基于双指数模型的超声定位算法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
定位精度不高和对环境因素敏感等缺点限制了超声定位技术的应用领域和范围。本文以超声定位技术的实际需求为牵引,以克服超声定位技术的缺陷为目的,对超声信号的经验模型、实时超声定位算法以及算法的实际应用等内容进行了深入研究,具体包括
     (1)影响超声定位系统精度的主要因素,以及定位精度与系统参数和测量精度之间的定量关系;
     (2)超声信号TOF的常速度模型以及阈值法中整周期误差的消除算法;
     (3)采用双指数模型描述超声信号及双指数模型参数估计方法;
     (4)基于超声信号双指数模型的TOF实时估计算法;
     (5)多径环境下基于双指数模型的TOF估计算法;
     (6)基于双指数模型的定位算法在超短基线二维超声定位系统中的应用与实现。
     研究结果表明:与传统的混合指数模型相比,本文提出的超声信号双指数模型能够更细腻地刻划压电薄膜超声传感器产生的超声信号,为高精度超声定位算法研究提供了新的基础;提出的若干算法,从不同层面发挥了双指数模型的特性,在精度和实时性两方面都有良好的表现,为进一步研究与应用提供了参考。
The ultrasonic localization technology can be applied in mobile robot, virtual reality (VR), smart home, consumer electronics and other application fields with its advantages such as low price, minimal infrastructure, low maintenance cost and less electromagnetic pollution. But the application scope of this technology is restricted by its disadvantages, for example, low positioning accuracy and susceptible to environmental noise and multi-path problem. Therefore in order to widely use this technology, how the accurate ultrasonic localization can be obtainained has been a research focus for many years.
     Successful operation of most ultrasonic localization systems relies on accurate ultrasonic pulse time-of-flight (TOF) measurements. The threshold and cross-correlation method are the common methods for TOF this measurements. The inherent drawback of threshold method is the integer signal periods errors. The localization system based on threshold method can not achieve high resolution because of the existence of integer signal periods errors. In the single path and white Gaussian noise case, the cross-correlation method is the optimal method. In this method the received ultrasonic pulse is assumed to be time shifted, amplitude scaled and noise corrupted replica of reference signal. Unfortunately there is not reference signal in many systems. To overcome this shortcoming, some special models such as Gaussian model and hybird exponential model are used. Gaussian model suits RF ultrasonic pulse for which the rising rate is almost equal to falling rate. The damped exponential model is used to describe low frequency narrow band ultrasonic pulse with slow falling rate. While the damped exponential model lacks flexibility to accurately describe the variety of the pulse shapes encountered in practice.
     For further improvement of the accuracy of ultrasonic localization system, this paper first explores a new module of ultrasonic signal, and then developes several high performance algorithms based on this module. Our purpose is to provide a new theoretic basis for ultrasonic localization system design and realization .
     In first chapter, the introduction and the analysis of the development and the present situations of ultrasonic localization technology are summarized. The theoretical significance and the practical values of purpose and contents of this dissertation are given.
     In chapter two, the relationship between localization errors and system parameters and measuring accuracy are calculated. Discussions on the sources of the errors and the approaches to improve the accuracy are also presented.
     A constant velocity model is proposed to describe the series of TOF estimation results in chapter three. The model parameters fit Laplace distribution according to statisticacs of the target trace with more than four million samples in a real system. It is proved that the sum of acceleration absolute value is an equivalent logarithm likelihood function, and maxim likelihood algorithm based on it to eliminate the integer signal periods error is presented. Simulations of the validation of this model are conducted.
     In chapter four, the model of ultrasonic signal in localization system and the role of model in TOF estimation algorithm are introduced. The double exponential model is presented to describe ultrasonic pulse in the system. The reasonability of double exponential model is analyzed by means of Prony method, and parameters determination method is given. It is proved that double exponential model is suited for narrow band ultrasonic signal in this kind of system by the comparison with other model.
     In chapter five, in order to improve accuracy of TOF estimation, two algorithms based on double exponential model are presented with simulation to show the validation of the algorithms. The two algorithms are parameters estimation method and cross-correlation function method respectively. Computation complexity of the two algorithms is analyzed, and it is proved that the two algorithms can be realized in DSP.
     In chapter six, the multi-path phenomena in electronic board is introduced. The method of the TOF estimation overlapping signal is reviewed. TOF estimation algorithm based on cepstrum and cross-correlation function for observed data and double exponential model are discussed. It is demonstrated through simulations that the proposed algorithm can accurately estimate TOF under multi-path environment.
     In chapter seven, an ultrasonic localization system based on double exponential model is introduced with system structure, algorithm flow and testing results.
     In the final chapter, a brief summary of this dissertation is given with the future expected work.
     The innovation idea of this dissertation focus on the five aspects as follows:
     The notion of representation of the discrete-time ultrasonic signals using double exponential model and the method of computing model parameters are proposed. The rise time and full width half maximum of double exponential model is discussed and the conparison with the hybrid exponential model is conducted. It is shown that flexibility of double exponent model is superior to hybrid exponential model. The measured data fitting and simulation of TOT prove that the double exponent model has better performance than that of the damped exponential model.
     An algorithm of TOF estimation by means of estimating double exponential model parameters is proposed. To estimate the time delay in exponential term results in a nonlinear least square method. In the proposed algorithm, it is transformed into multiple parameters estimation in least square method with linear form. Thus this algorithm can been applied in embedded system.
     A fast algorithm for cross correlation function of observed data and double exponential model is proposed. In this algorithm, a linear time-invariant system is fed with backward running signals to determine the reversal of the time axis. Because of this, the impulse response of the system is the temporal expression of double exponential model and the output of the system is the cross correlation function. This algorithm can improve the accuracy of TOF in embedded system.
     A constant speed model is used to fit series of TOF acquired in a real ultrasonic localization system. The noise distribution of the model is confirmed as Laplace distribution according to statistical results. On the basis of the above work, the maxim likelihood algorithm is presented to eliminate the impact of integer signal periods errors.
     Finally, the idea to improve positioning accuracy in short baseline system is proposed, which is basically to keep two TOF errors with the same sign. The validity of the idea is proved in a real system.
引文
[1] C. Biber, S. Ellin, E. Shenk. The Polaroid Ultrasonic Ranging System. Audio Engineering Society. 67th Convention [C], Oct.-Nov, 1987. New York.
    [2] H. P. Moravec, A. Elfes. High Resolution Maps from Wide Angle Sonar. Proceedings of the IEEE Conference on Robotics and Automation [C]. 1985: Washington, D.C..
    [3] J. Borenstein, D. Wehe, C. Feng, Y. Koren. Mobile Robot Navigation in Narrow Aisles with Ultrasonic Sensors. Presented at the ANS 6th Topical Meeting on Robotics and Remote Systems [C]. Feb, 1995. Monterey.
    [4] University of Michigan. Where am I? Sensors and Methods for Mobile Robot Positioning [R]. Report of United States Department of Energy's Robotics Technology Development Program. April, 1996.
    [5] F.G. Pin, Y. Watanabe. Using Fuzzy Behaviors for the Outdoor Navigation of a Car with Low-Resolution Sensors. IEEE International Conference on Robotics and Automation [C]. May,2-7, 1993. Atlanta, Georgia, America.
    [6] B. Siuru. The Smart Vehicles Are Here [J]. Popular Electronics. 1994, 11(1): 41-45.
    [7] J.F. Figueroa, E. Doussis, E. Barbieri. Ultrasonic Ranging System for 3-D Tracking of a Moving Target. 92-WA/DSC-3, Proceedings, Winter Annual Meeting, American Society of Mechanical Engineers [C]. 1992, November. Anaheim, America.
    [8] J.F. Figueroa, A.Mahajan. A Robust Navigation System for Autonomous Vehicles Using Ultrasonics[J]. Control Engineering Practice. 1994, 2(1): 49-59.
    [9] Sang-Hyuk Park, Young-Ho Choi, Sang-Hoon Baek, Tae-Kyung Lee, Se-Young Oh. Feature localization using neural networks for cleaning robots with ultrasonic sensors. Control Automation and Systems, 2007. ICCAS '07. International Conference on [C]. 17-20, Oct, 2007: 449-453.
    [10] P. R. Kumar, K. Sridharan. VLSI-Efficient Scheme and FPGA Realization for Robotic Mapping in a Dynamic Environment [J]. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on. 2007, 15(1): 118-123.
    [11] Ultrasonic Sensor & Module for Intelligent Robot. Robot and Human interactive Communication, 2007. RO-MAN 2007. The 16th IEEE International Symposium on [C]. 26-29, Aug, 2007: 654-654.
    [12] S. Noykov, C. Roumenin. Calibration and interface of a Polaroid Ultrasonic sensor for mobile robots [J]. Sensors and Actuators A: Physical. 2007, 135(1): 169-178.
    [13]童峰,许天增,许鹭芬.一种用于自动导引车(AGV)的超声波导航系统[J].高技术通讯. 2002, 12(8): 47-50.
    [14]程晓畅,苏绍景,王跃科.类GPS超声定位系统中自动导引车辆动态定位算法[J].应用声学. 2008, 27(2): 155-160.
    [15]燕学智,王树勋等.基于超声红外定位导航研制自动引导车辆系统[J].吉林大学学报工学版. 2006, 36(2): 242-246.
    [16] J. Ferrin Frank, Survey of Helmet Tracking Technologies [J]. Proc. SPIE. Vol. 1456, 1991: 86-94.
    [17] Polhemus Navigation Sciences Inc. FASTRAK [EB/OL]. [2008-09-02]. http://www.polhemus.com/?page=Motion_Fastrak.
    [18] L. Roberts. The Lincoln Wand. AFIPS Conference proceedings [C]. Nov, 1966: 223-227, Fall, Joint Computer Conference 29.
    [19] O.C. Okereke, S.S. Ipson. The design and Implementation of a Hardwired 3-D Video Position Position-tracking Transducer [J]. Instrumentation and Measurement, IEEE Transactions on. Volume 44, Issue 5, Oct 1995: 958-964.
    [20]华宏.虚拟现实系统浸没感增强和交互技术的研究[D].博士论文.北京:北京理工大学. 1999.
    [21]华宏,王涌天等.连续超声波位置跟踪器的设计原理及其在虚拟现实系统中的应用[J].电子学报. 1999, 27(12): 98-101.
    [22] Y.Qian. Data Synchronization and Browsing for Home Environments [D]. Doctor Dissertation. Eindhoven University of Technology. 2004.
    [23] E.J. van Loenen, N. de Jong, E.O. Dijk, E.A.W.H. van den Hoven, Y. Qian, D.O. The New Everyday, Views on Ambient Intelligence [R]. Teixeira. Phenom, 2003: 302-303.
    [24]胡跃辉,周康源,周平,施俊.一种实时3D超声定位系统的设计[J].声学技术. 2004, 23(1): 29-32.
    [25]虞红,张文杰,李明强.基于超声定位的立体头盔显示系统[J].导弹与航天运载技术. 1997, 225(1): 70-74.
    [26] Panasonic Corporation of China 2008.UB-T780. [EB/OL]. [2008-09-18]. http://panasonic.cn/products/biz_solutions/doc_solutions/eboard/UB-T780/specification.html.
    [27]北京日立北工大信息系统有限公司.日立交互式书写系列产品解决方案:产品功能[EB/OL]. [2008-09-18]. http://www.hbis.com.cn/pages/solution/ education/ starboard/function.html.
    [28] 3M中国.让会议互动起来. [EB/OL]. [2008-09-18]. http://www9.3m. com/intl/cn/vsd/cn/product/pro_DB.html.
    [29] H. Nonaka, Da-te. Tsutomu. Ultrasonic Position Measurement and Its Applications to Human Interface [J]. Instrumentation and Measurement. IEEE Transactions on. Volume 44, Issue 3, June, 1995: 771-774.
    [30] M. McCarthy, P. Duff, H.L. Muller, C.Randell. Accessible Ultrasonic Positioning [J]. Pervasive Computing, IEEE. 2006, 5(4): 86-93.
    [31]粟娟,唐立军,罗日成,郝建军.改进连续蚁群算法在变压器局部放电超声波定位中的应用[J].变压器. 2007, 44(7): 47-49.
    [32] L. Capineriy, L. Masottiy , S. Rocchi. A 3D Airborne Ultrasound Scanner [J]. Meas. Sci. Technol. 9. 1998: 967-975.
    [33] A. R. Jimenez. Precise. Localization of Archaeological Findings with a New Ultrasonic 3D Positioning Sensor [J]. Sensors and Actuators, A, Physical. 2005, 123(4): 224-233.
    [34] Wikipedia. Simplex [EB/OL]. (2008-09-02). [2008-09-18]. http//en.wikipedia.org/wiki/Simplex.
    [35]胡健恺,张谦琳编著.超声检测原理和方法[M].合肥:中国科学技术大学出版社. 1993.
    [36] Xi Li. Acoustic Proximity Ranging and Its Applications to Cavity Thickness Monitoring [D]. Doctor Dissertation. University of Florida. 2003.
    [37] J.布利茨(英)著,李东林译.超声技术及其应用[M].北京:海洋出版社, 1992.
    [38]应崇福.超声学[M].北京:科学出版社. 1990.
    [39]沈凤麟,叶中付,钱玉美.统计信号分析与处理[M].合肥:中国科学技术大学出版社. 2001.
    [40] M. Parrilla, J.J. Anaya, C. Fritsch. Digital Signal Processing Techniques for High Accuracy Ultrasonic Range Measurements [J]. IEEE Transactions on Instrumentation and Measurement. 1991, 40(4): 759-763.
    [41] B. Barshan. Fast Processing Techniques for Accurate Ultrasonic Rang Measurements [J]. Meas.Sci.Technol.11, 2000: 45-50.
    [42] B.Barshan, B.Ayrulu. Performance comparison of four time-of-flight estimation methods for sonar signals [J]. Electronics Letters. 1998, 34(16): 1616-1617.
    [43] Senscomp Inc. 6500E SMT Ranging Module [EB/OL]. (2004-09-13). [2008-09-18]. http://www.senscomp.com/index.html.
    [44] Massa. Ultrasonic Ranging Module Selection Guide [EB/OL]. [2008-09-18]. http://www.massa.com/datasheets/e201.html.
    [45] A. Fertner, A.Sjolund. Comparison of various time delay estimation methods by computer simulation [J]. Acoustics, Speech and Signal Processing, IEEE Transactions on. 1986, 34(5): 1329-1330.
    [46] B.H. Friemel, L.N. Bohs, G.E.Trahey. Relative performance of two-dimensional speckle-tracking techniques: normalized correlation, non-normalized correlation and sum-absolute-difference Ultrasonics. Symposium, 1995. Proceedings. 1995, IEEE [C]. 1995, 2(7.10): 1481-1484.
    [47] F. Viola, W.F. Walker. Comparison of time delay estimators in medical ultrasound. Ultrasonics Symposium, 2001 IEEE [C]. 2001, 2(7.10): 1485-1488.
    [48] D. Marioli, C. Narduzzi, C. Offelli, D. Petri, E. Sardini, A.Taroni. Digital Time-Of-Flight Measurement for Ultrasonic Sensors [J]. Instrumentation and Measurement, IEEE Transactions on. 1992, 41(1): 93-97.
    [49] B. Audoin, J. Roux. An Innovative Application of the Hilbert Transform to Time Delay Estimation of Overlapped Ultrasonic Echoes[J]. Ultrasonics, Elsevier. 1996, 34 (1): 25-33.
    [50] A.K. Nandi. On the Subsample Time Delay Estimation of Narrowband Ultrasonic Echoes [J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on. 1995, 42(6) : 993-1001.
    [51] S. Fernando, Antonio Ramon Jimenez. Optimal Detection and Estimation with Ultrasonic Signals [EB/OL]. (2007-03-14). [2008-09-18]. http://www.iai.csic.es/lopsi/static/phdteaching.htm
    [52] Yi Bian, D. Last, Eigen-decomposition Techniques for Loran-C Skywave Estimation [J]. Aerospace and Electronic Systems, IEEE Transactions on. 1997, 33(1): 117-125.
    [53] A. Bruckstein, Tie-Jun Shan. T. Kailath, The resolution of Overlapping Echos [J]. Acoustics, Speech and Signal Processing, IEEE Transactions on. 1985, 33(6): 1357-1367.
    [54] I. Kirsteins, High Resolution Time Delay Estimation. Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP '87 [C]. 1987, 12: 451-454.
    [55]黄清.相关域双谱时延估计方法[J].声学学报(中文版). 2003, 28(1): 57-60.
    [56]葛万成,吴凤萍.两步相关法高抗干扰超声波距离测量技术研究[J].仪器仪表学报. 2002, 23(3): 253-256.
    [57]樊秀云,袁嗣杰,张合敏.伪码数字相关在超声波测距中的应用[J].装备指挥技术学院学报. 2002, 13(3): 7-80.
    [58]童峰,许水源,许天增.基于遗传算法的超声信号自适应时延估计[J].应用声学. 2000, 19(4): 26-30.
    [59]陈华伟,赵俊渭,郭业才,蔡宗义,许学忠.二次加权频域自适应时延估计算法与应用[J].声学学报(中文版). 2003, 28(1): 61-65.
    [60] J. Feder, E. Weinstein. Parameter Estimation of Superimposed Signals Using the EM Algorithm [J]. IEEE Transactions on Acoustics,Speech, and Signal Processing. 1988, 36(4): 477-489.
    [61] S.K.Chow, P.M.Schultheiss.Delay Estimation Using Narrowband Processes. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1981, 29(3): 478-484.
    [62] A.M. Sabatini. Correlation Receivers Using Laguerre Filter Banks for Modeling Narrowband Ultrasonic Echoes and Estimating Their Time-Of-Flights [J]. IEEE Transactions on Ultrasonic, Ferroelectrics and Frequency Control. 1997, 44(6) : 1253-1263.
    [63] A.K.T.Lee, J.Lucas, L.E.Virr. Microcomputer-Controlled Acoustic Rangefinding Technique [J]. Journal of Physics E: Scientific Instrument. 1989, 22:52-58.
    [64] Ming Yang, Hill S.L., Bury B., Gray J.O. A multifrequency AM-based ultrasonic system for accuracy distance measurement [J]. Instrumentation and Measurement, IEEE Transactions on. 1994, 43(6): 861-866.
    [65] C. Kuratli, Q. Huang. Circuit and System Design of a Silicon-Based Miniaturized Ultrasound Range Finder System. Instrumentation and Measurement Technology Conference, 1998. IMTC/98. Conference Proceedings. IEEE [C]. May 1998, 2: 1372-1376.
    [66] G. Mauris, E. Benoit, L. Foulloy. Ultrasonic Smart Sensors the Importance of the Measurement Principle. Proceeding of International Conference on System, Man and Cybernetics [C]. 1993, 3:55-60.
    [67] G. Mauris, E. Benoit, L. Foulloy. Local Measurement Validation for an Intelligent Chirped-FM Ultrasonic Range Sensor [J]. Instrumentation and Measurement, IEEE Transactions on. 2000, 49(4): 835-839.
    [68]李希胜,吴并臻,尤佳,舒雄鹰.连续窄带调频超声波测距方法[J].北京科技大学学报. 2005, 02: 250-252.
    [69]王润田.双频超声波测距[J].声学技术. 1996, 15(3): 116-118.
    [70] E. Dijk. Indoor Ultrasonic Position Estimation Using a Single Base Station [D]. PhD thesis. Technische Universiteit Eindhoven. 2004.
    [71] L. Jones, Joseph. Method and system for robot localization and onfinement[P/OL]. US 6781338,2007-3-27. http://www.patentstorm.us /patents/7196487.html
    [72]胡来招.无源定位[M].北京:国防工业出版社, 2004.
    [73]蔡庆宇,薛毅,张伯彦.相控阵雷达数据处理及其仿真技术[M].北京:国防工业出版社. 1997.
    [74] R. Kuc, A Spatial Sampling Criterion for Sonar Obstacle Detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1990, 12(7): 686-690.
    [75] J. M. Mart′?n Abreu, T. Freire Bastos, L. Calder′on. Ultrasonic Echoes From Complex Surfaces: an Application Object Recognition [J]. Sensors and Actuators A. 1992, 31: 182-187.
    [76] R. Demirli. Model Based Estimation of Ultrasonic Echoes: Analysis, Algorithms, and Application [D]. Graduate College of the Illinois Institute of Technolgy.2001
    [77] USA Department of Defense. Interface Standard MIL-STD-461F.“Requirements for the Control of Electromagnetic Characteristics of Subsystems and Equipment”. 10 December 2007:145-146.
    [78]王树勋.基于软件无线电原理的电子白板系统[P].中国, 200410010956.6.
    [79]王宏禹.现代谱估计[M].南京,东南大学出版社, 1990.
    [80] Michael Camp, Heyno Garbe. Parameter Estimation of Double Exponential Pulses (EMP, UWB) With Least Squares and Nelder Mead Algorithm [J]. IEEE Transactions on Electromagnetic Compatibility. 2004, 46(4):675-678.
    [81] J.A. Nelder, R. Mead. A Simplex Method for Function Minimization[J]. 1967, 7: 308-313.
    [82] J.Saniie. Ultrasonic Signal Processing: System Identification and Parameter Estimation of Reverberant and Inhomogeneous Targets [D]. Doctor Dissertation . Indiana, Purdue University. 1981.
    [83] R. Demirli, X.M. Jin, J. Saniie. Modeling and parameter estimation of ultrasonic backscattering echoes [J]. Review of Progress in Quantitative Nondestructive Evaluation. 1996, 15: 137-144.
    [84]戴逸松.微弱信号检测方法及仪器[M].北京,国防工业出版社, 1994.
    [85] U.N National Physical Laboratory. Review of Methods for Low Frequency Transducer Calibration in Reverberant Tanks [R]. Middlesex:NPL,1999.
    [86]刘子良,愈知恩,刘衍珩.超声探伤中任一脉冲峰值的测量方法及缺陷当量算法研究[J].仪器仪表学报. 1997, 18(2): 145-149.
    [87]徐志辉,林莉,李喜孟,谭家隆.材料薄层超声无损测厚方法评述[J].理化检验:物理分册. 2004,40(3):407-411.
    [88] D. K. Hsu, .M. Hugues. Simultaneous Ultrasonic Velocity and Sample Thickness Measurement and Applications in Composites [J]. Acoustical Society of America, 1992,92(4):669-675.
    [89]于黎耘,白净,杨福声.超声回波信号的解卷[J].国外医学:生物医学工程分册. 1993, 16(3): 125-133.
    [90] R. Demirli, J. Saniie, Model-Based Estimation of Ultrasonic Echoes. Part II: Nondestructive Evaluation Applications [J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on. 2001, 48(3): 803-811.
    [91] A.V. Oppenheim, R.W. Schafer. From Frequency to Quefrency: a History of the Cepstrum [J]. Signal Processing Magazine, IEEE. 2004, 21(5): 95-106.
    [92] R. Demirli, J. Saniie, Model-Based Estimation of Ultrasonic Echoes. Part I: Analysis and Algorithms [J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on. 2001, 48(3): 787-802.
    [93] B.P. Bogert, M.J.R. Healy, J.W. Tukey. The Quefrency Alanysis of Time Series for Echoes: Cepstrum, Pseudo-Autocovariance,Cross-Cepstrum, and Saphe Cracking in Time Series Analysis [M]. M. Rosenblatt, Ed., ch.15, 1963: 209-243.
    [94] A. M. Noll. Short-Time Spectrum and Cepstrum Techniques for Vocal-Pitch Detection [J]. J. Acoust. Sot. Amer., 1964, 36: 296-302.
    [95] B. P. Bogert, J. F. Ossanna. The Heuristics of Cepstrum Analysis of a Stationary Complex Echoed Gaussian Signal in Stationary Gaussian Noise [J]. IEEE Trans. Inform. Theory,1966, IT-12: 373-380.
    [96] A.V. Oppenheim. Superposition in a Class of Nonlinear Systems [D]. Ph.D. dissertation, MIT, May, 1964.
    [97] A. V. Oppenheim. Superposition in a class of nonlinear systems [R]. Res. Lab. Electron., M.I.T., Cambridge, Mass., Tech. Rep. 432, Mar. 31, 1965.
    [98] A. V. Oppenheim. R. W. Schafer, T. G. Stockham. Nonlinear Filtering of Multiplied and Convolved Signals [C]. Proc.IEEE, 1968, 56: 1264-1291.
    [99] R. W. Schafer. Echo Removal by Discrete Generalized Linear Filtering [D]. Ph.D. dissertation, Mass. Inst. Technol., Cambridge, 1968.
    [100] S. Senmoto, D. G. Childers. Adaptive Decomposition of a Composite Signal of Identical Unknown Wavelets in Noise [J]. IEEE Trans. Syst., Man, Cybern., 1972, 2: 59-66.
    [101] T. J. Ulrych. Application of Homomorphic Deconvolution to Seismology [J]. Geophysics, 1971, 36: 650-660.
    [102] T. J. Cohen. Source-Depth Determinations Using Spectral. Pseudoautocorrelation and Cepstral Analysis [J]. Geophys. 1970, 20: 223-231.
    [103] J. C. Prabhakar, S. C. Gupta. Separation of Rayleigh and Poisson Density Functions Through Homomorphic Filtering [C]. Nat.Electronics Conf., pp. 605-610, Dec. 1970.
    [104]周酉元,董树英,吕阳.近台正手攻球拉弧圈球挥拍加速度的测定与分析[J].西安体育学院学报. 1986, 04: 38-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700