用户名: 密码: 验证码:
新型光子晶体光纤结构设计及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤自1996年问世以来,就以其较传统光纤所无法比拟的优越性,而受到广泛关注。各种各样新型光子晶体光纤结构不断涌现,促进了其在光通信、光纤传感、非线性光学等众多领域的应用。随着光子晶体光纤应用领域的不断拓展和深入,设计新型的高性能光子晶体光纤并拓展其应用成为研究的一项重要内容。本文致力于新型光子晶体光纤的结构设计及其应用研究,主要工作如下:
     1、光子晶体光纤由于其灵活控制的色散特性而在超连续谱产生、四波混频等领域有重要应用,而这些领域通常需要光纤具有平坦的色散曲线。本论文首先就超宽带超平坦色散光子晶体光纤进行设计。提出了圆形结构光子晶体光纤,仿真发现:第1圈空气孔主要决定色散曲线的走向,第2圈空气孔主要影响短波区域色散大小,而第3圈空气孔主要影响长波区域色散大小,第4,5圈对色散曲线影响很小。基于这个规律,对圆形光子晶体光纤的色散曲线进行优化,得到了超宽带平坦色散曲线。4圈空气孔的光子晶体光纤色散值在0±0.5ps/(km·nm)波动的波长范围为1.225到1.84μm;而5圈空气孔的光子晶体光纤的波长范围为1.215到2.02μm。1.55μm波长处,4圈和5圈空气孔的光子晶体光纤的色散斜率分别为-1.905×10-5ps/nm2/km和-1.162×10-5ps/nm2/km,非线性系数分别为13.8W-1km-1和15.7W-1km-1。
     将色散曲线优化方法推广到几种光子晶体光纤结构:常规六边形结构、矩形结构、八边形结构及中心缺陷为7个空气孔的大模场面积六边形结构。利用该优化方法,很容易地得到了这几种结构光子晶体光纤的平坦色散曲线。该色散曲线优化方法具有易于操作、普适性、节省时间及计算空间的优点。
     2、高非线性光子晶体光纤广泛应用于波长变换、受激拉曼散射等方面。论文提出了全固折射率传导型光子晶体光纤,其纤芯由掺锗中心区域外加一层掺氟同心圆环共同组成,而包层孔则由掺氟石英柱代替空气孔构成。讨论了掺锗浓度、掺锗区域大小、包层孔间距及大小对光纤非线性系数的影响。纤芯区域的掺氟同心圆环结构起到了进一步提高非线性系数的作用。经过仿真,设计了在1.55μm波长处具有高非线性系数、低色散斜率、低限制损耗的双零色散点、单零色散点、全正常色散的三种光子晶体光纤。突破了常规高非线性光纤色散斜率的局限,解决了空气孔高非线性光子晶体光纤所存在的与常规光纤熔接损耗大的缺点,也解决了多元素掺杂高非线性光子晶体光纤损耗大、与包层材料兼容性差等问题。
     3、许多光纤有源、无源器件都需要用到双芯光纤。本论文针对传统的轴对称双芯光纤在实际应用中存在接续难的问题,设计了轴偏移的对称双芯光子晶体光纤。首先研究了双芯光子晶体光纤两芯之间的线性及非线性耦合。数值仿真结果表明,双芯光子晶体光纤的非线性耦合具有可饱和吸收特性,并将其应用于被动锁模激光器中。但是,国产的轴对称双芯光子晶体光纤应用于被动锁模激光器中时存在临界功率过高、偏振敏感等问题。接着,讨论了光纤的非线性系数及耦合长度对临界功率的影响:非线性系数的提高及耦合长度的增加都会降低临界功率。提出了轴偏移的对称双芯光子晶体光纤结构,通过纤芯区域掺锗来提高非线性。讨论了包层孔间距及大小、纤芯掺锗区域大小、两芯之间的空气孔大小这几个参数对非线性系数、耦合长度大小及其对偏振依赖性的影响。通过调整结构参数,设计了偏振无关的、临界功率大幅度降低的双芯光子晶体光纤,并数值仿真了其非线性耦合的可饱和吸收效应。
Photonic crystal fibers (PCFs), which were first fabricated in 1996, have attracted much attention due to its unique properties compared with the conventional fibers. There are a variety of novel PCF structures, which promotes its application in optical communications, optical sensing, nonlinear optics and many other fields. As the fields of the PCF applications continue to expand, it becomes an important part of the research to design novel high-performance PCFs and expand their applications. With focus on the design and applications on PCFs, researches are carried in the following areas:
     1. PCFs have been widely used in supercontinuum generation, four wave mixing etc, due to its flexibility in dispersion control. Flat dispersion profile is of great importance for these areas. We propose PCFs and obtain ultra-flattened chromatic dispersion for it. The simulation results show that the 1st air-hole ring decides the trend of the dispersion curve. The 2nd ring mainly decides the dispersion value within the short wavelength range, while the dispersion values within the longer wavelength range depends on the 3rd ring. The 4th and the 5th rings have little effect on the dispersion profile. Based on this law, an optimization procedure is utilized to control dispersion of the C-PCF. A 4-ring PCF and a 5-ring PCF with a dispersion of 0±0.5 ps/nm/km from 1.225 to 1.84μm and from 1.215 to 2.02μm, respectively, are demonstrated. The dispersion slope and the nonlinear coefficient are -1.905×10-5 ps/nm2/km and 13.8 W-1km-1 for the 4-ring PCF,-1.162×10-5 ps/nm2/km and 15.7 W-1km-1 for the 5-ring PCF at 1.55μm wavelength.
     The optimization procedure is extended to other PCF structures:hexagonal PCFs (H-PCF), square PCFs, octagonal PCFs and 7-hole-missing large-mode-area H-PCFs. Through the procedure that we proposed, it is easy to obtain an ultra-flattened dispersion for these structures. This design procedure is not only simple and universal but also saves lots of computing time and storage space.
     2. Highly nonlinear fibers have great application in the wavelength conversion, stimulated Raman scattering etc. We present an all solid index-guiding PCF for highly nonlinearity. The fiber core consists of a Ge-doped area and a F-doped trench-assisted area, while the cladding is composed of F-doped rods. The influence of the concentration of doped germanium, the doping area, the pitch and the size of the cladding holes on the nonlinear coefficient is investigated. Finally, we obtain three PCF structures with highly nonlinearity, low dispersion slope and low confinement loss, with double zero dispersion wavelengths (ZDW), single ZDW and all normal dispersion, respectively. These PCFs surpass the limitation of the dispersion slope of the conventional highly nonlinear fibers and overcomes the shortcoming of the large splice loss of air-hole PCFs with the conventional fibers. They also avoid the large loss and the poor compatibility with the conventional fibers in the multicomponent glasses fibers.
     3. Many optical active and passive devices are based on the dual-core fibers. To solve the difficulty that it is hard to splice the axial symmetry dual-core fibers in the practical use, a dual-core PCF that has one core in the fiber center is proposed. The linear and nonlinear couplings between the two fiber cores are investigated. The numerical results show the saturation effect of the nonlinear coupling in the dual-core PCF. Then the PCF is applied in the passive mode-locked fiber laser. However, the critical power of the axial symmetry dual-core PCF is too high. Moreover, it is sensitive to the polarization. The influence of the nonlinear coefficient and the coupling length on the critical power is investigated and it is found that the critical power decreases with the increasing of nonlinear coefficient and coupling length. The dual-core PCF with one core in the fiber center is designed. The nonlinear coefficient is improved through the germanium doping in the core area. The influence of the parameters of the pitch, the cladding hole size, the Ge-doped area and the air hole diameter between the two fiber cores on the nonlinear coefficient, coupling length and the dependence on the polarization is investigated. Through the design, a dual-core PCF with polarization independent and significantly reduced critical power is obtained. We also numerically simulate the saturation effect of the nonlinear coupling in this PCF.
引文
[1]J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Pure silica single-mode fiber with hexagonal photonic crystal cladding, presented at the Conf. Optical Fiber Commun. (OFC), San Jose, CA, Mar.1996, Postdeadline Paper PD3.
    [2]P. St. J. Russell, Photonic crystal fibers, Science, vol.299, no.5605,2003, 358-362.
    [3][Online]. Available:http://www.corning.com/opticalfiber/
    [4]E.Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys.Rev.Lett., Vol.58,1987,2059-2062.
    [5]S.John, Strong localization of photons in certain disordered dielectric superlattices, Phys.Rev.Lett.,1987, Vol.58,2486-2489.
    [6]L. Jin, Z. Wang, Q. Fang, et al., Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers. Optics Express, Vol.15(23), 2007,15555-15565.
    [7]K. O. Hill, G Meltz, C. R. Center, O. Ottawa. Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology,15(8),1997, 1263-1275.
    [8]F. Bilodeau, D. C. Johnson, S. Theriault, et al.. An all-fiber dense wavelength-division multiplexer/demultiplexerusing photoimprinted Bragg gratings. IEEE Photonics Technology Letters, Vol.7(4),1995,388-390.
    [9]T. Yamasaki, T. Tsutsui. Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres. Applied Physics Letters, Vol.72(16),1998,1957-1959.
    [10]A. Blanco, C. Lopez, R. Mayoral, et al., A. photoluminescence inhibition by a photonic structure. Applied Physics Letters, Vol.73(13),1998,1781-1783.
    [11]A. Melds. J. C. Chen. I. Kurland, et al.. High Transmission through Sharp Bends in Photonic Crystal Waveguides. Physical Review Letters, Vol.77(18).1996. 3787-3790.
    [12]Dirk Englund, Hatice Altug, Ilya Fushman and Jelena Vuckovic, Efficient terahertz room-temperature photonic crystal nanocavity laser, Applied Physics Letters, Vol.91,2007,071126
    [13]Y A. VLASOV, M. O'BOYLE, H. F. HAMANN, S. J. MCNAB. Active control of slow light on a chip with photonic crystal waveguides. Nature, Vol.438(7064), 2005,65-69.
    [14]M. Notomi, A. Shinya, S. Mitsugi, et al.. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Optics Express, Vol.13(7),2005, 2678-2687.
    [15]Ming Chen, Si-gang Yang, Jin-yan Li, et al., PMD compensation using birefringence photonic crystal fiber in 40Gbit/s optical communication system, Optoelectronics Letters, Vol.4(1),2008,30-32.
    [16]H. Lim, F. O. Ilday, F. W. Wise. Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control. Optics Express, Vol.10(25),2002,1497-1502
    [17]F. Druon, N. Sanner, G Lucas-Leclin, et al., A. Petersson. Self-compression and Raman soliton generation in a photonic crystal fiber of 100-fs pulses produced by a diode-pumped Yb-doped oscillator. Applied Optics,42(33),2003,6768-6770.
    [18]X. J. Fang, N. Karasawa, R. Morita, et al.. Nonlinear propagation of a-few-optical-cycle pulses in a photonic crystal fiber-Experimental and theoretical studies beyond the slowly varying-envelope approximation. IEEE Photonics Technology Letters, Vol.15(2),2003,233-235.
    [19]Yeuk L. Hoo, Wei Jin, Chunzheng Shi, et al., Design and Modeling of a Photonic Crystal Fiber Gas Sensor, Applied Optics, Vol.42(18),2003,3509-3515.
    [20]P. R. Villeneuve, M. Piche'. Photonic band gaps in two-dimensional square and hexagonal lattices. Physical Review B, Vol.46(8) 1992,4969-4972.
    [21]J. C. Knight, J. Broeng, et al., Photonic band gap guidance in optical fibers, Science, vol.282,1998,1476-1478.
    [22]R. F. Cregan, B. J. Mangan, et al.. Single-mode photonic band gap guidance of light, Science, Vol.285,1999,1537-1539.
    [23]N. G. R. Broderick, T. M. Monro, et al., Nonlinearity in holey optical fibers: measurement and future opportunities. Optics Letters, vol.24,1999,1395-1397.
    [24]A. Ortigosa-Blanch, J. C. Knight, et al., Highly birefringent photonic crystal fibers, Optics Letters, vol.25,2000,1325-1327.
    [25]T. P. Hansen, J. Broeng, et al., Highly birefringent indel-guiding photonic crystal fibers, IEEE Photonics Technology Letters, Vol.13,2001,588-590.
    [26]A. Ferrando and J. J. Miret, Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers, Applied Physics Letters, Vol.78,2001, 3184.
    [27]K. Saitoh and M. Koshiba, Single-polarization single-mode photonic crystal fibers, Photonics Technology Letters, Vol.15,2003,1384-1386.
    [28]V. V. Ravi Kanth Kumar, A. K. George, J. C. Knight, P. St. J. Russell, Tellurite photonic crystal fiber, Optics Express, Vol.11(20),2003,2641-2645.
    [29]B. J. Eggleton. P. S. Westbrook, et al., Cladding-mode-resonances in air-silica microstructure optical fibers, Journal of Lightwave Technology, Vol.18,2000, 1084-1100.
    [30]P. S. Westbrook, B. J. Eggleton, et al., Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings, Photonics Technology Letters Vol.12,2000,495-497.
    [31]T. T. Larsen, A. Bjarklev, et al., Optical devices based on liquid crystal photonic bandgap fibres, Optics Express, Vol.11,2003,2589-2596.
    [32]J. C. Knight, T. A. Birks, et al., Large mode area photonic crystal fibre, Electronics Letters, vol.34,1998,1347-1348.
    [33]N. A. Mortensen, M. D. Nielsen, et al., Improved large-mode-area endlessly single-mode photonic crystal fibers, Optics Letters, Vol.28,2003,93-395.
    [34]J. Limpert, T. Schreiber, et al., High-power air-clad large-mode-area photonic crystal fiber laser, Optics Express, Vol.11,2003,818-823.
    [35]B. J. Mangan, J. C. Knight, et al., Experimental study of dual-core photonic crystal fibre, Electronics Letters, Vol.36,2000,1358-1359.
    [36]W. N. MacPberson, M. J. Gander, et al., Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre, Optics Communications, Vol.193,2001,97-104.
    [37]A. Argyros, T. A. Birks, et al., Photonic bandgap with an index step of one percent, Optics Express, Vol.13,2005,309-314.
    [38]Ryuichiro Goto, Stuart D. Jackson, Simon Fleming, et al., Birefringent all-solid hybrid microstructured fiber, Optics Express, Vol.16(23),2008,18752-18763.
    [39]F. Couny, P. J. Roberts, et al., Square-lattice large-pitch hollow-core photonic crystal fiber, Optics Express, Vol.16 (25),2008,20626-20636.
    [40]Huifeng Wei, Weijun Tong, Jiangtao Guo, et al., Ultra-Low Loss All-Solid Photonic Bandgap Fibre, European Conference and Exhibition on Optical Communications (ECOC),2009, Paper 2.1.6.
    [41]T. A. Birks, J. C. Knight, and P. S. J. Russell, Endlessly single mode photonic crystal fibre, Opt. Lett., vol.22,1997,961-963.
    [42]A. W. Snyder and J. D. Love, Optical Waveguide Theory, Chapman and Hall, 1983.
    [43]吴重庆,光波导理论,第二版,清华大学出版社,2005.
    [44]B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, Modal cutoff in microstructured optical fibers, Opt. Lett., vol.27,2002,1684-1686.
    [45]F. Benabid, J. C. Knight, G. Antonopoulos, et al., Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber, Science, Vol.298,2002, 399-402.
    [46]F. Couny, P. J. Roberts, et al., Square-lattice large-pitch hollow-core photonic crystal fiber, Opt. Express 16,2008,20626-20636.
    [47]F. Couny, F. Benabid, and P. S. Light, Large-pitch kagome-structured hollow-core photonic crystal fiber, Opt. Lett.31,2006,3574-3576.
    [48]T. D. Hedley, D. M. Bird, F. Benabid, et al., Modelling of a novel hollow-core photonic crystal fibre, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Tech. Dig. (Optical Society of America,2003), paper QTuL4
    [49]A. Argyros and J. Pla, Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared, Opt. Express 15,2007,7713.
    [50]G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, et al., Models for guidance in kagome-structured hollow-core photonic crystal fibres Opt. Express 15,12680 (2007).
    [51]F. Couny, F. Benabid, P. J. Roberts, et al., Generation and Photonic Guidance of Multi-Octave. Optical-Frequency Combs Science 318.1118 (2007).
    [52]W. Chen. J. Y Li, S. Y Li, et.al., High nonlinear photonic crystal fiber and its supercontinuum, Frontiers of Optoelectronics in China, vol.1 (1-2),2008, 75-78.
    [53]K. Saitoh, M. Koshiba, Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window, Opt. Express, vol.12(10),2004,2027-2032.
    [54]A. Ferrando, E. Silvestre, J. J. Miret, et al., Nearly zero ultraflattened dispersion in photonic crystal fibers, Opt. Lett., vol.25(12),2000,790-792.
    [55]S. Yang, Y Zhang, et al., Broadband dispersion-compensating photonic crystal fiber, Opt. Lett., vol.31(19),2006,2830-2832.
    [56]N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, et al., Improved large-mode-area endlessly single-mode photonic crystal fibers, Opt. Lett., vol. 28(6),2003,393-395.
    [57]朱瑞莲,闫连山,李立广,基于光子晶体光纤高质量超连续谱的优化设计,光通信研究,vol.163,2011,43-46.
    [58]L. E. Hooper, P. J. Mosley, A. C. Muir, et al., Coherent supercontinuum generation in hotonic crystal fiber with all-normal group velocity dispersion, Opt. Express 19,2011,4902-4907.
    [59]W. H. Reeves, J. C. Knight, and P. St. J. Russell, Demonstration of ultra-flattened dispersion in photonic crystal fibers, Opt. Express 10,2002,609-613.
    [60]A. Ferrando, E. Silvestre, et al., Nearly zero ultraflattened dispersion in photonic crystal fibers Opt. Lett.25,2000,790-792.
    [61]A. Ferrando, E. Silvestre, P. Andres, et al. Designing the Properties of Dispersion-Flattened Photonic Crystal Fibers. Opt. Express,9(13),2001,687-696.
    [62]刘兆伦,刘晓东,倪正华,李曙光,侯蓝田,高非线性色散平坦光子晶体光纤的研究,激光与红外,第36卷第1期,2006年1月。
    [63]李曙光,刘晓东,侯蓝田,接近于零色散的色散平坦光子晶体光纤的数值模拟与分析,中国激光,Vol.31(6),714-717
    [64]王子涵,王清月,栗岩峰等,1.55μm处具有宽带平坦色散的光子晶体光纤设计,光电子激光,Vol.16(5),2005,629-633。
    [65]K. Saitoh and M. Koshiba, Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion Opt. Express.11,2003,843-852.
    [66]F. Poli, A. Cucinotta, S. Selleri, et al. Tailoring of Flattened Dispersion in Highly Nonlinear Photonic Crystal Fibers. IEEE Photon. Technol. Lett.,16(4) 2004,1065-1067.
    [67]F. Begum, Y Namihira, S. M. A. Razzak, et al. Design and Analysis of Novel Highly Nonlinear Photonic Crystal Fibers with Ultra-Flattened Chromatic Dispersion, Opt. Commun., Vol.282,2009,1416-1421.
    [68]刘洁,杨昌喜等,一种新型高非线性色散平坦光子晶体光纤结构,光学学报,第26卷第10期,2006年10月。
    [69]Yamiao Wang, Xia Zhang, Xiaomin Ren, et al., Design and analysis of a ultra-flattened dispersion and highly nonlinear photonic crystal fiber with low confinement loss, Applied Optics, Vol.49(4),2010,292-297.
    [70]S. M. Abdur Razzak, and Yoshinori Namihira, Proposal for Highly Nonlinear Dispersion-Flattened Octagonal Photonic Crystal Fibers, IEEE Photon. Tech. Lett. 20,2008,249-251.
    [71]S. M. Abdur Razzak, Yoshinori Namihira, et al., Decagonal Photonic Crystal Fibers with Ultra-Flattened Chromatic Dispersion and Low Confinement Loss, Conference on Optical Fiber Communication and the National Fiber Optic Engineers (OFC/NFOEC),2007, JThA91.
    [72]Hansen K P.Dispersion flattened hybrid2 core nonlinear photonic crystal fiber. Opt. Express,11(13),2003,1503~1509.
    [73]吴维庆,陈雄文,周辉等,混合纤芯光子晶体光纤超平坦色散的研究,光子学报,第35卷第1期,2006年1月
    [74]Nguyen Hoang Hai, Namihira, Y., Kaijage, S., et al., An unique design of ultra-flattened dispersion photonic crystal fibers, Microwave and Optoelectronics Conference,2007. IMOC 2007. SBMO/IEEE MTT-S International,46-49.
    [75]Z. Liu, X. Liu, S. Li, et al. A broadband Ultra Flattened Chromatic Dispersion Microstructured Fiber for Optical Communications. Opt. Commun.,272,2007, 92-96.
    [76]刘兆伦,王伟,赵兴涛等,宽带色散平坦光子晶体光纤的优化设计与特性分析,半导体光电,Vol.28(1),2007,104-107.
    [77]J. Wang, N.G Lei and C. X. Yu. Design of Microstructured Optical Fibres with Elliptical Air Holes for Proper Single-Polarization Single-Mode and Nearly Zero Ultra-Flattened Dispersion. Chin. Physics. Lett.,24(8),2007,2255-2258.
    [78]Arismar Cerqueira S. Jr, J. D. Marconi, A. A. Rieznik, Multiple four-wave mixing in ultra-flattened dispersion photonic crystal fibers, Optical Fiber Communication Conference (OFC) 2008 paper:OTuB2.
    [79]F. Benabid, G. Antonopoulos, et al., Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, vol.298. no.5592, 2002,399-402.
    [80]W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, et al., Supercontinuum generation in photonic crystal fibers and optical fiber tapers—A novel light source, J. Opt. Soc. Amer. B, Opt. Phys., vol.19, no.9,2002.2148-2155.
    [81]P. Dainese, P. St.J. Russell, N. Joly, et al., Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres, Nature Phys., vol.2, no.6,2006, pp.388-392.
    [82]X. Liu, C. Xu, W. H. Knox, et al., Soliton self-frequency shift in a short tapered air-silica microstructure fiber, Opt. Lett. vol.26, no.6,2001,358-360.
    [83]D. V. Skryabin, F. Luan, et al., Soliton self-frequency shift cancellation in photonic crystal fibers, Science, vol.301, no.5640,2003, pp.1705-1708.
    [84]N. Y. Joly, F. G. Omenetto, A. Efimov, et al., Competition between spectral splitting and Raman frequency shift in negative-dispersion slope photonic crystal fiber, Opt. Commun, vol.248, no.1-3,2005, pp.281-285.
    [85]Philip St.J. Russell. Photonic-Crystal Fibers. J. Lightw. Technol., Vol.24,2006, 4729-4749.
    [86]V. Finazzi, T.M. Monro, and D.J. Richardson, Small-core silica holey fibers: nonlinearity and confinement loss trade-offs, J. Opt. Soc. Am. B 20,2003,1427.
    [87]I. Thomazeau, J. Etchepare, et al., Electronic nonlinear optical susceptibilities of silicate glasses, Opt. Lett.10,1985,223-225.
    [88]R. Adair, L.L. Chase, R.A. Payne, Nonlinear refractive index of optical crystals, Phys. Rev. B 39,1989,3337-3350.
    [89]V. V. Ravi Kanth Kumar, A. K. George, W. H. Reeves, et al., Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation, Opt. Express, Vol.10(25),2002,1520-1525.
    [90]V. V. Ravi Kanth Kumar, A. K. George, et al., Tellurite photonic crystal fiber, Opt. Express, Vol.11(20),2003,2641-2645.
    [91]A. Mori, K. Shikano, W. Enbutsu, et al.,1.5 μm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient of 675 W-1 km-1, presented at ECOC 2004, Stockholm, Sweden,5-9 Sep 2004, Th3.3.6.
    [92]N. Sugimoto, T. Nagashima, T. Hasegawa, et al., Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1 km-1, presented at OFC 2004, Los Angeles, California. USA,2004, paper PDP26.
    [93]J.Y.Y. Leong, P. Petropoulos, 1.H.V. Price, et al., IEEE 1. Lightwave TechnoI. 24,2006,183-190.
    [94]陈明,杨四刚,陈宏伟等,高非线性色散平坦光子晶体光纤,全国第十三次光纤通信暨第十四届集成光学学术会议,2007.
    [95]程同蕾,柴路,栗岩锋等,具有高非线性和大有效模场面积的多固体芯集束型光子晶体光纤,中国激光,Vol.36(3),2009,658-662.
    [96]B. J. Mangan, J. C. Knight, T. A. Birks, et al., Experimental study of dual-core photonic crystal fibre. Electronics Letters,36(16),2000,1358-1359.
    [97]F. Fogli, L. Saccomandi, P. Bassi, et al.. Full vectorial BPM modeling of index guiding photonic crystal fibres and couplers. Optics Express,10(1),2002,54-59.
    [98]K. Saitoh, Y Sato, M. Koshiba. Coupling characteristics of dual-core photonic crystal fiber couplers. Optics Express,11(24),2003,3188-3195.
    [99]M. Y Chen, R. J. Yu. Coupling characteristics of dual-core rectangular lattice photonic crystal fibres. Journal of Optics a-Pure and Applied Optics, Vol.6 (8), 2004,805-808.
    [100]J. Laegsgaard, O. Bang, A. Bjarklev. Photonic crystal design for broadband directional coupling. Optics Letters,29(21),2004,2473-2475.
    [101]W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, et al., Coupling in a twin-core microstructured polymer optical fiber. Applied Physics Letters, Vol. 84(10),2004,1689-1691.
    [102]L. Zhang, C. X. Yang. Polarization-dependent coupling in twin-core photonic crystal fibers. Journal of Lightwave Technology,22(5),2004,1367-1373.
    [103]L. Zhang, C. X. Yang. Nonreciprocal coupling in asymmetric dual-core photonic crystal fibres. Chinese Physics Letters,21(8),2004,1542-1544.
    [104]L. Zhang, C. X. Yang. A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores. IEEE Photonics Technology Letters, 16(7),2004,1670-1672.
    [105]Z. Wang, G. Y Kai, Y. G Liu, et al.. Coupling and decoupling of dual-core photonic bandgap fibers. Optics Letters,30(19),2005,2542-2544.
    [106]I. D. Chremmos, G. Kakarantzas, N. K. Uzunoglu. Modeling of a highly nonlinear chalcogenide dual-core photonic crystal fiber coupler. Optics Communications.251(4-6),2005,339-345.
    [107]N. J. Florous. K. Saitoh, M. Koshiba. Synthesis of polarization-independent splitters based on highly birefringent dual-core photonic crystal fiber platforms. IEEE Photonics Technology Letters,18(9-12),2006,1231-1233.
    [108]Y Yue, G. Y Kai, Z. Wang, et al.. Broadband single-polarization single-mode photonic crystal fiber coupler. IEEE Photonics Technology Letters,18(17-20), 2006,2032-2034.
    [109]N. J. Florous, K. Saitoh, T. Murao, et al., Non-proximity resonant tunneling in multi-core photonic bandgap fibers:An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters. Optics Express, Vol.14(11), 2006,4861-4872.
    [110]A. Betlej, S. Suntsov, K. G. Makris, et al., All-optical switching and multifrequency generation in a dual-core photonic crystal fiber, Opt. Lett., vol.31 (10) 2006,1480-1482.
    [111]Z. Wang, T. Taru, et al.. Coupling in dual-core photonic bandgap fibers: theory and experiment. Optics Express,15(8),2007,4795-4803.
    [112]J. Laegsgaard. Directional coupling in twin-core photonic bandgap fibers. Optics Letters,30(24),2005,3281-3283.
    [113]Z. Wang, Y G. Liu, G Y Kai, et al.. Directional couplers operated by resonant coupling in all-solid photonic bandgap fibers. Optics Express,15(14), 2007,892-8930.
    [114]X. W. Sun. Wavelength-selective coupling of dual-core photonic crystal fiber with a hybrid light-guiding mechanism. Optics Letters,32(17),2007,2484-2486.
    [115]K. Saitoh, N. J. Florous, et al.. Tunable photonic crystal fiber couplers with a thermo-responsive liquid crystal resonator. Journal of Lightwave Technology, 26(6),2008,663-669.
    [116]J. B. Du, Y G Liu, Z. Wang, et al.. Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid. Optics Express,16(6),2008,4263-4269.
    [117]Nicolas Mothe and Philippe Di Bin, Numerical analysis of directional coupling in dual-core microstructured optical fibers, Optics Express, Vol.17 (18), 2009:15778-15789
    [118]M. Liu, and K. S. Chiang, Pulse propagation in a decoupled two-core fiber, Optics Express., Vol.18 (20),2010:21261-21268.
    [119]Peng Li, Jianlin Zhao, Xiaojuan Zhang, Nonlinear coupling in triangular triple-core photonic crystal fibers. Optics Express, Vol.18 (26),2010: 26828-26833.
    [120]Kristian Nielsen, Henrik K. Rasmussen, et al., Broadband terahertz fiber directional coupler, Opt. Lett., Vol.35(17),2010:2879-2881.
    [121]于荣金,向阳,等,双芯光子晶体光纤祸合长度研究,光电子·激光,vol.15(7),2004,775-777.
    [122]任国斌,王智,等,双芯光子晶体光纤中的模式干涉,物理学报,Vol53(8),2004,2600-2606.
    [123]陈侃;黄腾超;等,一种基于双芯光子晶体光纤的光纤陀螺,专利号,CN101294808,2008-10-29
    [124]朱日丹,罗爱平,等,双芯光子晶体光纤宽带定向耦合器研究,光子学报,Vol.37(9),2008,1810-1814.
    [125]孙兵,陈明阳,周骏,等,非对称双芯光子晶体光纤宽带模式转换器研究,光子学报,Vol.30(6),2010,1581-1585.
    [126]陈卫国,娄淑琴,等,双芯光子晶体光纤Mach-Zehnder干涉仪及其应力特性,光电子激光,Vol.22(2),2011,175-179.
    [127]J. C. Knight, T. A. Birks, P. St. J. Russell, et al, Properties of photonic crystal fiber and the effective index model, J. Opt. Soc. Am. A,15(3),1998, pp.748-752.
    [128]K.M. Ho, C.T. Chen, I. Kurland, Existence of a photonic gap in periodic structure, Phys. Rev. Lett.,65,1990, pp.3152~3155.
    [129]D. Mogilevtsev, T. A. Birks, and P. S. J. Russell, Group-velocity dispersion in photonic crystal fibers, Opt. Lett.,23(21),1998, pp.1662-1664.
    [130]M.D. Feit, and J. A. Fleck, Computation of mode properties in optical fiber waveguides by a propagating beam method, Appl. Opt.,19,1980, pp.1154~1164.
    [131]G. E. Town and J. T. Lizer, Tapered holey fibers for spot-size and numerical-aperture conversion, Opt. Lett.,26(14),2001, pp.1042~1044.
    [132]F. Brechet, J. Marcou, et al., Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method, Opt. Fiber Technol.,6(2),2000, pp.181~191.
    [133]M. J. Steel, T. P. White, C. M. de Sterke, et al, Symmetry and degeneracy in microstructured optical fibers, Opt. Lett.,26(8).2001, pp.488~490.
    [134]Wang Zhi, Jian Shuisheng et al. Supercell lattice method for photonic crystal fibers. Optics Express,11:980-991,2003;
    [135]N. A. Mortensen. Effective area of photonic crystal fibers. Opt. Express 10. 2002:341-348.
    [136]N. G. R. Broderick, T. M. Monro, et al., Nonlinearity in holey optical fibers: measurement and future opportunities, Opti. Lett.24,1999:1395-1397
    [137]J. E. Sharping, M. Fiorentino, et al., Optical parametric oscillator based on four-wave mixing in microstructure fiber, Opt. Lett.27,2002:1675-1677
    [138]X. Liu, C. Xu, et al., Soliton self-frequency shift in a short tapered air-silica microstructure fiber, Opt. lett.26,2001:358-360
    [139]D. V. Skryabin, F. Luan, et al., Soliton self-frequency shift cancellation in photonic crystal fibers, Science 301,2003:1705-1708
    [140]J. M. Dudley and S. Coen, Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers, Journal of Selected Topics in Quantum Electronics 8,2002:651-659.
    [141]Jinendra K. Ranka, Robert S. Windeler, and Andrew J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm, Opt. Lett.25,2000:25-27.
    [142]M. J. Steel and R. M. Osgood, Polarization and dispersive properties of elliptical-hole photonic crystal fiers, J. Lightwave Techno.19,2001:495-503.
    [143]I. K.Hwang, Y. J. Lee, et al., Birefringence induced by irregular structure in photonic crystal fiber, Optics Express,11,2003:2799-2806.
    [144]A. Ferrabdi, E. Silvestre, et al., Designing the properties of dispersion-flattened photonic crystal fibers, Optics Express,9,2001:687-697.
    [145]T. P. Hansen, J. Broeng, et al., Highly birefringent index-guiding photonic crystal fibers, IEEE Photonics Technol. Lett.,13,2001:588-590.
    [146]K. Saitoh and M. Koshiba, Single-polarization single-mode photonic crystal fibers, IEEE Photonics Technol. Lett.,15,2003:1384-1386.
    [147]吴重庆,光波导理论,第二版,清华大学出版社,2005:38
    [148]K. Tajima, J. Zhou, et al., Ultralow loss and long length photonic crystal fiber, J. Lightwave Techno.22,2004:7-10
    [149]T. Sorensen, J. Broeng, et al., Macro-bending loss properties of photonic crystal fibre, Electronics Lett.37,2001:287-289.
    [150]D. Ferrarini, L. Vincetti, et al., Leakage properties of photonic crystal fibers, Opt. Express 10,2002:1314-1319.
    [151]J. A. Fleck, J. R. Morris and M.D. Feit. Time-dependent propagation of high energy laser beams through the atmosphere. Appl. Physics., Vol.10,1976: 129-160.
    [152]W.P. Huang and C.L. Xu, Simulation of three-dimensional optical waveguides by a full-vector beam propagation method, J. Quantum Electron.29, 1993,2639.
    [153]金建铭,电磁场有限元方法,西安电子科技大学出版社,2001
    [154]J. P. Berenger, A Perfectly Matched Layer for the Absorption of Electromagnetic Waves, J. Computational Phys.,114,185(1994).
    [155]S. Selleri, L. Vincetti, et al., Complex Fem Modal Solver of Optical Waveguides with Pml Boundary Conditions, Optical and Quantum Electronics, 33,359(2001).
    [156]Hadley G. R. Transparent boundary condition for beam propagation, Opt. Lett.16(9),1991,:624-626
    [157]Hadley G. R. Transparent boundary condition for beam propagation, IEEE J Quantum Electron,1992,28(1):363-370.
    [158]M. L. V. Tse, P. Horak, F. Poletti, Supercontinuum generation at 1.06μm in holey fibers with dispersion flattened profiles, Opt. Express 14,2006,4445-4451
    [159]J.M. Dudley, J.R. Taylor (Eds.), Supercontinuum Generation in Optical Fibers, Cambridge University Press,2010.
    [160]Saeed Olyaee and Fahimeh Taghipour, A new design of photonic crystal fiber with ultra-flattened dispersion to simultaneously minimize the dispersion and confinement loss, J. Phys.:Conf. Ser.276,2011,012080.
    [161]S.M. Abdur Razzak, Y. Namihira and F. Begum, Ultra-flattened dispersion photonic crystal Ultra-flattened dispersion photonic crystal, Electronics Lett.43, 2007,615-617.
    [162]F. Couny, P. J. Roberts, et al., Square-lattice large-pitch hollow-core photonic crystal fiber, Opt. Express 16,2008,20626-20636.
    [163]Albert Ferrando, Enrique Silvestre, and Pedro Andres, Designing the properties of dispersion-flattened photonic crystal fiber Opt. Express 9,2001, 687-697.
    [164]G. Renversez and B. Kuhlmey, Dispersion management with microstructured optical fibers:ultraflattened chromatic dispersion with low losses Opt. Lett.28, 2003,989-991.
    [165]S. M. Abdur Razzak, and Yoshinori Namihira, Proposal for Highly Nonlinear Dispersion-Flattened Octagonal Photonic Crystal Fibers. IEEE Photon. Tech. Lett. 20,2008,249-251.
    [166]K. Saitoh and M. Koshiba, Chromatic dispersion control in photonic crystal fibers:Application to ultra-flattened dispersion Opt. Express.11,2003,843-852.
    [167]M. Pourmahayabadi, S. Mohammad Nejad, Design of ultra-low and ultra-flattened dispersion single mode photonic crystal fiber by Differential Evolution algorithm, Appl. Electronics,2009,211-215.
    [168]Kerrinckx E, Bigot L, et al., Photonic crystal fiber design by means of a genetic algorithm, Optics Express 12,2004,1990-1995.
    [169]S. M. Abdur Razzak, Yoshinori Namihira, Feroza Begum, et al., Decagonal Photonic Crystal Fibers with Ultra-Flattened Chromatic Dispersion and Low Confinement Loss, Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (OFC/NFOEC),2007, JThA91.
    [170]Gilles Melin, Lionel Provost, Anne Fleureau, et al., Innovative design for highly non-linear microstructured fibers 30th European Conference on Optical Communication (ECOC),2004,415-0084-1.
    [171]Po-Tsung Lee, Tsan-Wen Lu, et al., High quality factor microcavity lasers realized by circular photonic crystal with isotropic photonic band gap effect Appl. Phys. Lett.90,2007,151125.
    [172]J. Scheuer and A. Yariv, Circular photonic crystal resonators Phys. Rev. E 70, 2004,036603.
    [173]I. H. Malitson, Interspecimen comparison of the refractive index of fused silica J. Opt. Soc. Am.55,1965,1205-1208.
    [174]G. Agrawal Nonlinear Fiber Optics 3rd edition (Academic Press),2001.
    [175]Boris Kuhlmey, Gilles Renversez, and Daniel Maystre Chromatic dispersion and losses of microstructured optical fibers Appl. Opt.42,2003, 634-639,.
    [176]L. Zhang, Yang Yue, et al., Flattened dispersion in silicon slot waveguides Opt. Express 18,2010,20529-20534.
    [177]S. M. Abdur Razzak, and Yoshinori Namihira, Tailoring dispersion and confinement losses of photonic crystal fibers using hybrid cladding J. Lightwave Tech.26,2008,1909-1914.
    [178]Kristen Reichenbach. Chris Xu, The effects of randomly occurring nonuniformities on propagation in photonic crystal fibers Opt. Express 13,2005, 2799-2807.
    [179]M. A. Duguay, Y. Kukubun, et al.r, Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures Appl. Phys. Lett.49,1986,13-15.
    [180]M. Onishi, T. Okuno, T. Kashiwada, et al., Highly nonlinear dispersion-shifted fibers and their application to broadband wavelength converter, Optical Fiber Technology, vol.4,1998,204-214.
    [181]M. Onishi, New nonlinear fibers with application to amplifiers, Optical Fiber Communication (OFC),2004, TuC3.
    [182]Jim Himhi, Naomi Kumano, Kazunori Mukasa, et al., Dispersion slope controlled HNL-DSF with high gamma of 25 W-1km-1 and band conversion experiments using this fiber, ECOC 2002, Post-deadline session 1:PD1.5.
    [183]K. P. Hansen et al., Highly nonlinear photonic crystal fiber with zero dispersion at 1.55 μm, in Proc. Optical Fiber Communication (OFC), Anaheim, CA,2002, FA9-1-FA9-3.
    [184]T. Okuno, M. Onishi, T. Kashiwada, et al., Silica-based functional fibers with enhanced nonlinearity and their applications, IEEE J. Sel. Top. Quant. Electron.5,1999,1385-1391.
    [185]J. H. Lee, W. Belardi, K. Furusawa, et al., Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold, IEEE Photon. Techn. Lett.15,2003,440-442.
    [186]A. Mori, K. Shikano, W. Enbutsu, et al.,1.5 μm band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient of 675 W-1 km-1, presented at ECOC 2004, Stockholm, Sweden,2004, Th3.3.6.
    [187]K. Kikuchi, K. Taira, and N. Sugimoto, Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing, Electron. Lett.38,2002, 166-167.
    [188]N. Sugimoto, T. Nagashima, T. Hasegawa, et al., Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1 km-1, presented at OFC 2004, Los Angeles, California, USA,2004, paper PDP26.
    [189]H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, et al., Bismuth glass holey fibers with high nonlinearity. Optics Express, Vol.12, No.21,2004. 5082-5087.
    [190]P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, et al., Highly nonlinear and anomalously dispersive lead silicate glass holey fibers, Opt. Express, 11,2003,3568-3573.
    [191]J. Kobelke, K. Schuster, S. Grimm, et al., Multicomponent glass microstructured fibers for nonlinear applications, Proc. of SPIE Vol.6990,2008, 699005.
    [192]G. Bouwmans, L. Bigot, Y. Quiquempois, et al., Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm, Opt. Express 13,2005,8452-8459.
    [193]F. Luan, A. K. George, T. D. Hedley, et al., All solid photonic bandgap fiber, Optics Letters, Vol.29(20),2004,2369-2371.
    [194]J. K. Lyngsφ, B. J. Mangan and P. J. Roberts, Polarization maintaining hybrid TIR/bandgap all-solid photonic crystal fiber, OSA/CLEO/QELS2008, CThV1.
    [195]F. Luan, J. C. Knight, P. St.J. Russell, et al., Femto-second soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers, Opt. Express, vol.12, no.5,2004, pp.835-840.
    [196]J. Lzgsgaard, K. P. Hansen, M. D. Nielsen, Photonic crystal fibers, Proceedings SBMO/IEEE MTT-S IMOC,2003,259-264.
    [197]James W. Fleming, Dispersion in GeO2-SiO2 glasses, Applied Optics, Vol. 23, No.24,1984,4486-4493.
    [198]Akira Wada, Satoshi Okude, Tetsuya Sakai, et al., GeO2 Concentration Dependence of Nonlinear Refractive Index Coefficients of Silica-Based Optical Fibers, Electronics and Communications in Japan, Part 1, Vol.79, No.11,1996.
    [199]K. P. Hansen, Dispersion flattened hybrid-core nonlinear photonic crystal fiber, Optics Express, Vol.11(13),2003,1503-1509.
    [200]Feroza Beguma, Yoshinori Namihira, S.M. Abdur Razzak, et al., Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion, Optics Communications 282,2009,1416-1421.
    [201]Y. Chen, Twin core nonlinear couplers with saturable nonlinearity, Electronics Letters, Vol.26 (17),1990,1374-1375.
    [202]Herbert G. Winful, Donnell T. Walton, Passive mode locking through nonlinear coupling in a dual-core fiber laser, Opt. Lett., Vol.17 (23),1992, 1688-1690.
    [203]G. Schiffner, H. Schneider, and G. Schoner, Double-core single mode optical fiber as directional coupler, Appl. Phys., vol.23, no.1,1980, pp.41-45.
    [204]S.B. Poole and J.D. Love, Single-core fiber to twin-core fiber connector, Electron Lett 27,1991,1559-1560.
    [205]P. Peterka, I. Kasik, J. Kanka, et al., Twin-core fiber design and preparation for easy splicing, IEEE Photonics Technol Lett 12,2000,1656-1658.
    [206]姚磊,基于模式耦合效应的特种光纤和高阶导模光子带隙光纤的研究,北京交通大学博士论文,2010.
    [207]S. R. Friberg, A. M. Weiner, Y. Silberberg, Femotosecond switching in a dual-core-fiber nonlinear coupler, Opt. Lett., Vol.13 (10),1988,904-906.
    [208]F. Fogli, L. Saccomandi, P. Bassi, et al.. Full vectorial BPM modeling of index guiding photonic crystal fibres and couplers. Optics Express,10(1),2002, 54-59.
    [209]Sun, X. W., Wavelength-selective coupling of dual-core photonic crystal fiber with a hybrid light-guiding mechanism.Opt. Lettlers, Vol.32 (11),2007, 2484-2486.
    [210]I.D. Chremmos, G. Kakarantzas, N.K. Uzunoglu, Modeling of a highly nonlinear chalcogenide dual-core photonic crystal fiber coupler, Optics Communications 251,2005,339-345.
    [211]S. M. Jensen, The nonlinear coherent coupler, IEEE J. Quantum Electron. QE-18,1982,1580-1583.
    [212]Arlee V. Smith, Binh Do, Mikko Soderlund, et al, Nanosecond laser-induced breakdown in pure and Yb3+ doped fused silica, Proc. of SPIE Vol.6403 640321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700