芒果苷对大鼠骨髓间充质干细胞缺氧损伤的保护机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨髓间充质干细胞(MSCs)是具有多向分化潜能的成体干细胞,逃避宿主免疫系统监测、免疫调节和体外培养易扩增等特点,使骨髓间充质干细胞在细胞治疗方面特别有应用前景。然而,移植细胞的死亡限制了组织再生。移植入器官的干细胞死亡主要机制之一由缺血引起。
     缺氧/局部缺血情况作为凋亡的一个重要的媒介和调节因素早已经得到了认识。这种情况下引发了活性氧簇(ROS)的大量产生。过多的ROS直接损伤了细胞膜,DNA和蛋白质,导致细胞功能的改变和丧失并引起细胞增殖抑制和诱导凋亡.
     芒果甙是一种四羟基吡啶的碳糖甙,属双苯吡酮类化合物。现代的药理和临床研究证明,芒果甙以及含芒果甙植物提取物具有多方面的生理和药理作用,如抗脂质过氧化反应、抗癌、抗糖尿病、抗炎、抗病毒、止咳、免疫调节等作用.
     应用骨髓间充质干细胞进行细胞移植,细胞的存活率低。通过在缺氧状态下,引入抗氧化剂对细胞进行抗氧化、抗凋亡的保护非常有意义。芒果苷成为有前景的抗凋亡剂,有望为提高细胞移植的干细胞存活提供理论依据及实践经验。
     尽管国内外对芒果苷抗氧化的研究已经积累了一些资料,但是对芒果苷对骨髓间充质干细胞缺氧损伤保护的机制研究却未见报道。本课题在体外实验的研究基础上,利用细胞和现代分子生物学等技术,通过氯化钴构建的缺氧模型,检测在体外环境中对大鼠骨髓间充质干细胞的生物学影响;通过芒果苷预处理,观察芒果苷对大鼠骨髓间充质干细胞的凋亡和氧化应激的保护作用;通过实时荧光相对定量RT-PCR和Western-blot等方法分别测定凋亡相关基因和氧化应激相关基因和蛋白表达,探讨芒果苷在缺氧模型下对大鼠骨髓间充质干细胞的保护机制。
     实验内容包括以下四部分:
     第一部分大鼠骨髓间充质干细胞的培养、鉴定及生物学性状分析
     目的:建立大鼠骨髓间充质干细胞的分离、培养、纯化方法,并进行细胞形态学观察、表面标志物鉴定及多向分化能力检测。
     方法:通过全骨髓贴壁法体外分离、培养、纯化大鼠骨髓间充质干细胞,进行形态学观察,绘制生长曲线,细胞周期分析,流式细胞仪检测细胞表面标记物,分别向成骨、成脂方向诱导分化,进行染色体分析和荧光增殖示踪分析。
     结果:大鼠骨髓间充质干细胞生长以梭形细胞为主,呈放射状排列的细胞集落,细胞生长旺盛,可连续稳定传代10代以上。生长曲线及细胞周期显示骨髓间充质干细胞符合正常细胞生长特征且生长活跃。第3代骨髓间充质干细胞CD44,CD90,CD105均呈阳性表达,而CD34,CD45呈阴性表达。成脂、成骨诱导后,油红O染色、碱性磷酸酶染色、von Kossa法染色和茜素红染色均呈阳性。全骨髓贴壁培养法操作简单,可大量分离、纯化、扩增骨髓间充质干细胞,所获细胞具有间充质干细胞的一般生物学特性,经诱导培养后具有多向分化潜能。
     结论:实验所用的全骨髓贴壁法为组织工程提供充足的种子细胞来源具有重要的现实意义。
     第二部分芒果苷的提取、鉴定、代谢动力学及其对大鼠骨髓间充质干细胞生物学性状的影响
     目的:研究芒果苷的提取、鉴定、代谢动力学及其对大鼠骨髓间充质干细胞生物学性状的影响
     方法:通过乙醇回流法提取并经过萃取、预处理、再生、洗脱及重结晶等方法得到芒果苷提取物。对芒果苷提取物通过紫外及红外吸收,核磁共振,高效液相色谱(HPLC),鉴定提取物的化学结构和含量。通过口服给药,进行芒果苷在大鼠血液中药代动力学的评价。通过药物细胞毒性试验(MTT法)、细胞周期分析、细胞增殖荧光示踪等,检测芒果苷对大鼠骨髓间充质干细胞的生物学性状影响。
     结果:用乙醇回流法提取的芒果苷浓度可达98.0%和94.9%,其纯度已经可以满足药效试验的需要。高效液相色谱(法),可测量出芒果苷在小鼠血浆中的含量切实、可行。低浓度芒果苷(20-80μmol/l)能促进大鼠骨髓间充质干细胞生长,以40μmol/l芒果苷促进效果最好;而高浓度芒果苷可抑制细胞生长,具有浓度依赖性。
     结论:通过乙醇提取可获得高纯度芒果苷,并可通过高效液相色谱检测芒果苷含量。芒果苷对细胞生长有一定影响。
     第三部分芒果苷对大鼠骨髓间充质干细胞缺氧诱导的凋亡保护机制研究
     目的:研究芒果苷对大鼠骨髓间充质干细胞缺氧损伤的凋亡保护机制
     方法:建立细胞缺氧模型。通过MTT、流式细胞仪凋亡检测、流式细胞仪线粒体膜电位检测细胞凋亡率、实时荧光相对定量RT-PCR和Western-blot方法分别测定了细胞中Casapse3、Casapse8、Casapse9、Bcl-2及Bax等凋亡相关基因及蛋白表达情况。
     结果:芒果苷对大鼠骨髓间充质干细胞缺氧损伤具有保护作用,呈浓度依赖性;随着芒果苷浓度的增加,大鼠骨髓间充质干细胞在缺氧损伤模型下的凋亡率逐步减少(P<0.01)。氯化钴可引起Casapse3、Casapse8、Casapse9、Bax等凋亡相关基因及蛋白表达上调,Bcl-2基因及蛋白表达下调。芒果苷能抑制氯化钴引起的Casapse3、Casapse8、Casapse9、Bax等凋亡相关基因及蛋白表达的上调(P<0.01),及减少Bcl-2基因及蛋白表达的下调(P<0.01)。
     结论:芒果苷对大鼠骨髓间充质干细胞缺氧损伤诱发的凋亡具有保护作用,并呈浓度依赖性。
     第四部分芒果苷对大鼠骨髓间充质干细胞缺氧损伤的抗氧化保护机制研究
     目的:研究芒果苷对大鼠骨髓间充质干细胞缺氧损伤的抗氧化保护机制
     方法:建立细胞缺氧模型。通过紫外可见光分光光度计检测细胞内及细胞培养液中的氧化应激相关指标:超氧化物歧化酶、丙二醛、谷胱甘肽过氧化物酶、过氧化氢酶等。用流式细胞仪检测细胞活性氧含量。实时荧光相对定量RT-PCR和Western-blot方法分别测定了细胞中RelA、HIF-1α、Hsp70等氧化应激相关基因及蛋白表达情况。
     结果:芒果苷对大鼠骨髓间充质干细胞缺氧损伤具有保护作用,呈浓度依赖性;随着芒果苷浓度的增加,大鼠骨髓间充质干细胞在缺氧损伤模型下的氧化应激反应逐渐减少(P<0.01)。氯化钴可引起RelA、HIF-1α、Hsp70等氧化应激相关基因及蛋白表达上调。芒果苷能抑制氯化钴引起的RelA、Hsp70等氧化应激相关基因及蛋白表达的上调(P<0.01),但对HIF-1α基因的表达和蛋白表达没有影响(P)0.05)。结论:芒果苷对大鼠骨髓间充质干细胞缺氧损伤诱发的氧化应激具有保护作用,并呈浓度依赖性。
Mesenchymal stem cells (MSCs) are multipotent differentiation potential of adult stem cells to evade the host immune system surveillance, immune modulation and in vitro culture and easy expansion characteristics, so that bone marrow mesenchymal stem cells in cell therapy particularly with applications. However, the death of transplanted cells limited tissue regeneration. one of the death mechanisms of Stem cells transplanted into the organ caused by ischemia.
     Hypoxic / ischemic conditions, as apoptosis is an important regulator of the media and has been recognized early. This situation led to a large number of reactive oxygen species (ROS) produced. Excessive ROS directly damage cell membranes, DNA and proteins, leading to the change and loss of cell function and cause growth inhibition and induction of apoptosis
     Mangiferin is a four-hydroxypyridine carbon glycoside, a double benzene pyridine ketones. Modern pharmacological and clinical studies have shown that mangiferin and mangiferin containing various plant extracts with the physiological and pharmacological effects, such as lipid peroxidation, anti-cancer, anti-diabetic, anti-inflammatory anti-virus, stop-coughing, immune regulation.
     Using bone marrow mesenchymal stem cells for cell transplantation, cell viability is low. In hypoxia, the introduction of antioxidants on the cells exercise antioxidant, anti-apoptotic protection. Mangiferin as a promising anti-apoptotic agent, to enhance the survival of cells transplanted stem cells provide a theoretical basis and practical experience.
     Although the oxidation of mangiferin at home and abroad research has accumulated some data, the protected mechanism of mangiferin in bone marrow mesenchymal stem cells in in hypoxic injury has not been reported.
     The subject of the research base in vitro, using cell biology and modern molecular biology techniques, testing the effect hypoxia model induced by cobalt chloride in vitro environment on rat bone marrow mesenchymal stem cells biology.
     To investigate the protection mechanism of mangiferin on rat bone marrow mesenchymal stem cell. With mangiferin pretreatment, the protection of mangiferin on rat bone marrow mesenchymal stem cell in apoptosis and oxidative stress were observed;real-time fluorescence relative quantitative RT-PCR and Western-blot method s were used to detect the expression of gene and protein related to apoptosis and oxidative stress.
     Include the following four parts
     Part I Culture and identification of rat bone marrow mesenchymal stem cells
     OBJECTIVE: To establish a method of isolation, cultivation and purification of rat BMSCs in vitro, to observe cell morphology, and to assess surface markers and multi-directional differentiation capacity.
     METHODS: BMSCs from rats were isolated, cultured and purified by the whole bone marrow adherence method, for morphology observations, the growth curve was drawn, cell cycle was analyzed, cell surface markers were assessed by flow cytometry, and BMSCs were induced to differentiate into osteoblasts and adipocytes.
     RESULTS: BMSCs from rats were spindle cell-based, showing radial colony arrangement. Cells kept strong growth and could passage in continuous and stable manner over 10 passages. The growth curve and cell cycle demonstrated that BMSCs were consistent with the growth characteristics and good activity of normal cells. At the third passage, BMSCs were negative for CD34 and CD45, but positive for CD44, CD90 and CD105. Following induction, oil red O staining, alkaline phosphatase staining, von Kossa staining and alizarin red staining produced a strong reaction in cells. Whole bone marrow adherence method is simple and can isolate, purify and amplify BMSCs in vitro. The obtained cells have general biological characteristics of mesenchymal stem cells, and also have potentiality of multi-directional differentiation.
     CONCLUSION:This experimental method has important practical significance to provide adequate source of seed cells for tissue engineering.
     Part II The extraction, identification, pharmacokinetics of Mangiferin and the biological characteristic effects of mangiferin on rat bone marrow mesenchymal stem cell.
     OBJECTIVE: To investigate the extraction, identification, pharmacokinetics of Mangiferin and the biological characteristic effects of mangiferin on rat bone marrow mesenchymal stem cell.
     METHODS: By ethanol extraction and after extraction, pretreatment, regeneration, washing and recrystallization, mangiferin was obtained. Through ultraviolet and Infrared absorption spectroscopy, nuclear magnetic resonance, high performance liquid chromatography (HPLC) , identified the chemical structure and content of the extract.By oral administration, the pharmacokinetics of mangiferin in rat blood was evaluated.By drug cytotoxicity test (MTT), cell cycle analysis, cell proliferation, the biological effects of mangiferin on rat bone marrow mesenchymal stem cells were detected.
     RESULTS:Extracted by refluxing with ethanol ,the concentrations of mangiferin can up to 98.0% and 94.9%, and the purity has meet the need for efficacy trials.High performance liquid chromatography is a effective and feasible method in measuring content of mangiferin in mouse plasma.The low concentrations of mangiferin (20-80μmol/l) can promote the growth of bone marrow mesenchymal stem cells ,to 40μmol / l mangiferin for the best. The high concentration of mangiferin inhibit cell growth, with a concentration-dependent.
     Conclusion: By using ethanol , the high purity of mangiferin was obtain, and by high performance liquid chromatography, mangiferin could be detected . Mangiferin have a certain influence on cell growth.
     Part III The protection mechanism of mangiferin in hypoxia induced apoptosis in rat bone marrow mesenchymal stem cells
     OBJECTIVE:To investigate the protection mechanism of mangiferin in hypoxia induced apoptosis in rat bone marrow mesenchymal stem cells METHODS: Established hypoxia model of cells.
     The apoptosis rate by MTT,apoptosis detection of flow cytometry, detection of mitochondrial membrane potential of flow cytometry were observed.the differences of mRNA and protein expressions of Casapse3、Casapse8、Casapse9、Bcl-2 and Bax were assayed by real-time fluorescence relative quantitative RT-PCR and Western-blot method.
     RESULTS: Mangiferin in rat bone marrow mesenchymal stem cells have a protective effect of hypoxic injury in a dose dependent manner. With the increase of the concentration of mangiferin ,the apoptosis rate in rat bone marrow mesenchymal stem cells in hypoxic injury model were gradually reduce. (P<0.01).Cobalt chloride(CoCl2) can increase Casapse3, Casapse8, Casapse9, Bax gene and protein expression, decrease Bcl-2 gene and protein expression. Mangiferin inhibited cobalt chloride induced increasing of Casapse3, Casapse8, Casapse9, Bax gene and protein expression, and decreasing of Bcl-2 gene and protein expression(P<0.01).
     CONCLUSION:Mangiferin in rat bone marrow mesenchymal stem cells have a protective effect of hypoxic injury in a dose dependent manner.
     Part IV The antioxidant protection mechanism of mangiferin in rat bone marrow mesenchymal stem cells in hypoxia
     OBJECTIVE:To investigate the antioxidant protection mechanism of mangiferin in hypoxia in rat bone marrow mesenchymal stem cells
     METHODS: Established hypoxia model of cells. By UV-Vis spectrophotometer , the relevant indicators of oxidative stress: superoxide dismutase(SOD), malondialdehyde(MDA), glutathione peroxidase(GSH-XP), catalase(CAT) were observed.in cells and cell culture medium. reactive oxygen species (ROS) were measured by flow cytometry.The differences of mRNA and protein expressions of RelA、HIF-1αand Hsp70 were assayed by real-time fluorescence relative quantitative RT-PCR and Western-blot method.
     RESULTS: Mangiferin in rat bone marrow mesenchymal stem cells have a protective effect of oxidative stress in a dose dependent manner.With the increase of the concentration of mangiferin ,the oxidative stress in rat bone marrow mesenchymal stem cells in hypoxic injury model were gradually reduce. ( P<0.01 ) .Cobalt chloride(CoCl2) can increase RelA、HIF-1αand Hsp70 gene and protein expression. Mangiferin inhibited CoCl2 induced increasing of RelA and Hsp70x gene and protein expression(P<0.01);but mangiferin can not inhibite HIF-1αgene and protein expression(P<0.05).
     CONCLUSION:Mangiferin have a protective effect on hypoxia-induced oxidative stress on rat bone marrow mesenchymal stem cells, in a dose dependent manner.
引文
[1]Friedenstein AJ, Piatetzky S II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966;16:381– 390.
    [2]Hagiwara M., Shen B., Chao L.,et al.Kallikrein-modified mesenchymal stem cell implantation provides enhanced protection against acute ischemic kidney injury by inhibiting apoptosis and inflammation[J]. Hum Gene Ther. 2008 Aug;19(8): 807-819.
    [3]Yu Y., Yao A. H., Chen N., et al.Mesenchymal stem cells over expressing hepatocyte growth factor improve small-for-size liver grafts regeneration[J]. Mol Ther. 2007;15 (7):1382-13899.
    [4]Kamata H., Honda S., Maeda S., et al. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases[J]. Cell. 2005 ,120(5):649- 661.
    [5] MARTINDALE JL, HOLBROOK NJ·Cellular response to oxidativestress: signaling for suicide and survival[J]·JCellPhysio,l 2002,192 (1): 1-15·
    [6]Lee YJ, Kang IJ, Bunger R,et al. Enhanced survival effect of puruvate correlatesMAPK andNF-κB activation in hydrogen peroxide-treated human endothelial cells [ J]. JApplPhysio,l 2004, 96: 793-801.
    [7] Droge W., Free radicals in the physiological control of cellfunction[J]. Physiol Rev. 2002,82(1):47-95.
    [8] Jung J. Y., Roh K. H., Jeong Y. J., et al.Estradiol protects PC12 cells against CoCl2-induced apoptosis[J]. Brain Res Bull. Brain Res. Bull., 2008,76(6), 579—585.
    [9]Irani K. Oxidant signaling in vascular cell growth, death,and survival: a reviewof the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling[J].Circ Res,2000,87:179-183.
    [10] Galang N,Sasaki H, Maulik N. Apoptotic cell death during ischemia reperfusion and its attenuation by antioxidant therapy [J].Toxicology,2000,148:111-118.
    [11]Coopcr JT, Stroka DM, Brostjan C, et al. A20blocks endothelial cell activation through a NF-kappaB dependent mechanism[J]. J Biol Chem,1996,271:18068-18073.
    [12]Ojewole, J.A.O.Anti-inflammatory, analgesic and hypoglycemic effects of Mangifera indica Linn. (Anacardiaceae) stem-bark aqueous extract. Methods Find. Exp. Clin. Pharmacol. 2005,27, 547–554.
    [13]Hernandez P, Rodriguez PC, Delaado R, et al. Protective effect of Mangifera indicaL. polyphenols on humanT lymphocytes againstactivation-induced celldeath[J].Pharmacol Res,2007, 55(2) : 167-173.
    [14]Leiro JM, AlvarezE,Arranz JA, et al. In vitro effect sofmangiferin osuperoxide concentrations and expression of the inducible nitric oxid synthase, tumour necrosis factor-αand transforming growth factorβgenes[J].BiochemicalPharmacology , 2003,65 (8) :1361-1371.
    [15] Muruganandan S,Lal J,GuptaPK. Immunotherapeutic effectsofman giferinmediated by the inhibition ofoxidative stress to activated lymphocytes, neutrophils andmacrophages [J].Toxicology, 2005, 215:57-68.
    [16]Rodeiro, I., Donato, M.T., Martínez, I.,et al. Potential hepatoprotective effects of new Cuban natural products in rat hepatocytes culture[J]. Toxicol. In Vitro2008 22, 1242–1249.
    [17]Satish Rao BS, Sreedevi MV, Nageshwar Rao B.Cytoprotective and antigenotoxic potential of Mangiferin, a glucosylxanthone against cadmium chloride induced toxicity in HepG2 cells[J]. Food Chem Toxicol. 2009 Mar;47(3):592-600.
    [18]黄华艺,钟鸣.脂质过氧化大鼠脑组织超微结构改变及芒果甙对脑组织的保护作用[J].广西科学,2000,7(2):128-130.
    [19]彭志刚,罗军,夏凌辉,等.芒果甙诱导慢性髓系白血病K562细胞凋亡[J].中国实验血液学杂志,2004,12(5):590-594.
    [20]程鹏,彭志刚,杨杰,等.芒果甙对白血病K562细胞端粒酶活性和凋亡的影响[J].中药材,2007,30(3):306-309.
    [21]韦健全,郑子敏,潘勇等.芒果苷对乙醇引起肝损伤的保护作用[J].广西医科大学学报2008,25(5):732-733。
    [1] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143– 147.
    [2]Friedenstein AJ, Piatetzky S II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966;16:381– 390.
    [3] Campagnoli C, Roberts IA, Kumar S. Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001;98:2396– 2402.
    [4] O’Donoghue K, Choolani M, Chan J, de la Fuente J, Kumar S, Campagnoli C et al. Identification of fetal mesenchymal stem cells in maternal blood: implications for non-invasive prenatal diagnosis. Mol Hum Reprod 2003;9:497– 502.
    [5] Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 2004;103:1669– 1675.
    [6] Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41-9.
    [7] Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ.Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitope, rates of proliferation, and differentiation potential. Blood 2004;103:1662-8.
    [8]. Javazon EH, Colter DC, Schwarz EJ, Prockop DJ. Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells. Stem Cells 2001;19:219-25.
    [9] Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chrondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998;238:265-72.
    [10] Colter DC, Sekiya I, Prockop DJ Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA 2001;98:7841-5.
    [11] Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ. Expansion of human adult stem cells from bone marrow stroma:Conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 2002a;20:530-41.
    [12] Aubin JE Osteoprogenitor cell frequency in rat bone marrow stromal populations: role of heterotypic cell-cell interactions in osteoblast differentiation. J Cell Biochem 1999;72:396-410.
    [13] Dexter TM, Testa NG, Allen TD, Rutherford T, Scolnick E. Molecular and cell biological aspects of erythropoiesis in long term bone marrow.Blood 1981;58:699-709.
    [14] Chen ZZ, Van Bockstaele DR, Buyssens N, Hendrics D, De Meester I, Vanhoof G, et al. Stromal population and fibrosis in human long term bone marrow cultures. Leukemia1991;5:772-81.
    [15] Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y,et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 2004;113:1701-10.
    [16] Jia L, Young MF, Powell J, Yang L, Ho NC, Hotchkiss R, et al. Gene expression profile of human bone marrow stromal cells: high-throughput expressed sequence tag sequencing analysis. Genomics 2002;79:7-17.
    [17] Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000;61:364-70.
    [18] Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA 2002;99:2199-204.
    [19] Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H. Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci 2001;14:1771-6.
    [20] Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrw, synovium, peristeum, adipose tissue and muscle. Cell tissue Res 2007;327:449-62.
    [21] Dominici M,Le BK,Mueller I,et al.POSITION PAPER:Minimal criteria for definingmultipotentmesenchymal stromal cells.TheInternational Society for Cellular Therapy position statement[J]. Cytotherapy, 2006,8(4):315-317.
    [22]杨丽,张荣华,谢厚杰,蔡宇,黄丰.建立大鼠骨髓间充质干细胞稳定分离培养体系与鉴定[J].中国组织工程研究与临床康复,2009,13(6):1064-1068。
    [23]蔡鹏,朱绍兴,苏一鸣,黄世勇.全骨髓贴壁法分离培养大鼠骨髓间充质干细胞及其诱导分化[J].中国组织工程研究与临床康复,2009,13(36):7073-7077.
    [1] Ministry of Health of The People’s Republic of China, Chinese traditional patent formulation , WS3-B-0920-91 5: 50.
    [2] Peng Zhi-Gang,LuoJun,Xia Ling-Hui,Chen Yan,Song San-Jun. Journal of Experimental Hematology.2004,12:590-594.
    [3]Peng Zhi-Gang,LuoJun,Xia Ling-Hui,Song San-Jun, Chen Yan. Journal of Guangxi medical University .2004,21:168-170.
    [4] Yoshimi N, Matsunaga K., Katayama M , Yamada Y, Kuno T, Qiao Z, Hara A., Yamahara Jand Mori H . Cancer Letters.2001,163: 163-70.
    [5]Mei ZhuXue,King Song Jia,Huang ZongZhi, W u Yi Mou and Yu Ming Jan. Acta pharmacoIoglca Sini .1993,14: 452-454.
    [6]Guha S,Ghosal S and U Chattopadhyay. Chemotherapy.1996,42: 443-51.
    [7]Dar A., Faizi S, Naqvi S., Roome T, Zikr-ur-Rehman S, Ali M, Firdous S and Moin ST. Biological & Pharmaceutical Bulletin .2005,28: 596-600.
    [8] Tang SY, Whiteman M, Peng ZF, Jenner A., Yong EL and Halliwell B. Free Radical Biology & Medicine .2004,36: 1575-87.
    [9] Leiro JM, Alvarez E, Arranz JA, Siso IG and Orallo F. Biochemical Pharmacology .2003, 65: 1361-71.
    [10]. Prabhu S, Jainu M, Sabitha KE, Shyamala and Devi CS. Vascular Pharmacology.2006, 44: 519-25.
    [11] Prabhu S, Jainu M, Sabitha KE and Devi CS. Indian Journal Of Experimental Biology .2006,44: 209-15.
    [12] García D, Leiro J, Delgado R, Sanmartín ML and Ubeira FM.Phytotherapy Research. 2003, 17: 1182-7.
    [13] Miura T, Iwamoto N, Kato M, Ichiki H, Kubo M, Komatsu Y, Ishida T, Okada M and Tanigawa K. Biological & Pharmaceutical Bulletin. 2001,24: 1091-2.
    [14] Miura T, Ichiki H, Hashimoto I, Iwamoto N, Kato M, Kubo M, Ishihara E, Komatsu Y, Okada M, Ishida T and Tanigawa K. Phytomedicine: International Journal Of Phytotherapy And Phytopharmacology. 2001, 8: 85-7.
    [15] Muruganandan S, Srinivasa K, Gupta S, Gupta PK and Lal J Journal Of Ethnopharmacology. 2005,97: 497-501.
    [16] Jagetia GC and . Baliga MS. Phytomedicine: International Journal Of Phytotherapy And Phytopharmacology. 2005, 12: 209-15.
    [17] Geodakyan SV, Voskoboinikova IV, Kolesnik JA., Tjukavkin NA., Litvinenko VI and Glyzin VI Journal of Chromatography.1992, 577:371-375.
    [18] Pardo Andreu GL, Maurmann N, Reolon GK, et al. Mangiferin, a naturally occurring glucoxilxanthone improves long-term object recognition memory in rats. Eur J Pharmacol. 2010; 635(1-3):124-8.
    [1]Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41-49.
    [2] Pereira R. F., Halford K. W., O’Hara M. D., et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Acad. Sci.U.S.A.1995 ;92(11):4857-4861.
    [3] Azizi S. A., Stokes D., Augelli B. J., et al. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats--similarities to astrocyte grafts. Acad. Sci. U.S.A.,1998;95(7):3908-1393.
    [4]Ferrari G., Cusella-De., Angelis G., Coletta M., Paolucci E., StornaiuoloA., Cossu G., Mavilio F., Muscle regeneration by bone marrow-derived myogenic progenitors.Science.,1998;279 (5356):1528-1530.
    [5] Popp FC, Piso P, Schlitt HJ, et al.Curr Stem Cell Res Ther. Therapeutic potential of bone marrow stem cells for liver diseases.2006 ;1(3):411-418.
    [6]Hagiwara M., Shen B., Chao L.,et al.Kallikrein-modified mesenchymal stem cell implantation provides enhanced protection against acute ischemic kidney injury by inhibiting apoptosis and inflammation[J]. Hum Gene Ther. 2008 Aug;19(8): 807-819.
    [7]Yu Y., Yao A. H., Chen N., et al.Mesenchymal stem cells over expressing hepatocyte growth factor improve small-for-sizeliver grafts regeneration[J]. Mol Ther. 2007;15 (7):1382-13899.
    [8] Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart.Circulation. 2002;105(1):93-98.
    [9] Karovic O,Tonazzini I,Rebola N,et al. Toxic effects of cobalt in primary culture of mouse astrocytes similarities with hyposia and role of HIF-1alpha[J] .Bioche Pharmacol, 2007, 73(5):694-708
    [10]Li Q, Li H, Roughton K, et al. . Lithium reduces apoptosis and autophagy after neonatal hypoxia-ischemia. Cell Death Dis. 2010 ;1(7):e56.
    [11]Wu CJ, Chen JT, Yen TL et al. Neuroprotection by the Traditional Chinese Medicine, Tao-Hong-Si-Wu-Tang, against Middle Cerebral Artery Occlusion-Induced Cerebral Ischemia in Rats. Evid Based Complement Alternat Med. 2011;2011:803015. Epub 2010 Nov 4.
    [12]Shu Y, Patel SM, Pac-Soo C,et al. Xenon pretreatment attenuates anesthetic-induced apoptosis in the developing brain in comparison with nitrous oxide and hypoxia. Anesthesiology. 2010 Aug;113(2):360-8.
    [13]Chang B, Liu G, Yang G,et al.. REDD1 is required for RAS-mediated transformation of human ovarian epithelial cells. Cell Cycle. 2009 Mar 1;8(5):780-6.
    [14]Harrison LR, Micha D, Brandenburg M, et al. Hypoxic human cancer cells are sensitized to BH-3 mimetic–induced apoptosisvia downregulation of the Bcl-2 protein Mcl-1.J Clin Invest. 2011 Mar 1;121(3):1075-87.
    [15]Xiong M, Cheng GQ, Ma SM,te al. Post-ischemic hypothermia promotes generation of neural cells and reduces apoptosis by Bcl-2 in the striatum of neonatal rat brain.Neurochem Int. 2011 ;58(6):625-33.
    [16]Kim HS, Kim SY, Kwak YL, et al. Hyperglycemia Attenuates Myocardial Preconditioning of Remifentanil.J Surg Res. 2011 Feb 24. [Epub ahead of print]
    [17]Park KJ, Kim YJ, Choi EJ, et al. Expression pattern of the thioredoxin system in human endothelial progenitor cells and endothelial cells under hypoxic injury.Korean Circ J. 2010 Dec;40(12):651-8.
    [18]Lai Z, Kalkunte S, Sharma S. A critical role of interleukin-10 in modulating hypoxia-induced preeclampsia-like disease in mice.Hypertension. 2011;57(3):505-14.
    [19]Campos-Esparza MR, Sánchez-Gómez MV, Matute C. Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols. Cell Calcium. 2009 Apr;45(4):358-68..
    [20] Pardo-Andreu GL, Cavalheiro RA, Dorta DJ, et al. Fe(III) shifts the mitochondria permeability transitioneliciting capacity of mangiferin to protection of organelle.J Pharmacol Exp Ther. 2007 ;320(2):646-653.
    [21]Satish Rao BS, Sreedevi MV, Nageshwar Rao B. Cytoprotective and antigenotoxic potential of Mangiferin, a glucosylxanthoneagainst cadmium chloride induced toxicity in HepG2 cells. Food Chem Toxicol. 2009 Mar;47(3):592-600.
    
    [1] Hernandez P, Rodriguez PC, Delaado R, et al. Protective effect of Mangifera indicaL. polyphenols on humanT lymphocytes againstactivation-induced celldeath[J].Pharmacol Res,2007, 55(2) : 167-173.
    [2] Leiro JM, AlvarezE,Arranz JA, et al. In vitro effect sofmangiferin osuperoxide concentrations and expression of the inducible nitric oxid synthase, tumour necrosis factor-αand transforming growth factorβgenes[J].Biochemical Pharmacology , 2003,65 (8) :1361-1371.
    [3]Muruganandan S,Lal J,GuptaPK. Immunotherapeutic effectsofman giferinmediated by the inhibition ofoxidative stress to activated lymphocytes, neutrophils andmacrophages [J].Toxicology, 2005, 215:57-68.
    [4]Rodeiro, I., Donato, M.T., Martínez, I.,et al. Potential hepatoprotective effects of new Cuban natural products in rat hepatocytes culture[J]. Toxicol. In Vitro2008 22, 1242–1249.
    [5]Satish Rao BS, Sreedevi MV, Nageshwar Rao B.Cytoprotective and antigenotoxic potential of Mangiferin, a glucosylxanthone against cadmium chloride induced toxicity in HepG2 cells[J]. Food Chem Toxicol. 2009 Mar;47(3):592-600
    [6] mazzal L, Lap?tre A, Quignon F, et al. Mangiferin protects against 1-methyl-4-phenylpyridinium toxicity mediated by oxidative stress in N2A cells.Neurosci Lett.2007;418(2): 159-164.
    [7] Campos-Esparza MR, Sánchez-Gómez MV, Matute C.Cell Calcium.Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols. 2009;45(4):358-368.
    [8](108)Prabhu S, Jainu M, Sabitha KE,et al. Role of mangiferin on biochemical alterations and antioxidant status in isoproterenol-induced myocardial infarction in rats.J Ethnopharmacol. 2006;107(1):126-33.
    [9]Viswanadh EK, Rao BN, Rao BS. Antigenotoxic effect of mangiferin and changes in antioxidant enzyme levels of Swiss albino mice treated with cadmium chloride.Hum Exp Toxicol. 2010 ;29(5):409-18.
    [10]Agarwala S, B NR, Mudholkar K, Bhuwania R,et al.Environ Toxicol. Mangiferin, a dietary xanthone protects against mercuryinducedtoxicity in HepG2 cells. 2010 Jul 13.
    [11]Ang E, Liu Q, Qi M,et al.Mangiferin attenuates osteoclastogenesis, bone resorptionand RANKL-induced activation of NF-kappaB and ERK. J Cell Biochem. 2011 ,112(1):89-97.
    [12]Lee YJ, Kang IJ, Bunger R,et al. Enhanced survival effect of puruvate correlatesMAPK andNF-κB activation in hydrogen peroxide-treated human endothelial cells [ J]. JApplPhysio,l 2004, 96: 793-801.
    [13]Semeriga GL.Wang GI..A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythro—poietin gene enhancer at a site required for transcriptional activation[J].Mol Cell Biol,1992,12(12):5447—5454
    [14]Adams JM.Difazio LT,Rolandelli RH,et a1.H1卜1:a keymediator in hypoxia EJ].Acta Physiol Hung,2009,96(1):19—28
    [15]Pacary E.Synergistic effects of CoCl(2)and ROCK inhibition onmesenchymal stem cell differentiation into neuron-like cells[J].JCell Sei,2006.1 19(13):2667—2678.
    [16]Ritossa ,FM. A new puffing pattern induced by temperature shock and DNP in Drosophila[J]. Experientia, 1962. 18(1):571-573.
    [17]Yenari MA,LIU I,Zheng Z,et al.Antiapoptotic and anti inflammatory mechanisms of heat shock protein protection[J].Ann N Y Acad Sci,2005,1053:74~83.
    [1] Agarwala S, B NR, Mudholkar K, Bhuwania R,et al. Mangiferin, a dietary xanthone protects against mercuryinducedtoxicity in HepG2 cells. Environ Toxicol. 2010 Jul 13..
    [2] Anti-herpes simplex virus activities of crude water extracts of Thai medicinal plants.Yoosook C, BunyapraphatsaraN, Boonyakiat Y, Kantasuk C. Phytomedicine. 2000 Jan;6(6):411-419.
    [3] Campos-Esparza MR, Sánchez-Gómez MV, Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols. Matute C.Cell Calcium. 2009 Apr;45(4):358-68. Epub 2009 Feb 7.
    [4] Garrido-Suárez BB, Garrido G, Delgado R, Bosch F, del C RabíM.Molecules. A Mangifera indica L. extract could be used to treat neuropathic pain and implication of mangiferin. 2010 Dec 9;15(12):9035-45.
    [5] Rajendran P, Ekambaram G, Sakthisekaran D. Cytoprotective effect of mangiferin on benzo(a)pyrene-induced lung carcinogenesis in swiss albino mice. Basic Clin Pharmacol Toxicol. 2008 Aug;103(2):137-142.
    [6] Lin H, Chen R, Liu X, Sheng F, Zhang H. Study on interaction of mangiferin to insulin and glucagon in ternary system. Spectrochim Acta A Mol Biomol Spectrosc. 2010 May;75(5):1584-91. Epub 2010 Feb 23.
    [7]Ang E, Liu Q, Qi M,et al.Mangiferin attenuates osteoclastogenesis, bone resorptionand RANKL-induced activation of NF-kappaB and ERK. J Cell Biochem. 2011 ,112(1):89-97.
    [8]Pardo Andreu GL, Maurmann N, Reolon GK, et al. Mangiferin, a naturally occurring glucoxilxanthone improveslong-term object recognition memory in rats. Eur J Pharmacol 2010 Jun 10;635(1-3):124-128.
    [9]Lemus-Molina Y, Sánchez-Gómez MV, Delgado-Hernández R,et al. Mangifera indica L. extract attenuates glutamate-induced neurotoxicity on rat cortical neurons.Neurotoxicology. 2009 ;30(6):1053-1058.
    [10]Lee B, Jung K, Kim DH. Timosaponin AIII, a saponin isolated from Anemarrhena asphodeloides, ameliorates learning and memory deficits in mice.Pharmacol Biochem Behav. 2009 ;93(2):121-127.
    [11]Ryu YB, Curtis-Long MJ, Lee JW,et al. Characteristic of neuraminidase inhibitory xanthones from Cudrania tricuspidata.Bioorg Med Chem. 2009;17(7):2744-2750.
    [12]Li X, Ohtsuki T, Shindo S,Planta Med ,et al. Mangiferin identified in a screening study guided by neuraminidase inhibitory activity.2007;73(11):1195-1196.
    [13]Bertolini F, Novaroli L, Carrupt PA,et al. Novel screening assay for antioxidant protection against peroxyl radical-induced loss of protein function.J Pharm Sci. 2007;96(11):2931-2944.
    [14]Campos-Esparza MR, Sánchez-Gómez MV, Matute C.Cell Calcium. Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols. 2009;45(4):358-68.
    [15]Jung K, Lee B, Han SJ, et al. Mangiferin ameliorates scopolamine-induced learning deficits in mice.Biol Pharm Bull. 2009;32(2):242-246.
    [16]Gottlieb M, Leal-Campanario R, Campos-Esparza MR, et al. Neuroprotection by two polyphenols following excitotoxicityand experimental ischemia. Neurobiol Dis. 2006 ;23(2):374-86.
    [17]Ibarretxe G, Sánchez-Gómez MV, Campos-Esparza MR, et al. Differential oxidative stress in oligodendrocytes and neurons after excitotoxic insults and protection by natural polyphenols.Glia. 2006;53(2):201-211.
    [18]Amazzal L, Lap?tre A, Quignon F, et al. Mangiferin protects against 1-methyl-4-phenylpyridinium toxicity mediated by oxidative stress in N2A cells.Neurosci Lett.2007;418(2): 159-164.
    [19]Prabhu S, Narayan S, Devi CS. Mechanism of protective action of mangiferin on suppression of inflammatory response and lysosomal instability in rat model of myocardial infarction. Phytother Res. 2009 Jun;23(6):756-60.
    [20]Huang TH, He L, Qin Q, Yang Q, Peng G, et al. Salacia oblonga root decreases cardiac hypertrophy in Zucker diabetic fatty rats: inhibition of cardiac expression of angiotensin II type 1 receptor.Diabetes Obes Metab. 2008;10(7):574-585.
    [21]Nair PS, Shyamala Devi CS. Efficacy of mangiferin on serum and heart tissue lipids in rats subjected to isoproterenol induced cardiotoxicity. Toxicology. 2006;228(2-3):135-139.
    [22]Prabhu S, Jainu M, Sabitha KE,et al. Effect of mangiferin on mitochondrial energy production in experimentally induced myocardial infarcted rats.Vascul Pharmacol. 2006 ;44(6):519-25.
    [23] Prabhu S, Jainu M, Sabitha KE,et al. Role of mangiferin on biochemical alterations and antioxidant status in isoproterenol-induced myocardial infarction in rats.J Ethnopharmacol. 2006;107(1):126-33.
    [24] Pardo-Andreu GL, Paim BA, Castilho RF,et al. Mangifera indica L. extract (Vimang) and its main polyphenol mangiferin prevent mitochondrial oxidative stress in atherosclerosis-prone hypercholesterolemic mouse.Pharmacol Res. 2008;57(5):332-8.
    [25] Li X, Cui X, Sun X, et al. Mangiferin prevents diabeticnephropathy progression in streptozotocin-induced diabetic rats. Phytother Res. 2010 ;24(6):893-899.
    [26] Girón MD, Sevillano N, Salto R, et al.Salacia oblonga extract increases glucose transporter 4-mediated glucose uptake in L6 rat myotubes:role of mangiferin.Clin Nutr. 2009;28(5):565-574.
    [27] Im R, Mano H, Matsuura T, et al. Mechanisms of blood glucose-lowering effect of aqueous extract from stems of Kothala himbutu (Salacia reticulata) in the mouse.J Ethnopharmacol. 2009 ;121(2):234-240.
    [28] Li Y, Huang TH, Yamahara J. Salacia root, a unique Ayurvedic medicine, meets multiple targets in diabetes and obesity. Life Sci. 2008 ;82(21-22):1045-1049.
    [29] Ojewole JA. Antiinflammatory, analgesic and hypoglycemic effects of Mangifera indica Linn. (Anacardiaceae) stem-bark aqueous extract.Methods Find Exp Clin Pharmacol. 2005 Oct;27(8):547-54.
    [30] He L, Qi Y, Rong X,et al. The Ayurvedic medicine Salacia oblonga attenuates diabetic renal fibrosis in rats: suppression of angiotensin II/AT1 signaling.Evid Based Complement Alternat Med. 2009 Aug 25.
    [31] Viswanadh EK, Rao BN, Rao BS. Antigenotoxic effect of mangiferin and changes in antioxidant enzyme levels of Swiss albino mice treated with cadmium chloride.Hum Exp Toxicol. 2010 ;29(5):409-18.
    [32] Rodeiro I, Donato MT, Martínez I, et al. Potential hepatoprotective effects of new Cuban natural products in rat hepatocytes culture.Toxicol In Vitro.2008;22(5):1242-1249.
    [33] Pardo-Andreu GL, Barrios MF, Curti C,et al. Protectiveeffects of Mangifera indica L extract (Vimang), and its major component mangiferin, on iron-induced oxidative damage to rat serum and liver.Pharmacol Res. 2008 ;57(1):79-86.
    [34] Carvalho AC, Guedes MM, de Souza AL,et al. Gastroprotective effect of mangiferin, a xanthonoid from Mangifera indica, against gastric injury induced by ethanol and indomethacin in rodents.Planta Med. 2007 ;73(13):1372-1376.
    [35]Martin F, Hay AE, Cressend D, Reist M, et al. Antioxidant C-Glucosylxanthones from the Leaves of Arrabidaea patellifera.J Nat Prod. 2008;25.
    [36] Wu JF, Chen SB, Gao JC,et al. Xanthone glycosides from herbs of Polygala hongkongensis Hemsl and their antioxidant activities.J Asian Nat Prod Res.2008;10(7-8):673-678.
    [37] Rodríguez J, Di Pierro D, Gioia M,et al. Effects of a natural extract from Mangifera indica L, and its active compound, mangiferin, on energy state and lipid peroxidation of red blood cells.Biochim Biophys Acta. 2006 ;1760(9):1333-1342.
    [38] Rodeiro I, Donato MT, Lahoz A,et al. Modulation of P450 enzymes by Cuban natural products rich in polyphenolic compounds in rat hepatocytes.Chem Biol Interact. 2008 Mar 10;172(1):1-10.
    [39] Pardo-Andreu GL, Cavalheiro RA, Dorta DJ, et al. Fe(III) shifts the mitochondria permeability transitioneliciting capacity of mangiferin to protection of organelle.J Pharmacol Exp Ther. 2007 ;320(2):646-653.
    [40] Pardo-Andreu GL, Dorta DJ, Delgado R,et al. Vimang (Mangifera indica L. extract) induces permeability transition in isolated mitochondria, closely reproducing the effect ofmangiferin, Vimang's main component.Chem Biol Interact. 2006 ;159(2):141-148.
    [41] Pardo-Andreu GL, Sánchez-Baldoquín C, Avila-González R, et al. Interaction of Vimang (Mangifera indica L. extract) with Fe(III) improves its antioxidant and cytoprotecting activity.Pharmacol Res. 2006;54(5):389-395.
    [42] Pardo-Andreu GL, Sánchez-Baldoquín C, Avila-González R, et al. Fe(III) improves antioxidant and cytoprotecting activities of mangiferin.Eur J Pharmacol. 2006;547(1-3):31-36.
    [43] Pardo-Andreu GL, Delgado R, Nú?ez-Sellés AJ, et al. Mangifera indica L. extract (Vimang) inhibits 2-deoxyribose damage induced by Fe (III) plus ascorbate.Phytother Res. 2006 ;20(2):120-124.
    [44] Pardo-Andreu GL, Delgado R, Nú?ez-Sellés AJ, et al. Dual mechanism of mangiferin protection against ironinduced damage to 2-deoxyribose and ascorbate oxidation.Pharmacol Res. 2006;53(3):253-260.
    [45]彭志刚,罗军,夏凌辉,等.芒果甙诱导慢性髓系白血病K562细胞凋亡[J].中国实验血液学杂志,2004,12(5):590-594.
    [46]黄华艺,农朝赞,郭凌霄,等.芒果甙对肝癌细胞增殖的抑制和凋亡的诱导[J].中华消化杂志,2002,22(6):341-343.
    [47]Abira Sarkar, Yashin Sreenivasan, Govindarajan T , et al..beta-D-Glucoside suppresses tumor necrosis factor-induced activation of nuclear transcription factor kappaB but potentiates apoptosis. J Biol Chem. 2004,279(32):33768-81.
    [48] Sarkar A, Sreenivasan Y, Ramesh GT, Manna SK. beta-D-Glucoside suppresses tumor necrosis factor-induced activation of nuclear transcription factor kappaB butpotentiates apoptosis.J Biol Chem. 2004;279(32):33768-33781.
    [49] Rajendran P, Ekambaram G, Sakthisekaran D. Cytoprotective effect of mangiferin on benzo(a)pyreneinduced lung carcinogenesis in swiss albino mice.Basic Clin Pharmacol Toxicol. 2008 ;103(2):137-142.
    [50] Rajendran P, Ekambaram G, Sakthisekaran D. Effect of mangiferin on benzo(a)pyrene induced lung carcinogenesis in experimental Swiss albino mice.Nat Prod Res. 2008;22(8):672-80.
    [51] Rajendran P, Ekambaram G, Sakthisekaran D.Protective role of mangiferin against Benzo(a)pyrene induced lung carcinogenesis in experimental animals. Biol Pharm Bull. 2008;31(6):1053-1058.
    [52] Satish Rao BS, Sreedevi MV, Nageshwar Rao B. Cytoprotective and antigenotoxic potential of Mangiferin, a glucosylxanthone against cadmium chloride induced toxicity in HepG2 cells.Food Chem Toxicol. 2009;47(3):592-600.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700