天线雷达散射截面分析与控制术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于当今隐身技术的飞速发展,飞行器以及舰艇等武器的雷达散射截面与以前相比下降了1到2个数量级。同时由于FSS结构、吸波材料、高阻抗表面等隐身新材料的发展以及应用,使隐身目标自身的RCS已经非常小。因此影响目标隐身性能的主要因素是载体目标上的天线。所以,天线RCS的分析研究与减缩技术对于目标隐身设计将变的非常重要。本文从天线RCS的分析与减缩两个方面为研究目标,分别对天线散射的特性与减缩方法进行了研究。本文工作的主要创新点可概括如下:
     1.受到阵列天线辐射方向图乘积定理的启发,提出阵列天线散射场也可以分解为阵列散射因子与单元散射场的乘积。同时,根据阵列天线散射的基本理论,导出了阵列散射因子的表达式。
     通过阵列散射因子,分析了阵列天线散射场的一些重要特性,得到了一些基本结论:首先,阵列天线散射方向图主要与阵列结构形式有关,而与单元散射方向图无关;其次,阵列天线散射峰值所在的角度位置以及峰值数目都与阵列单元之间的距离相关,同时散射峰值会随着单元间距的变化按一定规律而变化;第三,对半波振子、螺旋天线、微带天线阵列散射的分析可以看出,阵列散射方向图特性主要是由阵列结构决定,与阵列天线单元形式无关。
     2.提出了一种综合阵列天线散射方向图的新方法。根据导出的阵列散射因子表达式,通过改变阵列单元之间的空间分布而对阵列散射因子进行优化,从而使阵列天线散射峰值得到明显的抑制。为了验证本方法,分别对平面半波振子阵列、线性领结型天线阵列、波导缝隙阵列的散射方向图进行综合,仿真与计算结果证实了该方法的正确性。同时,在阵列天线散射方向图的综合中我们发现:无论单元接多大负载,通过优化阵列散射因子得到的单元空间位置都能有效的抑制其散射方向图。对于波导缝隙阵列,入射波极化激励与不激励缝隙电压时,优化得到的缝隙位置对其散射方向图的影响非常大。即当入射波极化激励起缝隙电压时,通过本方法得到的缝隙位置可以抑制缝隙阵列的散射峰值;而当入射波不能激励起缝隙电压时,则无论缝隙位置怎么变,其散射方向图变化都不大。
     3.利用频率选择表面的等效电路分析模型,提出了一种新型的频率选择表面。该新型FSS结构是通过给传统金属方环FSS结构引入并联电感而形成。通过引入并联电感,新型FSS结构的阻带带宽得到了明显的减小,从而提高了FSS结构的频率选择特性。同时,对该FSS结构的反射系数以及反射相位的频带特性进行分析后,得到结论:即在阻带内,FSS结构对电磁波的反射与金属板类似。因此将该FSS结构作为一微带偶极子天线地板来代替传统的金属板能实现对天线RCS的减缩。仿真和测试结果证实利用FSS地板代替传统金属板可以有效的减小天线RCS。
     4.高阻抗表面(HIS)由于其对特定频率的垂直入射波具有同相反射特性;同时金属表面对入射电磁波具有180度的反射相位。因此本文提出利用HIS与金属面的叠加而使两者反射场在空间相互抵消,从而减小目标的RCS。将该想法应用到了两个微带天线上,通过给两微带天线周围加载HIS结构,这样使HIS与微带天线金属表面的散射场相互抵消,从而减缩微带天线的RCS。仿真与测试结果表明本方法确实能减小微带天线的带内RCS。
Today, due to the rapidly development of stealing technology, the RCS levels of many weapons such as aircraft and warship is decreased for 1 or 2 quantities. Meanwhile, the RCS of platform themselves become very small by using the Frequency Selective Surfaces (FSS), Radar Absorbing materials, High Impedance Surfaces (HIS), etc. Then the main factor that impacts the RCS of platform is the antennas on the platform. So it is important to analyzing and reducing the RCS of antennas for the design of stealth platform. The analysis and reduction of the RCS of antennas are the two main research objects of this thesis. The main contributions and innovation of the thesis are outlined as follows:
     1. Inspired by the multiplication principle of radiation pattern, we present scattering pattern of array antennas can also be decomposed into the multiplication of array scattering factor and element scattering. Base on the basic theory of antenna scattering, the formula of array scattering factor is derived.
     Some important properties of array scattering is obtained through analyzing the array scattering factor, then some important conclusion are drawn: first, the scattering pattern of array antennas is affected by the structure of array configuration, and there are no relationship between the scattering pattern of array antennas and elements; Second, the amounts and angles related to the peak scattering of array antennas is determined by the interelement spacing. Meanwhile, the angle related to the peak scattering is varied with the interelement spacing in a special rule. Third, it can be seen that the scattering properties of array antennas is mainly determined by the configuration of array, rather than antenna elements.
     2. A new method to synthesize the scattering pattern of array antennas is presented in the thesis. The scattering peaks of array antennas are restrained by the spatial arrangement of array elements which is obtained by optimizing the array scattering factor. In order to validate the proposed method, the scattering patterns of a planar Half-dipole array, a bow-tie antenna array, and a waveguide slots array are optimized, respectively. The simulated and calculated results validated the proposed method. Through the optimization of the scattering pattern of array antennas, it was found that the proposed method can help to restrain the peak scattering when the antenna elements are connected any loads. For the waveguide slot array, the optimized positions of the slots are affected the scattering pattern in different ways, when the incident wave excited the slot or not. When the incident wave excited the slots, the optimized positions of antenna elements can restrain the peak scattering. Otherwise, when the incident wave can not excited the slots, the optimized positions of antenna elements have little impact on the scattering pattern.
     3. A new FSS structure which has high frequency selectivity is presented utilizing the equivalent circuit model. The proposed FSS is a transformation form of conventional square-loop FSS. Besides, four narrow branches are added to each element, and connect to other neighboring elements to decrease the bandwidth of the proposed FSS. After analyzing the amplitude and phase of reflection coefficient, it can be concluded that the FSS acts as perfect conductor surface when it reflects the incident wave whose frequency is in the stop-band of the FSS. Consequently, in order to reduce the RCS of a microstrip dipole antenna, the metallic ground of the antenna is replaced by the proposed FSS ground. The simulated and measured results show that the RCS of the antenna is reduced considerably when replacing the metallic ground with FSS ground.
     4. For the normal incident plane wave, the reflection phase of High Impedance Surface (HIS) is 00, and the reflection phase of metallic surface is 1800. Hence, a new method that reduces the RCS of objects is proposed. In this method, the scattering from HIS and PEC surface is canceled out due to the different reflection phase when combining the HIS and the PEC surface. In order to validated the proposed method, the HIS is added surround the two microstrip antennas to cancel the reflected field from the metallic surface of antennas. The simulated and measured results proved that the proposed method can effectively reduce the in- band RCS of micrstrip antennas.
引文
[1] D. D. King,“The Measurement and Interpretation of Antenna Scattering,”Proc. of the IRE, vol.37, no. 7, pp. 770-777, July. 1949.
    [2] R. B. Green,“Scattering from Conjugate-Matched Antennas,”IEEE Trans. Antennas Propagt., vol. 14, no. 1, pp. 17-21, Jan. 1966
    [3] Y. Y. Hu,“Back-scattering cross section of a center-loaded antenna,”IRE Trans. Antennas Propagat., vol. 6, no. 1. p.140, Jan. 1958.
    [4] W. K. Kahn, and H. Kurss,“Minimum-Scattering Antennas,”IEEE Trans. Antennas Propagt., vol. 11, no. 3, pp. 671-675, Sep. 1965.
    [5] David. M. Pozar,“Analysis of finite phased arrays of printed dipoles,”IEEE Trans. Antennas Propagat.,.10, . AP-33:1045–1053. 1985
    [6] DAVE M. Porn,“Finite phased arrays of rectangular microstrip patches,”IEEE Trans. Antennas Propagat., 1986. 5,. AP-34:658–665.
    [7] Jian-Ming Jin, and John L. Volakis,“A Hybrid Finite Element Method for Scattering and Radiation by Microstrip Patch Antennas and Arrays Residing in a Cavity,”IEEE Trans. Antennas Propag., Vol. 39, No. 11, 1598-1604, Nov. 1991.
    [8] Renaud Chiniard, AndréBarka, and Olivier Pascal,“Hybrid FEM/Floquet Modes/PO Technique for Multi-Incidence RCS Prediction of Array Antennas,”IEEE Trans. Antennas Propag., Vol. 56, No. 6, 409-418, Jun. 2008.
    [9] Wen-Jiunn Tsay, and David M. Pozar,“Radiation and Scattering from Infinite Periodic Printed Antennas with Inhomogeneous Media,”IEEE Trans. Antennas Propag., vol. 46, no. 11, 1641-1650, Nov. 1998.
    [10] Renaud Chiniard, AndréBarka, and Olivier Pascal,“Hybrid FEM/Floquet Modes/PO Technique for Multi-Incidence RCS Prediction of Array Antennas,”IEEE Trans. Antennas Propag., Vol. 56, No. 6, 409-418, Jun. 2008.
    [11] K. M. Chen, and V. Liepa,“The Minimization of the back Scattering of a Cylinder by Central Loading,”IEEE Trans. Antennas Propag., Vol. 12, pp. 576-582, Sep. 1964.
    [12] K. M. Chen,“Minimization of Back scattering of a Cylinder by Double Loading,”IEEE Trans. Antennas Propag., Vol.13, pp.262-270, Mar. 1965.
    [13] R. J. Coe, Akira Ishimaru,“Optimum Scattering from an array of Half-Wave Dipoles,”IEEE Trans. Antennas Propagat., vol. 18, no.2, pp. 224-229, Mar. 1970.
    [14] B. Thors, L. Joesfsson,“Radiation and scattering tradeoff design for conformal arrays,”IEEE Trans. Antennas Propagat., vol. 51, no. 5, pp. 1069–1076. May. 2003.
    [15] W.-T. Wang, S.-X. Gong, Y.-J. Zhang, F.-T. Zha, and J. Ling, Low RCS dipole array synthesis based on MoM-PSO hybrid algorithm, Progress In Electromagnetics Research, PIER vol. 94, 119-132, 2009.
    [16] E. Yablonovitch, T. J. Gmitter, and K. M. Leung,“Photonic band structure: The face-centered-cubic case employing nonspherical atoms,”Physical Review Letter, vol. 67, no. 17, pp. 2295, 1991.
    [17] E. Ozbay, et al.,“Micromachined millimeter-wave photonic band-gap crystals,”Applied Physics Letters, vol. 64, no. 16, pp. 2059-2061, 1994.
    [18] D. Sieverpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch,“High-impedance electromagnetic surfaces with a forbidden frequency band,”IEEE Trans.Microwave Theory Tech., vol. 47, pp. 2059-2074, Nov. 1999.
    [19] F. Yang, K. Ma, Y. Qian, and T. Itoh,“A uniplanar compact photonic-bandgap (UC-PBG) structure and its application for microwave circuit,”IEEE Trans.Microwave Theory Tech., vol. 47, no. 8, pp. 1509-1514, Aug. 1999.
    [20] L. Yang, et al.,“A novel compact Electromagnetic-Bandgap(EBG) structure and its application for microwave circuits,”IEEE Trans.Microwave Theory Tech., vol. 53, no. 1, pp. 183-189, Jan. 2005.
    [21] John. McVay, Ahmad Hoorfar, and Nader Engheta,“Thin Ansorbers Using Spacing-Filling Curve Artificial Magnetic Conductors,”Microw and Optical Technology Lett., vol.51, no. 3, pp. 785-790, Mar. 2009.
    [22] N.Engheta,“Thin ansorbering screens using metamaterial surfaces,”In: Digest of the 2002 IEEE Trans Antennas Propagat 36, 1988.
    [23] Fadi Sakran, Yair Neve-Oz, etc.,“Absorbing Frequency- Selective- Surface for the mm-Wave Range,”IEEE Trans. Antennas Propagt., vol. 56, no. 8, 2649-2655, Aug. 2008.
    [24] Y. Qian, V. Radisic, and T. Itoh,“Broad-band power amplifer using dielectric photonic bandgap structure,”IEEE Microw. And Guided Wave Lett., vol. 8, no. 1, pp. 13-14, 1998.
    [25] S. G. Johnson and J. D. Joannopuulos,“Photonic Crystals: The Road from Theory to Practice,”Norwell: Kluwer Academic Publishers, 2002.
    [26] L. Yang, et al.,“A novel compact Electromagnetic-Bandgap(EBG) structure and its application for microwave circuits,”IEEE Trans.Microwave Theory Tech., vol. 53, no. 1, pp. 183-189, Jan. 2005.
    [27] H. Okabe, C. Caloz and T. Itoh,“A compact enhanced-bandwith hybrid ring using an artificial lumped-element left-handed transmission-line section,”IEEE Transaction on Microwave Theory and Tech., vol. 52, no. 3, pp. 798-804, 2004.
    [28] I. H. Lin, et al.“Arbitrary dual–band component using composite right/left-handed transmission lines,”IEEE Transaction on Microwave Theory and Tech., vol. 52, no. 4,pp. 1142-1149, 2004.
    [29] Jodie M. Bell and Magdy F. Iskander,“A low-profile Archimedean spiral antenna using an EBG ground plane,”IEEE Antennas and Wireless Progag. Letter, vol. 3, pp. 223-226, 2004.
    [30] Raj. Mittra, and Dongwoon Lee,“Analysis of a Frequency Selective Surface(FSS) Radome Located in Closed Proximity of a Phased Array Antenna,”IEEE Proc of Antenna Propagat IEEE, pp. 370-373. 2001.
    [31] E. A. Paker, B. Philips, and R. J. Langley,“Analysis of Coupling Between a Curved FSS and an Enclosed Planar Dipole Array,”IEEE Trans. Antennas Propagt., vol. 5, no. 10, 338-340, Oct. 1995..
    [32] E. Martini, F. Caminita, etc.,“Fast analysis of FSS radome for antenna RCS reduction,”Proc on Antenna Propagat of IEEE, pp. 1801-1804. 2006.
    [33] T.- K. Wu,“Four- Band Frequency Selective Surface with Double-Square-Loop Patch Elements,”IEEE Trans. Antennas Propagt., vol. 42, no. 12, pp.1659-1663, Dec. 1994..
    [34] T. H. Liu,W. X. Zhang, M. Zhang, and K. F. Tsang,“Low profile spiral antenna with PBG substrate,”Electron. Lett., vol. 36, pp. 779–780, April 2000.
    [35] V. C. Sanchez, W. E. McKinzie III, and R. E. Diaz,“Broadband antennas overelectronically reconfigurable artificial magnetic conductor surfaces,”in Proc. Antenna Applications Symp., pp. 70–83, Sept. 2001.
    [36] Z. Li and Y. Rahmat-Samii,“PBG, PMC and PEC ground planes: A case study of dipole antennas,”in Proc. Antennas Propagation Soc. Int. Symp., vol. 2, pp. 674–677, July 2000.
    [37] F. Yang and Y. Rahmat-Samii,“Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications,”IEEE Trans. Antennas Propagat., vol. 51, pp. 2691–2703, Oct. 2003.
    [38] D. Sievenpiper,“High-impedance electromagnetic surfaces,”Ph.D. dissertation, Univ. California, Los Angeles, CA, 1999.
    [39] H. Nakano, M. Ikeda, K. Hitosugi, J. Yamauchi, and K. Hirose,“A spiral antenna backed by an electromagnetic band-gap material,”in Proc. Antennas Propagation Soc. Int. Symp., vol. 4, pp. 482–485, June 2003.
    [40] Jodie M. Bell and Magdy F. Iskander,“A low-profile Archimedean spiral antenna using an EBG ground plane,”IEEE Antennas and Wireless Progag. Letter, vol. 3, pp. 223-226, 2004.
    [41] S. Enoch , G. Tayeb, P. Sabouroux, N. Guerin and P. Vincent,“A metamaterial for directive emission,”Phys. Rev. Lett., vol. 89, no. 21, pp. 213902:1-4, Nov. 2002.
    [42] R. W. Ziolkowski and A. Kipple,“Application of double negative metamaterials to increase the power radiated by electrically small antennas,”IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2626–2640, Oct. 2003.
    [43] N. Engheta,“An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability,”IEEE Antenna and Wireless Propga. Letter, vol. 1, no. 1, pp. 10-13, 2002.
    [44] G. V. Eleftheriades, A. K. Iyer and P. C. Kremer,“Planar nagetive refractive index media using periodically L-C loaded transmission lines,”IEEE Transaction on Microwave Theory and Tech., vol. 50, no. 12, pp. 2702-2712, 2002.
    [45] I. H. Lin, et al.“Arbitrary dual–band component using composite right/left-handed transmission lines,”IEEE Transaction on Microwave Theory and Tech., vol. 52, no. 4,pp. 1142-1149, 2004.
    [46] H. Okabe, C. Caloz and T. Itoh,“A compact enhanced-bandwith hybrid ring using an artificial lumped-element left-handed transmission-line section,”IEEE Transaction on Microwave Theory and Tech., vol. 52, no. 3, pp. 798-804, 2004.
    [47] Y. Horri, C. Caloz and T. Itoh,“Super-compact multilayered left-handedtransmission line and diplexer application,”IEEE Transaction on Microwave Theory and Tech., vol. 52, no. 4, pp. 1527-1534, 2004.
    [1] Y. T. Lo, S. W. Lee,“Antenna Handbook: Theory, Applications, and Design”, Van Norstrand Reinhold Company, New York, 1988.
    [2] D. D. King,“The Measurement and Interpretation of Antenna Scattering,”Proceed of IRE, pp.770-777, Jul. 1949.
    [3] Jorgen Bach Andersen, and Rodney G. Vaughan,“Transmitting, Receiving, and Scattering Properties of Antennas,”IEEE Antennas. Propagation Magazine, vol. 45, no.4, pp. 93-98, Aug. 2003
    [4] Appel-Hansen, J.,“Accurate Determination of Gain and Radiation Patterns by Radar Cross Section Measurements,”IEEE Trans. Antenna Propagat., vol. 27, pp.640-646, Sep, 1979.
    [5]刘英,“天线雷达散射截面预估与减缩,”西按电子科技大学博士论文. 2004.
    [6] E. F. Knott, John Shaeffer, Michael Tuley,“Radar Cross Section”, 2nd Edition, New York: Artech House, 1993.
    [7] R. E. Collin,“The Receiving Antenna, Antenna Theory, Part1,”McGraw-Hill, New York, pp.123-133, 1969.
    [8] R. C. Hansen,“Relationships Between Antennas as Scatters and as Radiators,”Proceed of IEEE, vol. 77, no. 5, pp.659-662, May. 1989.
    [9] R. B. Green,“The General Theory of Antenna Scattering,”Report 1223-17, Antenna Laboratory, Ohio State University, November 30, 1963.
    [1]何国瑜,卢才成,洪家才,邓晖,“电磁散射的计算和测量”,北京航空航天大学出版社,北京,2006.
    [2]阮颖铮等编著,“雷达截面与隐身技术”,国防工业出版社,北京,1998..
    [3] R. F. Harrington, Field Computations by Moment Methods. New York: Macmillan, 1968.
    [4] Rao, S. W., D. R. Wilton, and A. W. Glisson,“Electromagnetic scattering by surfaces of arbitrary shape,”IEEE Trans. Antennas Propag., Vol. 30, No. 5, pp. 409-418, May. 1982.
    [5] M. Zhang, L. W. Li, and A. Y. Ma,“Analysis of Scattering by a large array ofWaveguide-Fed Slot millimeter wave antennas suing precorrected-FFT algorithm,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 772-774. Nov. 2005.
    [6] Jin, J. M. The Finite Element Method in Electromagnetic. New York: John Wiley & Sons, Inc., 1996.
    [7] Jian-Ming Jin, and John L. Volakis,“A Hybrid Finite Element Method for Scattering and Radiation by Microstrip Patch Antennas and Arrays Residing in a Cavity,”IEEE Trans. Antennas Propag., Vol. 39, No. 11, pp.1598-1604, Nov. 1991.
    [8] Renaud Chiniard, AndréBarka, and Olivier Pascal,“Hybrid FEM/Floquet Modes/PO Technique for Multi-Incidence RCS Prediction of Array Antennas,”IEEE Trans. Antennas Propag., Vol. 56, No. 6, pp.409-418, Jun. 2008.
    [9] A Taflove. Computational Electrodynamics: The Finite Difference Time Domain Approach. Artech House, Norwood, MA: 1995.
    [10]葛德彪,闫玉波.电磁场时域有限差分方法.西安:西安电子科技大学出版社,2002
    [11] Shung-Wu Lee,“Comparison of Uniform Asymptotic Theory and Ufimtsev’s Theory of Electromagnetic Edge Diffraction,”IEEE Trans. Antennas Propag., Vol. 25, No. 2, pp. 162-170, Mar. 1977.
    [12] E. F. Knott, and B. A. Thomas,“Comparison of Three High-Frequency Diffraction Techniques,”IEEE Trans. Antennas Propag., Vol. 62, No. 11, pp.1468-1474, Nov. 2008.
    [13] Shung-Wu Lee, and G. A. Deschamps,“A Uniform Asymptotic Theory of Electromagnetic Diffraction by a Curved Wedge,”IEEE Trans. Antennas Propag., Vol. 24, No. 1, pp. 25-31, Jan. 1976.
    [14] Nazih. N. Youssef,“Radar Cross Section of Complex Targets,”Pro of IEEE, vol. 77, no. 5, May, 1989.
    [15] I. J. Gupta, and W. D. Burnside,“A physical Optics Correction for Backscattering from Curved Surfaces,”IEEE Trans. Antennas Propag., Vol. 35, No. 5, pp.553-561, May. 1987.
    [16] W. B. Gordon,“Far- Field Approximations to the Kirchhoff- Helmholtz Representations of Scattered Field,”IEEE Trans. Antennas Propag., Vol. 24, No. 1, pp. 590-592, Jul. 1975.
    [17] Francisco Saez de Adana, etc.,“Method Based on Physical Optics for the Computation of the Radar Cross Section Including Diffraction and Double Effects of Metallic and Absorbing Bodies Modeled With Parametric Surfaces,”IEEE Trans. Antennas Propag., Vol. 52, No. 12, pp. 3295-3303, Jan. 2004.
    [18] D. D. King,“The Measurement and Interpretation of Antenna Scattering,”Proceeding of IRE, pp. 770-777, July, 1949.
    [19] Jhon D. Kraus, Antennas:“For all applications”, 3rd Edition, McGraw-Hill Companies, 2004.
    [20] R. J. Mailloux,“Phased Array Antenna Handbook,”2nd Edition, London: Artech- House. Inc, 2005.
    [21] C. A. Balanis,“Antenna Theory, Analysis and Design”, 3rd Edition, New Jersey: John Wiley & Sons, Inc., 2005.
    [22] Y. T. Lo, S. W. Lee,“Antenna Handbook: Theory, Applications, and Design”, Van Norstrand Reinhold Company, New York, 1988.
    [23] E. F. Knott, John Shaeffer, Michael Tuley,“Radar Cross Section”, 2nd Edition, New York: Artech House, 1993.
    [24] R. S. Elliot,“Antenna Theory and Design”, Revised Edition, New Jersey: John $Wiley Sons,Inc. 2003.
    [25] Lei Zhang, Ning Yuan, Min Zhang, Le-Wei Li, and Yeow-Beng Gan,“RCS Computation for a Large Array of waveguide Slots With Finite Wall Thickness Using the MoM Accelerated by P-FFT Algorithm,”IEEE Trans. Antennas Propag., Vol. 53, No. 9, pp.3101-3105, Sep. 2005.
    [1] Jian-Ming Jin, and John L. Volakis,“A Hybrid Finite Element Method for Scattering and Radiation by Microstrip Patch Antennas and Arrays Residing in a Cavity,”IEEE Trans. Antennas Propagat., vol. 39, no. 11, pp. 1598–1604. Nov. 1991.
    [2] W. J. Bow, A. S. King, and C. E. Lee,“Scattering from finite array of microstrip patches on uniaxial substrate,”Electron. Lett., vol. 28, no. 2, pp. 126–127. Jan. 1992.
    [3] W. J. Tsay, and D. M. Pozar,“Radiation and scattering from infinite periodic printed antennas with inhomogeneous media,”IEEE Trans. Antennas Propagat., vol. 46, no. 11, pp. 1641–1650. Nov. 1998.
    [4] Y. Zhuang, K. L. Wu, C. Wu, and J. Litva,“A combined full-wave CG-FFT method for rigorous analysis of large microstrip antenna arrays,”IEEE Trans. Antennas Propagat., vol. 44, no. 1, pp. 102–109. Jun. 1996.
    [5] A. S. King and W. J. Bow,“Scattering from a finite array of microstrip patches,”IEEE Trans. Antennas Propagat., vol. 40, no. 7, pp. 770–774. Jul. 1992.
    [6] L. Zhang, N. Yuan, M. Zhang, L. W. Li, and Y. B. Gan,“RCS computation for a large array of waveguide slots with finite wall thickness using the MoM accelerated by P-FFT algorithm,”IEEE Trans. Antennas Propagat., vol. 53, no. 9, pp. 3101–3105. Sep. 2005.
    [7] M. Zhang, L. W. Li, and A. Y. Ma,“Analysis of scattering by a large array of Waveguide-Fed Wide-Slot millimeter wave antennas using precorrected-FFT algorithm,”IEEE Microw.Wireless Compon. Lett., vol. 15, no. 11, pp. 772–774. Nov. 2005.
    [8] G. X. Fan, and J. M. Jin,“Scattering from a cylindrically conformal slotted waveguide array antennas,”IEEE Trans. Antennas Propagat., vol. 45, no. 7, pp. 1150–1159. Jul. 1997.
    [9] G. X. Fan, and J. M. Jin,“Scattering from a cylindrically conformal slotted waveguide array antennas,”IEEE Trans. Antennas Propagat., vol. 45, no. 7, pp. 1150–1159. Jul. 1997.
    [10] B. Thors, L. Joesfsson, and R. G. Rojas,“The RCS of a cylindrical array antennas coated with a dielectric layer,”IEEE Trans. Antennas Propagat., vol. 52, no. 7, pp. 1851–1558. Jul. 2004.
    [11] H. Oraizi and A. Abdolali,“Ultra wide band RCS optimization of Multilayered Cylindrical structures for Arbitrarily Polarized incident plane waves,”Prog. Electromagn. Res., vol.78, pp. 129-157, 2008.
    [12] R. Haupt, and Y. B. Chung,“Optimizing backscattering from arrays of perfectly conducting strips,”IEEE Antennas. Propagat. Mag., vol. 45, no. 5, pp. 26-33, Oct. 2003.
    [13] A. Bondeson, Y. Yang, and P. Weinerfelt,“Optimization of Radar Cross Section by a Gradient Method,”IEEE Trans. Magn., vol. 40, no. 2, pp. 1260-1263, Mar. 2004.
    [14] J-I Choi, B-H Lee, W. J Yang, K,S Song and E,J Park,“Optimum Current Distribution on Resistive Strip for Arbitrarily Prescribed RCS Pattern,”International Conference on Microwave and Millimeter wave, pp. 363-366,1998.
    [15] Y. Liu, S. X. Gong, and D. M. Fu,“Analysis and optimization of impedance strip for radar cross section reduction,”Chinese journal of Radio Science, vol. 18, no.3, pp. 301-304, Jun. 2003.
    [16] R. J. Coe, Akira Ishimaru,“Optimum Scattering from an array of Half-Wave Dipoles,”IEEE Trans. Antennas Propagat., vol. 18, no.2, pp. 224-229, Mar. 1970.
    [17] B. Thors, L. Joesfsson,“Radiation and scattering tradeoff design for conformal arrays,”IEEE Trans. Antennas Propagat., vol. 51, no. 5, pp. 1069–1076. May. 2003.
    [18]焦永昌,杨科,陈胜兵,张福顺,“粒子群优化算法用于阵列天线方向图综合”,电波科学学报. Vol. 21, no. 1, pp. 16-20. 2006.
    [1] Fadi Sakran, Yair Neve-Oz, Amichai Ron, Mecheal Golosovsky, Dan Davidov, and Avraham Frenkel,“Abosrbing Frequency-Selective-Surface for the mm-wave Range,”IEEE Trans. Antennas Propagat., vol. 56, pp. 2649-2655, Aug. 2003.
    [2] Ben A. Munk, Frequency selective surfaces: Theory and Design. John&Wiley Sons. New York, 2000.
    [3] Na-Na Qi, S.-X. Gong, P. F. Zhang, and J. F. Liu,“A Novel Y-Loop Aperture Frequency Selective surface Using Substrate-Integrated Waveguide Technology,”Microw Opt Technol Letts,. Vol. 50, no. 12, pp. 3023-3027. Dec. 2008.
    [4] Guo Qing Luo, Wei Hong, Hong Jun Tang, etc,“High performance Frequency Selective Surface using cascading substrate integrated waveguide cavities,”IEEE Microw. Wireless Compon. Letts., pp. 648-650, Dec. 2006.
    [5] GuoQing Luo, Wei Hong, Zhang-Cheng Hao etc,“Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology,”IEEE Trans. Antennas Propagat., vol. 53, no. 12,pp. 2649-2655, Aug. 2003.
    [6]杨红玉,“新型频率选择表面的研究”,西安电子科技大学硕士论文. 2010.
    [7] Jordi Romeu, and Yahya Rahmat-Sammii,“Fractal FSS: A Novel Dual-Band Frequency Selective Surface,”IEEE Trans. Antennas Propagat., vol. 48, no. 7, pp. 1097-1105. Jul. 2000.
    [8] M. K. Pain, S. Bhunia, S. etc.,“A novel investigation on size reduction of frequency selective surface,”Microw Opti Technol Letts., vol. 49, no.11, pp. 2820-2821, Nov. 2007.
    [9] Masataka Ohira, Hiroyuki Deguchi, Mikio Tsuji, etc.,“A Novel Waveguide Band-pass Filter with Multiple Attenuation Poles Using Four-armed Square-Loop FSS,”Electronics and Communications in Japan, Part2, vol. 90, no. 4, pp. 26-33, 2007.
    [10] Te-Kao Wu,“Four-Band Frequency Selective Surface with Double-Square-Loop Patch Elements,”IEEE Trans. Antennas Propagat., vol. 42, no. 12, pp. 1659-1663, Dec. 1994.
    [11] Ghaffer I. Kiani, Andrew R. Weily, and Karu P. Esselle,“A Novel Abosrb/Transmit FSS for Secure Indoor Wireless Networks With Reduced Multipath Fading,”IEEE Microw. Wireless Compon. Lett., vol. 16, no. 6, pp. 378-380, Jun. 2006.
    [12] Costa, F, Monorchio. A, Manara. G,“Analysis and Design of Ultra Thin Electromagnetic Absorrbers Comprising Resistively Loaded High Impedance Surfaces,”IEEE Trans. Antennas Propagat., vol. 58, no. 5, pp. 1551-1558, May. 2010.
    [13] E. F. Knott, John Shaeffer, Michael Tuley,“Radar Cross Section”, 2nd Edition, New York: Artech House, 1993.
    [14] R. J. Langley, and E. A. Parker,“Equivalent Circuit Model for Arrays of Square Loops,”Electron Lett., vol. 18, no.7, pp. 294-296. Apr. 1982.
    [15] Jikuya, I. Hodaka. I,“A Floquet-like factorization for linear periodic systems: Decision and Control,”IEEE Proc. of Chinese Control. pp. 6432-6437. 2009.
    [16] R. Mittra, C. H. Chan, and T. Cwik,“Techniques for analyzing frequency selective surfaces-A review,”Proc. IEEE, vol. 76, no. 12, pp. 1593-1615, Dec. 1998.
    [17] C. H. Chan and R. Mittra,“On the analysis of frequency-selective surface using subdomain basis functions,”IEEE Trans. Antennas Propag., vol.38, no.1, pp. 40-50, Jan. 1990.
    [18] N. Farahat, and R. Mittra,“Analysis of frequency selective surfaces using the Finite Differenc Time Domain(FDTD) method,”Proc. IEEE Antennas Propagation Society Int. Symp., vol.12, San Antonio, TX, pp. 568-571, Jun. 2002.
    [1] E. Yablonovitch,“Inhibited spontaneous emission in solid-state physics and electronics,”Phys. Rev. Lett., vol. 58, no. 20, pp. 2059-2062, 1987.
    [2] S. John,“Strong localization of photons in certain disorded dielectric superlattices,”Phys. Rev. Lett., vol. 58, no. 23 , pp. 2486-2489, 1987.
    [3] Dan Sievenpiper, Lijun Zhang, R. F. Jimenez Broas, Nicholas G. Alexopolous, and E.Yablonovitch,“High-impedance electromagnetic surfaces with a forbidden frequency band,”IEEE Trans. Microwave Theory Techniques, vol. 47, pp. 2059-2074, Nov. 1999.
    [4] D. Sieverpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch,“High-impedance electromagnetic surface with forbidden frequency band”, IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2059-2074, Nov. 1999.
    [5] E. R. Brown, C. D. Parker, and E. Yablonovitch,“Radiation properties of a planar antenna on a photonic-crystal substrate,”J. Opt. Soc. Amer.B, Opt. Phys., vol. 10, pp. 404–407, Feb. 1993.
    [6] M. M. Sigalas, R. Biswas, and K. M. Ho,“Theoretical study of dipole antennas on photonic band-gap materials,”Microwave Opt. Technol. Lett., vol. 13, pp. 205–209, Nov. 1996.
    [7] H. Y. D. Yang, N. G. Alexopoulos, and E. Yablonovitch,“Photonic bandgap materials for high-gain printed circuit antennas,”IEEE Trans. Antenna Propagat., vol. 45, pp. 185–187, Jan. 1997.
    [8] R. F. J. Broas, D. F. Sievenpiper and E. Yablonovitch,“A high-impedance ground plane applied to cellphone handset geometry,”IEEE Trans. on Microwave Theory and Tech., vol. 49. pp. 1261-1265, July 2001.
    [9] M. Rahman and M. A. Stuchly,“Circularly polarized patch antenna with periodic structure,”IEE Proc. Microw. Antennas Propag., vol. 149, no. 3, pp. 141-146, 2002.
    [10] R. Coccioli, Fei-Ran Yang, Kuang-Ping Ma, and T. Itoh,“Aperture coupled patch antenna on UC-PBG substrate,”IEEE Trans. Microwave Theory Techniques, vol. 47, pp. 2123-2130, Nov.1999.
    [11] F. Yang and Yahya Rahmat-Samii,“Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications”, IEEE Trans.Antennas Propagat., vol. 51, pp. 2936-2946, Oct. 2003.
    [12] L. Zhang, J. A. Castaneda, and N. G. Alexopoulos,“Scan blindness free phased array design using PBG materials,”IEEE Trans. Antennas and Propaga., vol. 52, no. 8, pp. 2000-2007, Aug. 2004.
    [13] Zeev Iluz, Reuven Shavit, and Reuven Bauer,“Microstrip antenna phased array withelectromagnetic bandgap substrate,”IEEE Trans. Antennas and Propaga., vol. 52, no. 6, pp. 1446-1453, June 2004.
    [14] T. H. Liu,W. X. Zhang, M. Zhang, and K. F. Tsang,“Low profile spiral antenna with PBG substrate,”Electron. Lett., vol. 36, pp. 779–780, April 2000.
    [15] V. C. Sanchez, W. E. McKinzie III, and R. E. Diaz,“Broadband antennas over electronically reconfigurable artificial magnetic conductor surfaces,”in Proc. Antenna Applications Symp., pp. 70–83, Sept. 2001.
    [16] Z. Li and Y. Rahmat-Samii,“PBG, PMC and PEC ground planes: A case study of dipole antennas,”in Proc. Antennas Propagation Soc. Int. Symp., vol. 2, pp. 674–677, July 2000.
    [17] F. Yang and Y. Rahmat-Samii,“Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications,”IEEE Trans. Antennas Propagat., vol. 51, pp. 2691–2703, Oct. 2003.
    [18] H. Nakano, M. Ikeda, K. Hitosugi, J. Yamauchi, and K. Hirose,“A spiral antenna backed by an electromagnetic band-gap material,”in Proc. Antennas Propagation Soc. Int. Symp., vol. 4, pp. 482–485, June 2003.
    [19] Jodie M. Bell and Magdy F. Iskander,“A low-profile Archimedean spiral antenna using an EBG ground plane,”IEEE Antennas and Wireless Progag. Letter, vol. 3, pp. 223-226, 2004.
    [20] John McVay, Ahmad Hoorfar, and Nader Engheta,“Thin Absorbers Using Space-Filling Curve Artificial Magnetic Conductors,”Microw Optic Tech Letts., vol. 51, no. 3, Mar. 2009.
    [21] Jean-Marc Baracco, Luca Salghetti-Drioli, and Peter de Maagt,“AMC Low Profile Wideband Referece Antenna for GPS and GALILEO Systems,”IEEE Trans. Antennas Propagat., vol. 56, no. 8, pp. 2540–2547, Aug. 2008.
    [22]梁乐,“紧致型电磁带隙结构和双负媒质结构研究”,西安电子科技大学博士论文,2008.
    [23]李龙,“广义电磁谐振与EBG电磁局域谐振研究及应用”,西安电子科技大学博士论文,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700