)
     Methods:Parental BEL-7402 and resistant BEL-7402/ADM cells in logarithmic phase of growth were digested by 0.25%trypsin,suspended in RPMI 1640 medium supplemented with 8%FCS,then transferred in 96-well plate,for 200μL(2×10~4 cells/mL) per well,and cells were divided into 6 groups,blank,sham,ADM,5-FU, VCR and CDDP.Blank group was RPMI 1640 medium supplemented with 8%FCS without any drug and cells;Sham group were BEL-7402/ADM cells without any drug. Each group of drugs contained different concentrations,and there were 4 wells for each concentration of drugs.The absorbance was measured with a microplate reader at a test wavelength of 490 nm,and a reference wavelength of 620 nm.The inhibition rate of drugs was calculated as IR=(1-A_(drug)/A_(sham))×100%.The IC_(50) value was calculated as lgIC_(50)=Xm-Ⅰ[P-(3-Pm-Pn)/4](Xm:lg C_(max);Ⅰ:lg(C_(max)/C_(submax));P:sum of effects;Pm:E_(max);Pn:E_(min).Reversal index(RI)=(IC_(50Resistance))/(IC_(50Parental))×100%..
     Results:The data of MTT showed that IC_(50) value of ADM on BEL-7402 and BEL-7402/ADM were(1.47±0.28),(7.62±0.51)μmol/L,respectively;while data for 5 -FU were(4.56±0.72) and(21.53±2.47)μmol/L,respectively;VCR(8.98±0.30) and (80.27±11.22)μmol/L;CDDP(1.2±0.04) and(10.67±2.14)μmol/L,the reversal index of drugs were:ADM 5.18,5-FU 4.72,VCR 8.94,CDDP 8.89,respectively.
     3.Relationship between the concentration of ADM and the expression of P-gp in BEL-7402 by western blot
     Methods:Treated with 200,600,800,1000 and 2000 nmol/L of ADM,proteins in BEL-7402 and induced BEL-7402 cells were detected by western blot,andα-tublin as a reference.Blots were then exposed to a computer scanner and detected by ImageJ 1.38x(NIH.USA).Data presented are mean±SD values compared with the percentage of the level of P-gp/α-tublin in parental group(control).
     Results:The P-gp expression in well-cultured cells BEL-7402 in media containing 200,600,800,1000 and 2000 nmol/L ADM were(99.37±1.63),(112.36±1.59), (105.01±1.93),(102.12±1.16) and(102.84±2.18)%compared with parental groups (the ratio of P-gp/α-tublin of parental calculated as 100%),respectively,in which the expression of P-gp in 200nmol/L ADM had no statistic difference from control,but that in 600,800,1000 and 2000nmol/LADM did(P<0.05).
     4.Analysis of cell cycle-phase
     Methods:Parental BEL-7402 and resistant BEL-7402/ADM cells in logarithmic phase of growth were harvested,digested,centrifuged and washed.1×10~6 per group was fixed by adding 70%ethanol.Samples were detected using 250μg/mL propidium iodide by flow cytocemetry.
     Results:Analysis of cell-cycle phase distribution was carried out on BEL-7402 and BEL-7402/ADM cells.The results showed that BEL-7402/ADM cells appeared lower value of G_0/G_1 and higher S and G_2/M(P<0.01) than that of BEL-7402.
     5.Intracellular accumulation of Adriamycin(ADM) in BEL-7402 and BEL-7402/ADM cells by flow cytometry(FCM)
     Methods:To assess the steady accumulation of ADM,BEL-7402 cells and BEL-7402/ADM cells were incubated with 8 000 nmol/L ADM for 2 h.The fluorescence intensity of intracellular ADM was recorded by FCM with an excitation wavelength(λex) of 480 nm and emission wavelength(μem) of 575 nm.
     Results:The mean fluorescence intensity of ADM in Resistance group was (82.08±6.89)%of Parental group(P<0.01),indicating that there was a decreased intake of ADM in BEL-7402/ADM.
     6.The adherence rate and the plate cloning efficiency of BEL-7402/ADM
     Methods:Parental BEL-7402 and resistant BEL-7402/ADM cells in logarithmic phase of growth were harvested and resuspended to be single-cell solution, respectively.The live cells were calculated on glass slide by trypan blue staining, 1×10~6 cells per culture bottle was distributed for 6 groups,respectively.The adherent cells was calculated every 1 h as following:The adherence rate=(A_(adherent)/A_(inoculated))×100%.
     Results:The data showed that the longer the time lasted,the greater the adherence rate of BEL-7402 and BEL-7402/ADM were.There was a statistic difference between the two groups at 2h,when the adherence rate of BEL-7402 was more than that of BEL-7402/ADM(P<0.05).The plate cloning efficiency of BEL-7402 cells(54.44±5.83%) was more than that of the parental cells(68.28±8.06%).
     Conclusion
     1.In this study,resistant human hepatocellular carcinoma cell line BEL-7402/ADM was established by adriamycin(ADM) using the model of high-dose pulse therapy combined with continuous stepwise exposure.The data indicated that ADM-induced resistant human hepatocellular carcinoma cell line BEL-7402/ADM was resistant to not only ADM,but also 5-FU,VCR and CDDP.The resistant cell line with such a phenotype would be weaker slightly after stored,but recovered and cultured for about 1 month,given induction again,the level ofphenotype would appear as before.
     2.The result of western blot showed that there was no effect of ADM at the concentration of 200 nmol/L on the P-gp expression in the cell line but at 600 nmol/L and more.
     3.As to the difference of cell cycle-phase between the parental cell line and the resistant one,the experimental results showed BEL-7402/ADM cells appeared lower value of G_0/G_1 and higher of S and G_2/M(P<0.01) than that of BEL-7402,while phase S had no change,there were differences on the adherence rate and the plate cloning efficiency between BEL-7402/ADM and BEL-7402,this result seemed to be different from other references,it maybe occur since different conditions,methods or/and deviations.
     4.The mechanism of the BEL-7402/ADM resistant to agents may associate with P-gp acting as a pump to the drugs according to the results of FCM and western blot.
     5.According to references as described previously,tumor cells are often cultured in the media containing 10%FCS,in this study,we used 8%FCS and obtained the same results,and saved a lot of agents.
     PartⅡReversal and mechanism of tetramethylpyrazine on HCC cell line BEL-7402/ADM
     1.Measurement of reversal of TMP on BEL-7402/ADM by methylthiazoletetrazolium(MTT) assay
     Methods:To assess the reversal effect,a measurement of cells proliferation by methylthiazoletetrazolium(MTT) assay was conducted as described previously. BEL-7402/ADM cells were preconditioned with TMP(400 and 600μmol/L) or VRP (5 and 10μmol/L) in 96-well plate for 24 h,respectively,then treated with 0.3,0.6,1.2, 2.4,4.8μmol/L of ADM in 96-well plate for 72 h,respectively.Verapamil(VRP) was conducted as positive control,and then the medium was discarded and the cells were washed by PBS for 3 times.IC_(50) value,resistance index and reversal index were calculated as described previously.The resistance index(RI) is calculated as RI= (IC_(50) Resistance group)/(IC_(50) Parental group)×100%.The reversal index is calculated as RI=(IC_(50) Resistance group)/(IC_(50) TMP/VRP group)×100%.
     Results:Results from the experiment showed that the reversal index were 3.79(P<0.01) by TMP at the concentration of 400μmol/L and 14.65(P<0.01) at the concentration of 600μmol/L,respectively,similar to VRP,indicating that the reversal effects of regulators took place in a dose-dependent manner.
     2.Intracellular accumulation of Adriamycin(ADM) by fluorescence microscopy
     Methods:With/without TMP(600μmol/L) or VRP(5μmol/L) preconditioning in 3 hours,BEL-7402 cells and BEL-7402/ADM were incubated with 8 000 nmol/L ADM for 2h at 37℃,washed three times with ice-cold PBS.With an excitation(~λex) wavelength of 488 nm and emission(~λem) wavelength of 575 nm,the fluorescence intensity of intracellular ADM was directly observed by fluorescence microscopy.
     Results:By the photos taken with fluorescence microscopy,red fluorescence was caught,increased accumulation of ADM in BEL-7402/ADM cells treated with TMP or VRP compared with that in BEL-7402/ADM cells treated without TMP or VRP, following the parental group,was observed directly.
     3.Intracellular accumulation of ADM in HCC cell lines by FCM
     Methods:With/without TMP(600μmol/L) or VRP(5μmol/L) preconditioning in 3 hours,BEL-7402 cells and BEL-7402/ADM were incubated with 8 000 nmol/L ADM for 2 h at 37℃,washed three times with ice-cold PBS.With an excitation(~λex) wavelength of 488 nm and emission(~λem) wavelength of 575 nm,the mean fluorescence intensity of intracellular ADM was recorded by FCM.
     Results:The mean fluorescence intensity of intracellular ADM in Parental group, TMP group and VRP group were(121.83±23.2)%(P<0.01),(163.78±39.5)%(P<0.01) and(320.1±47.18)%(P<0.01) compared to Resistance group,indicating that TMP can increase accumulation of ADM in BEL-7402/ADM.
     4.Intracellular accumulation of ADM by high performance liquid chromatography(HPLC)
     Methods:the parental and resistant cell lines were divided into Parental,Resistance, TMP(with 600μmol/L TMP) and VRP(with 5μmol/L VRP).With/without TMP or VRP preconditioning for 3 hours,BEL-7402 cells and BEL-7402/ADM were incubated with 8 000 nmol/L ADM for 2 h,washed three times with ice-cold PBS. The accumulation of ADM in cells was also quantified by the HPLC method.The linear,reproducibility,recovery,precision,accuracy,stability were observed and calculated.
     Results:The peak area ratio of ADM and internal standard alprazolam was obtained and calculated by HPLC.The calibration curve was obtained as the following with the content ranging from o.1 ng/mL to 2 000 ng/mL.The limit of detection(LOD) was 0.05ng/mL,and RSD was 0.407.The standard curve was C=47.73A+23.62 (correlation factor:0.99 8),where C refers to the concentration of ADM,A refers to the peak area ratio of ADM and alprazolam.The mean concentration of ADM in Parental group,Resistance group,TMP group and VRP group were (2.45±0.52),(2.06±0.40)μmol/L,(3.63±0.59) and(3.92±0.97),respectively,indicating that TMP can increase accumulation of ADM in BEL-7402/ADM as same as the result by FCM.The study also indicated that TMP increased the level of ADM without increased itself accumulation in the resistant cells,inferring TMP was not the substrate of P-gp like ADM/VRP and did not compete the ABC proteins with ADM.
     5.Effects of TMP on expression levels of MDR1,MRP2,MRP3 and MRP5 mRNA by real-time reverse-transcription-PCR analysis
     Methods:Total RNA was isolated from BEL-7402 and BEL-7402/ADM in RNA clean solution by Trizole Reagent according to the manufacturer's protocol.All primer pairs and their appropriate fluorescent hybridization probes were designed and produced by Shanghai Sangon Biological Engineering Technology and Services CO., Ltd.(China).The mRNA levels of MDR1,MRP2,MRP3 and MRP5 were measured by real-time RT-PCR and quantitated by SLAN Real-time PCR Detection System.In addition,the mRNA level of the reference geneβ-actin was measured and used to normalize the mRNA levels of the drug resistance genes.
     Results:The data were calculated as the expression level of mRNA of Resistance group was 100%.It was showed TMP decreased the expression of MDR1,MRP2, MRP3 and MRP5 mRNA to(0.67±0.03),(0.85±0.10),(0.90±0.04) and (0.63±0.11) compared to Resistant group(P<0.05),but this only took place on the expression of MDR1 mRNA in VRP group,as there was no statistical difference in the expression of MRP2,MRP3 and MRP5 mRNA in VRP group.
     6.Effects of TMP on expression levels of P-gp MRP2,MRP3 and MRP5 proteins by Western blot analysis(WB)
     Methods:BEL-7402 and BEL-7402/ADM cells were divided into Resistance,TMP and VRP group,and preconditioned with TMP(600μmol/L) and VRP(5μmol/L) for 3 hours,then treated with 8 000 nmol/L ADM for 2 hours.The proteins level of P-gp, MRP2,MRP3 and MRP5 were detected andβ-actin as a reference by western blot.
     Results:We found that compared to Resistance group,the expression of P-gp, MRP2,MRP3 and MRP5 was entirely decreased to(0.49±0.04),(0.61±0.13), (0.38±0.14) and(0.68±0.07)(P<0.01) in TMP group,however,except the expression of P-gp in VRP group,there was no statistical difference in the expression of MRP2, MRP3 and MRP5 in VRP group.
     Conclusion
     1.Tetramethylpyrazine(TMP) is a bioactive constituent isolated from the root of Ligusticum chuanxiong Hort,a Chinese herb(Chuanxiong),which can enhance the chemosensitivity effects of drug on human hepatocellular carcinoma BEL-7402 cells, acting as a MDR modulator.However,it is unknown till now if it has effect on other transporters till now.In this study,the reversal effect of TMP on MDR in multidrug resistant human hepatocellular carcinoma BEL-7402/ADM was investigated and the relationships among TMP and MDR1,MRP2,MRP3 and MRP5 were explored.It was concluded that TMP can be reverse the resistant level of BEL-7402/ADM in a dose-dependent manner.
     2.The Intracellular accumulation of ADM preconditioned by TMP decreased in resistant BEL-7402/ADM suggested that TMP would have effects on one and/or more ABC super family proteins.
     3.MDR1/P-gp,MRP2,MRP3,and MRP5 are of significance to contribute to MDR mechanism jointly in resistant HCC,and can be reversed by TMP.
     4.Both TMP and the first generation modulator,VRP have effects on MDR1/P-gp, TMP also has effects on MRP2,MRP3 and MRP5,but VRP has not,which deserves further study.We also found that the Intracellular accumulation of TMP in resistant cells did not alternate indicating that unlike ADM and VRP,TMP is not the substrate of P-gp/ABC family members and not resulting in competitive inhibition to ADM.
引文
1.Rajesh Krishna,Lawrence D Mayer,Multidrug resistance(MDR) in cancer Mechanisms,reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs[J].European Journal of Pharmaceutical Sciences,2000,11:265-283.
    2.Vaalburg W,Hendrikse NH,Elsinga PH,et al.,P-glycoprotein activity and biological response[J].Toxicology and Applied Pharmacology,2005,207(2Suppl):257-260.
    3.M.Hennessy,J.P.Spiers,A primer on the mechanics of P-glycoprotein the multidrug transporter[J].Pharmacological Research,2007,55:1-15.
    4.Ambudkar SV,Kimchi-Sarfaty C,Sauna ZE,et al.,P-glycoprotein:from genomics to mechanism[J].Oncogene,2003,22(47):7468-7485.
    5.Martin Filipits,Mechanisms of cancer:multidrug resistance[J].Drug Discovery Today:Disease Mechanisms,2004,1(2):229-234.
    6.SF ZHOU,Structure,function and regulation of P-glycoprotein and its clinical relevance in drug disposition[J].Xenobiotica,2008,38(7-8):802-832.
    7.Martin F.Fromm,Importance of P-glycoprotein at blood-tissue barriers[J].Trends in Pharmacological Sciences,2004,25(8):423-429.
    8.Jean-Pierre Gillet,Thomas Efferth,Jose Remacle,Chemotherapy-induced resistance by ATP-binding cassette transporter genes[J].Biochimica et BiophysicaActa, 2007, 1775: 237-262.
    
    9. Piet Borst, Raymond Evers, Marcel Kool, et al., A Family of Drug Transporters:the Multidrug Resistance-Associated Proteins[J]. Journal of the National Cancer Institute, 2000, 92(16): 1295-304.
    
    10. Gary D. Kruh, Hao Zeng, Philip A. Rea, et al, MRP Subfamily Transporters and Resistance to Anticancer Agents[J]. Journal of Bioenergetics and Biomembranes,2001, 33(6): 493-501.
    
    11. Robert W. Robey, Kenneth K.K. To, Orsolya Polgar, et al., ABCG2: A perspective[J]. Advanced Drug Delivery Reviews, 2009, 61: 3-31.
    
    12. Turner JG, Gump JL, Zhang C, et al, ABCG2 expression, function, and promoter methylation in human multiple myeloma[J]. Blood, 2006, 108(12):3881-3889.
    
    13. Herman Burger, John A Foekens, Maxime P Look, et al., RNA Expression of Breast Cancer Resistance Protein, Lung Resistance-related Protein, Multidrug Resistance-associated Proteins 1 and 2, and Multidrug Resistance Gene 1 in Breast Cancer: Correlation with Chemotherapeutic Response[J]. Clinical Cancer Research, 2003, 9: 827-836.
    
    14. Tito Fojo,Susan Bates, Strategies for reversing drug resistance[J]. Oncogene,2003, 22: 7512-7523.
    
    15. Roy C, Brown DL, Little JE, et al, The topoisomerase II inhibitor teniposide (VM-26) induces apoptosis in unstimulated mature murine lymphocytes[J].Experimental Cell Research, 1992, 200: 416-424.
    
    16. Matsuo K, Kohno K, Takano H, et al, Reduction of drug accumulation and DNA topoisomerase II activity in acquired teniposide-resistant human cancer KB cell lines[J]. Cancer Research, 1990, 50: 5819-5824.
    
    17. Lowe SW, Rusley HE, Jacks T, et al, p53-dependent apoptosis modulates the cytotoxicity of anticancer agents [J]. Cell, 1993, 74: 957-967.
    
    18. Miyashita T, Krajewski S, Krajewska M, et al, Tumor suppressor P53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo[J]. Oncogene,1994, 9: 1799-1805.
    19. Keisuke Yusa, Junko Tamura, Atsuo Waki, et al., Activation of silent MDR1 genes in revertant cells by fusion with multidrug-resistant cells[J]. Biochemica et Biophysica Acta, 1995, 1269: 260-266.
    
    20. Findling-Kagan S, Sivan H, Ostrovsky O, et al, Establishment and characterization of new cellular lymphoma model expressing transgenic human MDR1 [J]. Leukemia Research, 2005, 9(4): 407-414.
    
    21. Tang H, Liang P, Li RP, Establishment of a 5-DFUR-resistant human hepatocellular carcinoma cell model and preliminary study of the mechanisms of the drug resistance[J]. Nan Fang Yi Ke Da Xue Xue Bao, 2008, 28(11):2006-2008.
    
    22. Gu W, Zhang YN, Li B, et al, Establishment of a multidrug-resistant cell line BEL-7402/5-FU of human hepatocellular carcinoma and its biological characteristics[J]. Journal of Chinese Integrative Medicine, 2006, 4(3):265-270.
    
    23. Judy Yuet-Wa Chan, Katy Pak-Yan Siu, Kwok-Pui Fung, Effect of arsenic trioxide on multidrug resistant hepatocellular carcinoma cells[J]. Cancer Letters,2006, 236(2): 250-258.
    
    24. Li Xie, Xianrang Song, Jinming Yu, et al, Fractionated irradiation induced radio-resistant esophageal cancer EC 109 cells seem to be more sensitive to chemotherapeutic drugs [J]. Journal of Experimental Clinical Cancer Research,2009, 28: 68-74.
    
    25. Run Tian, Noriko Koyabu, Satoshi Morimoto, et al, Fuctional Induction and De-induction of P-glycoprotein by ST.John's Wort and its Ingredients in a Human Colon Adenocarcinoma Cell Line[J]. Drug Metabolism and Disposition, 2005,33(4): 547-554.
    
    26. Eliza Munteanu, Mireille Verdier, Fabienne Grandjean-Forestier, et al, Mitochondrial Localization and Activity of P-glycoprotein in Doxorubicin-resistant K562 Cells[J]. Biochemical Pharmacology, 2006, 71:1162-1174.
    27.邵泽勇,沈鼎明,伍烽,et al.,两种方法建立的人肝癌细胞多药耐药模型的比较[J].肿瘤,2005,25(1):51-54.
    28.Wang JQ,Chen B A,Cheng J,et al.,Comparison of Reversal Effects of 5-Bromotetrandrine and Tetrandrine on P-glycoprotein-dependent Resistance to Adriamycin in Human Leukemia Cell Line K562/A02[J].Aizheng,2008,27(5):491-495.
    29.胡萍萍,陈同钰,田波,et al.,GCS在人乳腺癌细胞多药耐药中的作用及与P-gp的关系[J].实用肿瘤杂志,2007,22(6):488-491.
    30.马强,张振书,王群英,et al.,结肠癌细胞多药耐药模型LoVo/Adr的建立及其耐药相关基因的表达[J].中华消化杂志,2002,22(7):412-415.
    31.张丽,白剑峰,佐田尚宏,et al.,阶梯式诱导法建立抗5-FU细胞株MiaPaca2-5-FU[J].临床医药杂志,2004,17(4):1-5.
    32.Zhou SF,Wang LL,Di YM,et al.,Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development[J].Current Medicinal Chemistry,2008,15(20):1981-2039.
    33.邵泽勇,沈鼎明,伍烽,翟宝进,王智彪,两种方法建立的人肝癌细胞多药耐药模型的比较[J].肿瘤,2005,25(1):51-54.
    34.Rebbaa A,Targeting senescence pathways to reverse drug resistance in cancer[J].Cancer Letter,2005,219(1):1-13.
    1.Rajesh Krishna,Lawrence D Mayer.Multidrug resistance(MDR) in cancer Mechanisms,reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs[J].European Journal of Pharmaceutical Sciences,2000,11:265-283.
    2.R.K Jain.Transport of molecules in the tumour interstitium:a review[J].Cancer Research,1987,47:3039-3051.
    3.Demant EJ,Sehested M,Jensen PB.A model for computer simulation of P-glycoprotein and transmembrane delta pH-mediated anthracycline transport in multidrug-resistant tumor cells[J].Biochimica et Biophysica Acta,1990,1055:117-125.
    4.盖晓东,曾常茜,洪敏.柴胡逆转肝细胞癌多药耐药作用与相关机制的研究[J].高等学校化学学报,2005,26(8):1446-1450.
    5.李峨,陈信义,王玉芝.九种中药活性成分抗耐药肿瘤细胞体外研究[J].北京中医药大学学报,2004,27(2):24-26.
    6.胡军,赵瑾瑶,金伟,et al.雄黄与β-榄香烯联合用药逆转MCF-7/ADM细胞对阿霉素耐药性的研究[J].解剖学报,2007,38(6):704-707.
    7.李旭芬,张苏展,郑树.苦参碱对K562及其多药耐药细胞K562/Vin的细胞生物学影响[J].中国病理生理杂志,2002,18(10):1233-1237.
    8.肖永庆,李丽,游小琳,et al.川芎化学成分研究[J].中国中药杂志,2002,27(7):519-522.
    9.王文祥,顾明,蒋小岗,et al.川芎化学成分研究[J].中草药,2002,33(1):4-5
    10.Christopher J Matheny,Matthew W Lamb,Kim LR Brouwer,et al.Pharmacokinetic and Pharmacodynamic Implications of P-glycoprotein Modulation[J].Pharmacotherapy,2001,21(7):778-796.
    11.Martin F.Fromm.Importance of P-glycoprotein at blood-tissue barriers[J].Trends in Pharmacological Sciences,2004,25(8):423-429.
    12.Jean-Pierre Gillet,Thomas Efferth,Jose Remacle.Chemotherapy-induced resitance by ATP-binding cassette transporter genes[J]. Biochimica et Biophysica Acta, 2007, 1775:237-262.
    
    13. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, et al. P-glycoprotein: from genomics to mechanism[J]. Oncogene, 2003, 22(47): 7468-7485.
    
    14. SF ZHOU. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition[J]. Xenobiotica, 2008, 38(7-8): 802-832.
    
    15. Piet Borst, Raymond Evers, Marcel Kool, et al. A Family of Drug Transporters:the Multidrug Resistance-Associated Proteins[J]. Journal of the National Cancer Institute, 2000, 92(16): 1295-304.
    
    16. de Waart DR, Paulusma CC, Kunne C, et al. Multidrug resistance associated protein 2 mediates transport of prostaglandin E2[J]. Liver International, 2006,26(3): 362-368.
    
    17. Vander Borght S, Libbrecht L, Blokzijl H, et al. Diagnostic and pathogenetic implications of the expression of hepatic transporters in focal lesions occurring in normal liver[J]. The Journal of Pathology, 2005, 207(4): 471-482.
    
    18. Young LC, Campling BG, Voskoglou-Nomikos T, et al. Expression of multidrug resistance protein-related genes in lung cancerxorrelation with drug response[J].Clinical Cancer Research, 1999, 5:673-680.
    
    19. HE Meyer Zu Schwabedissen, M. Grube, B. Heydrich, et al. Expression, localization, and function of MRP5 (ABCC5), a transporter for cyclic nucleotides,in human placenta and cultured human trophoblasts: effects of gestational age and cellular differentiation[J]. Am. J. Pathol, 2005, 166: 39-48.
    
    20. SAAndric, TS Kostic,SS Stojilkovic. Contribution of multidrug resistance protein MRP5 in control of cyclic guanosine 5'-monophosphate intracellular signaling in anterior pituitary cells[J]. Endocrinology, 2006, 147:3435-3445.
    
    21. List AF, Kopecky KJ, Willman CL, et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study[J]. Blood, 2001, 98: 3212-3220.
    
    22. Kukl JS, Sikic BI, Blume KG, et al. Use of etoposide in combination with cyclosporine for purging multidrug resistant leukemic cells from bone marrow in a mouse model[J].Experimental Hematology,1992,20:1048-1054.
    23.Hollt V,Kouba M,Dietel M,et al.Stereoisomers of calcium antagonists which differ markedly in their potencies as calcium blockers are equally effective in modulating drug transport by P-glycoprotein[J].Biochemical Pharmacology,1992,43:2601-2608.
    24.Twentyman PR,Bleehen NM.Resistance modification by PSC-833,a novel non-immunosuppressive cyclosporin[corrected][J].European Journal of Cancer,1991,27:1639-1642.
    25.Lum BL,Gosland ME MDR expression in normal tissues.Pharmacologic implications for the clinical use of P-glycoprotein inhibitors[J].Hematology/Ontology Clinics of North America,1995,9:319-336.
    26.Wandel C,Kim RB,Kajiji S,et al.P-glycoprotein and cytochrome P-450 3A inhibition:dissociation of inhibitory potencies[J].Cancer Research,1999,59:3944-3948.
    27.A.H.Dantzig,R.L.Shepard,K.L.Law,et al.Selectivity of the multidrug resistance modulator,LY335979,for P-glycoprotein and effect on cytochrome P-450 activities[J].Journal of Pharmacology and Experimental Therapeutics,1999,290:854-682.
    28.Chenguang Zhou,Peng Shen,Yiyu Cheng.Quantitative study of the drug effiux kinetics from sensitive and MDR human breast cancer cells[J].Biochimica et Biophysica Acta,2007,1770:1011-1020.
    29.徐建业,周琦,汤伟.汉防已甲素、罗通定及川芎嗪对肿瘤细胞株KBV200多药耐药性逆转作用的研究[J].重庆医学,2005,34(9):1383-1385.
    30.蔡宇,冯笑珍.中药逆转肿瘤多药耐药研究现状[J].现代医院,2007,7(1):4-6.
    31.蔡宇,余绍蕾,徐炎,et al.补骨脂素对HL60/HT耐药细胞逆转及对细胞内Ca2+浓度影响研究[J].中国药学杂志,2006,41(12):905-907.
    32.叶祖光,王会华,孙爱续,et al.粉防己碱、甲基莲心碱和蝙蝠葛碱增强长春新碱诱导人乳腺癌MCF-7多药耐药细胞凋亡[J].药学学报,2001,36(2):96 -99.
    33.潘启超,田晖.多种中药单体逆转肿瘤多药耐药性[J].科学通报,1995,40(20):1901-1903.
    34.魏志霞.川芎嗪对肝癌多药耐药株/SMMC-7721ADM的逆转作用[J].江苏医药,2005,31(5):371-372.
    35.WANG Xuan-bin,KE Jing,WANG Jia-ning et al.The inhibitory effect of Fluorouracil Combined with Arsenic Trioxide on Human Colorectal Cells SW480by MTT[J].Yun Yang Yi Xue Yuan Xue Bao,2007,26:278-280.
    36.Tang H,Liang P,Li RP.Establishment of a 5-DFUR-resistant human hepatocellular carcinoma cell model and preliminary study of the mechanisms of the drug resistance[J].Nan Fang Yi Ke Da Xue Xue Bao,2008,28(11):2006-2008.
    37.Judy Yuet-Wa Chan,Katy Pak-Yan Siu,Kwok-Pui Fung.Effect of arsenic trioxide on multidrug resistant hepatocellular carcinoma cells[J].Cancer Letters,2006,236(2):250-258.
    38.Jun Wu,Yanhui Lu,Alice Lee,et al.Reversal of Multidrug Resistance by Transferrin-Conjugated Liposomes Co-encapsulating Doxorubicin and Verapamil[J].Journal of Pharmaceutical Sciences,2007,10(3):350-357.
    39.Kim D,Lee ES,Park K,et al.Doxorubicin loaded pH-sensitive micelle:antitumoral efficacy against ovarian A2780/DOXR tumor[J].Pharmaceutical Research,2008,25(9):2074-2082.
    40.Donna S COX,Kenneth R SCOTT,Huanling GAO,et al.Effect of P-Glycoprotein on the Pharmacokinetics and Tissue Distribution of Enaminone Anticonvulsants:Analysis by Population and Physiological Approaches[J].The Journal of Pharmacology and Experiental Therapeutics,2002,320(3):1096-1104.
    41.DENG Wen-jing,ZENG Zhao-lei,LIANG Yong-ju,et al.Detecting doxorubicin concentration in KBv200 and KB cell xenografts in nude mice by high-performance liquid chromatography[J].AI ZHENG,2008,27(4):364-368.
    42. Atsufumi Kakinoki, Yoshiharu Kaneo, Yuka Ikeda, et al. Synthesis of poly(vinyl alcohol)-doxorubicin conjugates containing cis-aconityl acid-cleavable bond and its isomer dependent doxorubicin release[J]. Biological & Pharmaceutical Bulletin,2008, 31 (1): 103-110.
    
    43. Herman Burger, John A Foekens, Maxime P Look, et al. RNA Expression of Breast Cancer Resistance Protein, Lung Resistance-related Protein, Multidrug Resistance-associated Proteins 1 and 2, and Multidrug Resistance Gene 1 in Breast Cancer: Correlation with Chemotherapeutic Response[J]. Clinical Cancer Research, 2003, 9:827-836.
    
    44. Coburger C, Lage H, Molnar J, et al. Impact of Novel MDR Modulators on Human Cancer Cells: Reversal Activities and Induction Studies[J]. Pharmaceutical Research, 2009, 26(1): 182-188.
    
    45. ZHANG Lei, FANG Chi-hua,FAN Ying-fang. Detection of multidrug resistance-associated proteins MRP2,MRP3, and MRP5 mRNA expression in hepatocarcinoma cells using SYBR real-time PCR[J]. Nan Fang Yi Ke Da Xue XueBao, 2008, 28(2): 219-224.
    
    46. Hidemura K, Zhao YL, Ito K, et al. Shiga-like toxin II impairs hepatobiliary transport of doxorubicin in rats by down-regulation of hepatic P-glycoprotein and multidrug resistance-associated protein Mrp2 [J]. Antimicrobial Agents and Chemotherapy, 2003, 47(5): 1636-1642.
    
    47. Jun Moriguchi, Ryuji Kato, Machiko Nakagawa, et al. Effects of lipopolysaccharide on intestinal P-glycoprotein expression and activity[J].European Journal of Pharmacology, 2007, 565:220-224.
    
    48. Monica Magnarin, Manuela Morelli, Anna Rosati, et al. Induction of proteins involved in multidrug resistance (P-glycoprotein,MRP1, MRP2, LRP) and of CYP 3A4 by rifampicin in LLC-PK1 cells[J]. European Journal of Pharmacology,2004, 483: 19-28.
    
    49. Wei-Ping Lee. P-glycoprotein is hyperphosphorylated in multidrug resistant HOB 1 lymphoma cells treated with overdose of vincristine[J]. Biochimica et Biophysica Acta, 1995, 1245:57-61.
    50.尚世丽,刘云鹏,罗颖,et al.蛋白激酶C对P-gp介导的K562细胞耐药性的影响[J].肿瘤,2001,121:260-262.
    51.曲正,侯培珍,曲伟.川芎嗪联合维拉帕米对人胃癌耐药细胞SGC7901/ADM 多药耐药的逆转作用研究[J].包头医学院学报,2005,21(4):337-338.
    52.胡艳平,刘健,王庆瑞,et al.川芎嗪和维拉帕米纠正阿霉素对小鼠艾氏腹水癌的抗药性[J].药学学报,1993,28(1):75-76.
    53.彭安,叶红军.川芎嗪诱导Bel-7402人肝癌细胞恶性表型逆转的研究[J].临床肝胆病杂志,2002,18(3):157-158.
    54.宋娟,唐靖,何娟,et al.川芎嗪对Caco-2细胞p-糖蛋白功能和表达的影响[J].中南药学,2007,5(5):440-443.
    [1] M. Dean, A. Rzhetsky, R. Allikmets. The human ATP-binding cassette (ABC) transporter superfamily[J]. Genome Research. 2001, 11:1156-1166.
    [2] T. Efferth. The human ATP-binding cassette transporter genes: from the bench to the bedside[J]. Current. Molecular Medicine. 2001, 1:45-65.
    [3] S. C. Hyde, P. Emsley, M. J. Hartshorn, et al. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport [J]. Nature, 1990, 346: 362-365.
    [4] R. Abele, R. Tampe. The ABCs of immunology: structure and function of TAP, the transporter associated with antigen processing[J].Physiology (Bethesda), 2004, 19: 216-224.
    [5] M. F. Fromm. Importance of P-glycoprotein at blood - tissue barriers[J].Trends Pharmacology Science. 2004, 25 : 423 - 429.
    [6] P. Borst, R.O. Elferink, Mammalian ABC transporters in health and diseased]. Annual Review Of Biochemistry. 2002, 71: 537-592.
    [7] J. Trowsdale, I. Hanson, I. Mockridge, et al. Sequences encoded in the class II region of the MHC related to the 'ABC superfamily of transporters[J]. Nature. 1990, 348: 741-744.
    [8] R. L. Juliano, V. Ling. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants[J]. Biochimica et Biophysica Acta, 1976, 455: 152-162.
    [9] Christopher F. Higgins. Multiple molecular mechanisms for multidrug resistance transporters [J]. Nature.2007, 446:749-757.
    [10] S. Scala, N. Akhmed, U. S. Rao, et al. P-glycoprotein substrates and antagonists cluster into two distinct groups[J]. Molecular Pharmacology. 1997, 51: 1024-1033.
    [11] L. J. Goldstein, H. Galski, A. Fojo, et al. Expression of a multidrug resistance gene in human cancers[J]. Journal of the National Cancer Institute 1989, 81: 116- 124.
    [12] A. J. Smith, A. van Helvoort, G. van Meer, et al. MDR3 P-glycoprotein,a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping[J]. Journal of Biological Chemistry, 2000, 275:23530 - 23539.
    [13] A. Johnsson, J. Vallon-Christensson, C. Strand, et al. Gene expression profiling in chemoresistant variants of three cell lines of different origin[J]. Anticancer Research. 2005, 25: 2661-2668.
    [14] H. Herweijer, P. Sonneveld, F. Baas, et al. Expression of mdrl and mdr 3 multidrug-resistance genes in human acute and chronic leukemias and association with stimulation of drug accumulation by cyclosporine[J]. Journal of the National Cancer Institute. 1990, 82:1133- 1140.
    [15] Y. Arai, M. Masuda, I. Sugawara, et al. Expression of the MDR1 and MDR3 gene products in acute and chronic leukemias[J]. Leukemia Research.1997, 21: 313-319.
    [16]S. Childs, R. L. Yeh, E. Georges, et al. Identification of a sister gene to P-glycoprotein[J]. Cancer Res. 1995, 55 : 2029-2034.
    [17] S. Childs, R. L. Yeh, D. Hui, et al. Taxol resistance mediated by transfection of the liver-specific sister gene of P-glycoprotein,Cancer Research. 1998, 58: 4160-4167.
    [18] S. P. Cole, G. Bhardwaj, J. H. Gerlach, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line[J]. Science 1992, 258: 1650-1654.
    [19] P. Borst, R. Evers, M. Kool, et al. A family of drug transporters:the multidrug resistance-associated proteins[J]. Journal of the National Cancer Institute. 2000, 92: 1295-1302.
    [20] R. O'Connor, M. O'Leary, J. Ballot, et al. A phase I clinical and pharmacokinetic study of the multi-drug resistance protein-1 (MRP-1) inhibitor sulindac, in combination with epirubicin in patients with advanced cancer[J]. Cancer Chemotherapy and Pharmacology. 2007, 59:79 - 87.
    [21] A. D. Guminski, R. L. Balleine, Y. E. Chiew, et al. MRP2 (ABCC2) and cisplatin sensitivity in hepatocytes and human ovarian carcinoma[J].Gynecologic Oncology. 2006, 100: 239-246.
    [22] M. T. Huisman, A. A. Chhatta, O. van Tellingen, et al. MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid[J]. International Journal of Cancer, 2005, 116: 824-829.
    [23] Y. Cui, J. Konig, J. K. Buchholz, et al. Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells[J]. Molecular Pharmacology. 1999, 55: 929-937.
    [24] N. Zelcer, T. Saeki, G. Reid, et al. Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3) [J].Journal of Biological Chemistry. 2001, 276: 46400-46407.
    [25] H. Zeng, Z. S. Chen, M. G. Belinsky, et al. Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport[J]. Cancer Research.2001, 61: 7225-7232.
    [26] Jean-Pierre Gillet, T.E., Jose Remacle. Chemotherapy-induced resitance by ATP-binding cassette transporter genes[J]. Biochimica et Biophysica Acta, 2007, 1775: 237-262.
    [27] Raymond Evers, Marcel Kool, Jan Wijnholds. A Family of Drug Transporters: the Multidrug Resistance-Associated Proteins [J].Journal of the National Cancer Institute, 2000, 92(16):1295-1302.
    [28] Rajesh Krishna, L.D.ML Multidrug resistance (MDR) in cancer Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs[J].European Journal of Pharmaceutical Sciences, 2000. 11: 265-283.
    [29] C. Wuchter, K. Leonid, V. Ruppert, et al. Clinical significance of P-glycoprotein expression and function for response to induction chemotherapy, relapse rate and overall survival in acute leukemia[J].Hematological, 2000, 85: 711-721.
    [30] A. Tafuri, C. Gregorj, M. T. Petrucci, et al. MDR1 protein expression is an independent predictor of complete remission in newly diagnosed adult acute lymphoblastic leukemia[J]. Blood, 2002, 100: 974-981.
    [31] E. Wattel, P. Lepelley, A. Merlat, et al. Expression of the multidrug resistance P glycoprotein in newly diagnosed adult acute lymphoblastic leukemia: absence of correlation with response to treatment[J].Leukemia, 1995, 9: 1870-1874.
    [32] M. Vitale, R. Rezzani, L. Rodella, et al. HLA class I antigen and transporter associated with antigen processing (TAP1 and TAP2) down-regulation in high-grade primary breast carcinoma lesions[J]. Cancer Research. 1998, 58: 737-742.
    [33] J. Robert. Multidrug resistance in oncology: diagnostic and therapeutic approaches[J]. European Journal of Clinical Investigation. 1999, 29: 536-545.
    [34] A. F. List, K. J. Kopecky, C. L. Willman, et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study[J]. Blood 2001, 98:3212 - 3220.
    [35] V. Hollt, M. Kouba, M. Dietel, et al. Stereoisomers of calcium antagonists which differ markedly in their potencies as calcium blockers are equally effective in modulating drug transport by P-glycoprotein[J]. Biochemical. Pharmacology. 1992, 43: 2601-2608.
    [36] P. R. Twentyman, N. M. Bleehen. Resistance modification by PSO833,a novel non-immunosuppressive cyclosporine [corrected] [J]. European Journal of Cancer, 1991, 27:1639-1642.
    [37] B. L. Lum, M. P. Gosland. MDR expression in normal tissues. Pharmacologic implications for the clinical use of P-glycoprotein inhibitors[J]. Hematology-Oncology Clinics of North America. 1995, 9:319 - 336.
    [38] C. Wandel, R. B. Kim, S. Kajiji, et al. P-glycoprotein and cytochrome P-450 3A inhibition: dissociation of inhibitory potencies[J]. Cancer Research. 1999, 59: 3944-3948.
    [39] A. H. Dantzig, R. L. Shepard, K. L. Law, et al. Selectivity of the multidrug resistance modulator, LY335979, for P-glycoprotein and effect on cytochrome P-450 activities[J]. Journal of Pharmacology and Experimental Therapeutics. 1999, 290: 854-862.
    [1]肖培根.新编中药志[M].第1卷.北京:化学工业出版社,2002:121.
    [2]郑虎占,董泽宏,佘靖.中药现代研究与应用[M].第1卷.北京:学苑出版社,1998:629.
    [3]吴庆.周正菊.川芎嗪治疗肾小球疾病20例的临床体会[J].中国中西医结合肾病杂志.2004,5(3):179-179.
    [4]李云田,张同岭,李玉琴.川芎嗪合尿激酶治疗急性缺血性脑梗塞60例疗效分析.中华现代临床医学杂志[J].2004,2(5A):627-628.
    [5]崔旭红.川芎嗪治疗糖尿病周围神经病变的研究.实用中西内科杂志[J].2005,19(1):69.
    [6]李螫才,潘鑫辉.稳心颗粒和川芎嗪治疗不稳定型心绞痛疗效观察[J].中国中医急症.2004,17(3):415-416.
    [7]朱海.川芎嗪配合尿激酶溶栓治疗突发性耳聋39例疗效观察[J].疑难病杂志,2008,7(3):176-176.
    [8]王建设,孙孝红.川芎嗪复合液治疗肩周炎65例疗效分析[J].华北煤炭医学院学报,2003,5(4):483.
    [9]王璃,魏建和,陈士林,等.基于GIS的川芎产地适宜性分析[J].中国现代中药,2006,8(6):7-9.
    [10]钟风林,杨连菊,吉力,等.不同产地和品种川芎中挥发油成分的研究[J].中国中药杂志,1996,21(3):147-151.
    [11]刘洋,石任兵,刘斌,等.川芎药材化学成分HPLC指纹图谱研究[J].北京中医药大学学报,2006,29(5):335-337.
    [12]刘圆,贾敏如.奶芎、山川芎与川芎药材质量研究[J].中药材,2003,26(9):623-625.
    [13]罗禹,王天志,杨兵,等.川芎和引种同本川芎的RAPD分析与鉴定[J].华西药学杂志,2008,23(3):296-298.
    [14]侯嘉,马逾英,贾敏如,等.川产道地药材川芎与云南、甘肃产川芎形态组织学研究.2007年中华中医药学会第八届中药鉴定学术研讨会.2007.
    [15]吴琦,杨秀伟.国家中药材GAP基地产川芎挥发油化学成分的GC-MS分析[J].中国中药杂志,2008,33(3):276-280.
    [16]洪鹰,季芳.川芎中挥发性化学成分的研究[J].中国药业,2003,12(6):31-32.
    [17]任东春,杨念云,钱士辉,等.川芎地上部分化学成分研究[J].中国中药杂志,2007,32(14):1418-1420.
    [18]常新亮,马云保,张雪梅,等.川芎化学成分研究[J].中国中药杂志,2007,32(15):1533-1536.
    [19]肖永庆,李丽,游小琳,等.川芎化学成分研究[J].中国中药杂志,2002,27(7):519-521.
    [20]Guo Y,Kotova E,Chen Z,et al.MRP8 ATP - binding cassette C11(ABCC11) is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 20,30 - dideoxycytidine and 90 -(20-phosphonylmethoxyethyl) adenine[J].Biological Chemistry,2003,278:29509-29514.
    [21]Ambudkar SV,Kimchi-Sarfaty C,Sauna ZE,et al.P - glycoprotein:from genomics to mechanism[J].Oncogene,2003,22:7468-7485.
    [22]Ruefli AA,Smyth M J,Johnstone RW.HMBA induces activation of a caspase-independent cell death pathway to overcome p-glycoprotein-mediated multidrugresistance[J].Blood,2000,95(7):2378-2385.
    [23]Doyle LA,Yang W,Abruzzo LV,et al.A multidrug resistance transporter from human MCF-7 breast cancer cells[J].Proceedings of the National Academy of Sciences of the United States of America,1998,95:15665-15670.
    [24]Tsuruo T,Nato M,Tomida A,et al.Molecular targeting therapy of cancer:drug resistance,apoptosis and survival signal[J].Cancer Science,2003,94(1):15-21.
    [25]Fabbro D,Ruetz S,Bodis S,et al.PKC412-a protein kinase inhibitor with a broad therapeutic potential[J].Anticancer Drug Design,2000,15(1):17-28.
    [26]Gariboldi MB,Ravizza R,Riganti L,et al.Molecular determinants of intrinsic resistance to doxorubicin in human cancer cell lines[J].International Journal of Oncology,2003,22(5):1057-1064.
    [27]Palissot V,Morjani H,Belloc F.From molecular characteristics to cellular events in apoptosis-resistant HL-60 cells[J].International Journal of Oncology,2005,26(3):825-834.
    [28]Flynn V J,Ramanitharan A,Moparty K,et al.Adenovirus mediated inhibition of NF-kappa B confers chemosensitization and apoptosis in prostate cancer cells[J]. International Journal of Oncology,2003,23(2):317-323.
    [29]邹亚伟,陈福雄,吴梓棵.急性白血病多药耐药逆转剂的研究进展[J].中国小儿血液与肿瘤杂志,2006,11(5):282-285.
    [30]Fang Liu,Dongmei Fan,Jing Qi,et al.Co-expression of cytokeratin 8 and breast cancer resistant protein indicates a multifactorial drug-resistant phenotype in human breast cancer cell line[J].Life Sciences,2008,83(13-14):496-501.
    [31]Ramin Miri,Ahmadreza Mehdipour.Dihydropyridines and atypical MDR:A novel perspective of designing general reversal agents for both typical and atypical MDR[J].Bioorganic & Medicinal Chemistry,2008,16(18):8329-8334.
    [32]Wei Feng,Mavurapu Satyanarayana,Yuan-Chin Tsai,et al.11-Substituted 2,3-dimethoxy-8,9-methylenedioxybenzo[/]phenanthridine derivatives as novel topoisomerase I-targeting agents[J].Bioorganic & Medicinal Chemistry,2008,16(18):8598-8606.
    [33]Yonggang Ma,Michael Wink.Lobeline,a piperidine alkaloid from Lobelia can reverse P-gp dependent multidrug resistance in tumor cells[J].Phytomedicine,2008,15(9):754-758.
    [34]Fabio Klamt,Daniel Thompsen Passos,Mauro Antrnio Alves Castro,et al.Inhi- bition of MDR1 expression by retinol treatment increases sensitivity to etoposide(VP16) in human neoplasic cell line[J].Toxicology in Vitro,2008,22(4):873-878.
    [35]陆游,孙明杰,王霆.肿瘤多药耐药逆转剂Tariquidar的开发[J].现代食品与药品杂志,2007,17(6):52-56.
    [36]周云,陈宝安.新型耐药逆转剂PSC-833的研究与应用[J].国外医学:输血及血液学分册,2001,24(2):130-134.
    [37]罗梅华,卞寿庚.奎宁与三种逆转剂联合对耐药细胞系K562/HHT多药耐药逆转作用的研究[J].中华血液学杂志,1998,19(1):20.
    [38]何时知,戚晓东,张晓明,等.月泉病毒介导p53基因逆转乳腺癌耐药的实验研究[J].中华医学杂志,2007,87(41):2935-2937.
    [39]王波,王志云,王成伟,等.MDR1启动子调控的双自杀基因靶向杀伤耐药胶 质瘤细胞的研究[J].山东大学学报:医学版,2008,46(1):15-18,26.
    [40]彭程,张阳德,李年丰,等.野生型P53基因诱导人肝癌HepG2/5-Fu耐药细胞株凋亡的研究[J].中国现代医学杂志,2007,17(20);2441-2444,2448.
    [41]屈艺,刘菽秋,李大成,等.三种中药制剂Ares-11、Fw-13、Tul-17逆转肿瘤细胞多药耐药性的研究[J].天然产物研究与开发,2006,18(6):932-936.
    [42]史亦谦,田同德.三七总皂甙体外逆转K562/VCR细胞多药耐药的实验研究[J].中国中医药科技,2005,12(5):292-294.
    [43]蔡讯,陈芳源,韩洁英,等.槲皮素逆转白血病细胞株HL260/ADM多药耐药的研究[J].中华肿瘤杂志,2005,27(6):326.
    [44]杨鸿武,屈重屑,关宏伟.As_2O_3对胃癌细胞SGC7901/ADR阿霉素耐药性逆转作用[J].肿瘤防治研究,2006,33(3):148.
    [45]冯觉平,孔庆志,黄涛,等.三氧化二砷对肺腺癌耐药细胞A549/R耐药性的影响[J].中华实验外科杂志,2006,23(2):201.
    [46]金永生,刘超美,吴秋业,等.新型金雀异黄素衍生物5-羟基-4'-硝基-7-取代酰氧基异黄酮的合成及抗肿瘤活性研究[J].第二军医大学学报,2005,26(2):182.
    [47]蔡宇,陈冰,张凤海,等.补骨脂素对人乳腺癌多药耐药Bcl-2基因蛋白表达的影响[J].毒理学杂志,2005,19(4):336.
    [48]Peng A.Ye H J.Reverse effects of tetramethylpyrazine on the malignant phenotype of BEL-7402 human hepatocarcinoma cells[J].Chinese Journal of Clinical Hepatology,2002,18(3):157-8.
    [49]Mei Y,Shi Y J,Zuo G Q,et al.Study on ligustrazine in reversing multidrug resistance of HepG2 / ADM cell in vitro[J].China Journal of Chinese Materia Medica,2004,29(10):970-3.
    [50]解霞,杨毅,高清波,等.川芎嗪对人乳腺癌MCF-7/ADM细胞多药耐药性的逆转及P-糖蛋白表达的影响[J].大连大学学报,2006,27(4):76-78.
    [51]梅英,石毓君,左国庆,等.川芎嗪逆转HepG2/ADM细胞多药耐药性的体外研究[J].中国中药杂志,2004,29(10):970-973.
    [52]范青,范广俊,赵瑾瑶,等.川芎嗪脂质体对人白血病细胞株K562多药耐药 逆转作用的研究[J].中国药师,2004,7(10):753-755.
    [53]戚晓敏,单根法,张辅贤,等.川芎嗪逆转肺癌细胞株多药耐药性的研究[J].上海第二医科大学学报,2003,23(B10):31-33.
    [54]李建华,杨佩满.川芎嗪逆转K562/ADM细胞多耐药性的研究[J].现代中西医结合杂志,2001,10(15):1405-1407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700