抑制电磁干扰的电磁带隙结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁带隙(Electromagnetic Band Gap,EBG)结构是一种具有带阻、慢波、高阻抗特性的周期性结构,在一定的带宽范围内可以阻止电磁波传播;另外它具有制作简单、体积小、重量轻、便于集成等优点。因此,受到广泛关注和深入研究。
     本文主要研究抑制电磁干扰的电磁带隙(EBG)结构,包括抑制表面波的高阻表面EBG结构和抑制同步噪声干扰的共面型EBG结构。
     本文首先研究了紧凑型高阻表面EBG结构。应用基于有限元法的Ansoft HFSS软件,用不同的方法分析适合于平面电路集成的高阻抗表面mushroom-EBG结构。在经典mushroom EBG结构的基础上,按照EBG结构小型化的要求,提出了新型紧凑型高阻表面EBG结构,并对其带隙特性进行了研究,新结构具有良好的紧凑性,在新结构的基础上,利用组合单元法,设计了宽带高阻表面EBG结构。将新结构应用于抑制微带天线间互耦,取得了良好的效果。
     本文对抑制同步噪声干扰(SSN)的共面型EBG结构的带隙特性进行了分析对比,在此基础上,提出了新型超宽带抑制同步开关噪声的共面型EBG结构。实测与仿真结果均表明该EBG结构能有效地抑制SSN,取得了理想的效果。最后又对其信号完整性进行了分析,得出了应用新型EBG结构来抑制SSN,不会对PCB信号完整性造成太大影响的结论。
EBG (Electromagnetic Band Gap) structure is a periodic structure with the characteristics of band-stop, slow-wave, and high-impedance. It can prohibit the propagation of the electromagnetic wave in a certain bandwidth range. Being simply made, small size, light weight and ease of integration, it attracts widespread attention and receives in-depth study.
     The thesis mainly focuses on EBG structures used for electromagnetic interference suppression, including HIS EBG structures used for surface wave suppression and uniplanar EBG structures used for simultaneous switch noise suppression.
     HIS EBG structures used for surface wave suppression are firstly studied. Ansoft HFSS software which is based on the finite element method is used to simulate the EBG structures. As a typical, mushroom-EBG structure which can be integrated with PCB is analyzed in different methods. On the basis of mushroom-EBG structure, we proposed a novel compact EBG structure. Simulation results show the structure has a winning feature of compactness.“United cells method”is applied in the novel structure to broaden its bandwidth. The novel structure is successfully used to reduce surface-wave losses for a double-element microstrip antenna array and a 3.5 dB reduction of mutual coupling is achieved.
     Different kinds of uniplanar EBG structures are analyzed. According to simulation result of EBG structure which is mentioned above, a novel uniplanar EBG structure is proposed with ultra--wideband suppression of simultaneous switch noise (SSN) from 270 MHz to 15 GHz. The measured results are in good agreement with simulated results. Good signal integrity performance can be obtained by using differential transmission lines.
引文
[1] Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters. May.1987, vol.58. no.20, pp.2059-2062.
    [2] S. John. Strong localization of photons in certain disordered dielectric super-lattices. Physical Review Letters. June.1987, vol.58. no.20, pp.2486—2489.
    [3] K. M. Ho, C. T. Chan, and C. M. Soukoulis. Existence of photonic gaps in periodic dielectric structures. Physical Review Letters. Dec.1990, vol.65. no.25, pp.3152.
    [4] E. Yablonovitch, T. J. Gmitter, and K. M. Lenng. Photonic Band Structure:The Face-Centered Cubic Case Employing Nonspherical Atoms. Physical Review Letters, Oct.1991, vol.67. no.17, pp.2295-2298.
    [5] R. Gonzalo, P. d. Maagt, and M. Sorolla. Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap structures. IEEE Trans.On Microwave Theory Techniques. Nov.1999, vol.47.no.11, pp.2131-2138.
    [6] E. R. Brown and C. D. Parker. Radiation properties of a planar antenna on a photonic-crystal substrate. J.Opt.Soe.Am.B. vol.10.no.2, Feb.1993, pp.404—407.
    [7] Y.Qian, R.Coccioli, D.Sievenpiper, V.Radisic, E.Yablonovitch, and T.Itoh. A microstrip Patch Antenna Using Photonic-Bandgap Structures. IEEE Trans. Microwave Theory and Techniques. Jan.1999, vol.42.no.1. pp. 66-76.
    [8] S. G Johnson and J. D. Joannopuulos. Photonic Crystals:The Road from Theory to Practice. Norwell: Kluwer Academic Publishers.2002.
    [9] D. Sievenpiper, Lijun Zhang and Romulo F. Jimenez Broas. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microwave Theory and Techniques. Nov.1999, vol. 47.no.11, pp. 2059-2074.
    [10] D. Sievevpiper. High-impedance electromagnetic surfaces, Ph.D. Dissertation, University of California at Los Angles, 1999.
    [11] F. R. Yang, K. P. Ma, and Y. X. Qian. A uniplanar compact photonic bandgap (UC-PBG) structure and its applications for microwave circuit. IEEE Trans. Microwave Theory and Techniques. Aug.1999, vol.47.no.8, pp. 1509-1514.
    [12] Roberto Coccioli, Fei-Ran Yang, Kuang-Ping Ma, and T.Itoh. Aperture coupled patch antenna on UC—PBG substrate. IEEE Trans. on Microwave Theory andTechniques. Nov.1999, vol.47.no.11, pp.2123—2130.
    [13] Fei-Ran Yang,Kuang Ping Ma, Yong Qian, and T. Itoh. A novle TEM waveguide using uniplanar compact photonic-bandgap structure. IEEE MTT-S Digest. 1999, pp.323-326.
    [14] Tzong-Lin Wu, Yen-Hui Lin, and Sin-Ting Chen. A novel power planes with low radiation and broadband suppression of ground bounce noise using photonic bandgap structures. IEEE Microwave and Wireless Components Letters. July.2004, vol.14.no.7, pp.337–339.
    [15]樊明延,胡荣,郝清等.二维电磁带隙结构研究的新方法.红外与毫米波学报. Apr.2003, vol.22.no.2, pp.127-131.
    [16] Li Yang, Mingyan Fan, and Zhenghe Feng. A Spiral Electromagnetic Bandgap (EBG) Structure and its Application in Microstrip Antenna Arrays. APMC 2005 Proceedings. 2005, vol 3.no.12.
    [17] Li Yang, Zhenghe Feng, Fanglu Chen, and Mingyan Fan. A novel compact electromagnetic band-gap (EBG) structure and its application in microstrip antenna arrays. 2004 IEEE MTT-S International Microwave Symposium Digest, June.2004, pp.1635-1638.
    [18] Yanagi. T, Oshima. T, and Oh-hashi. H. Lumped-Element Loaded EBG Structure with an Enhanced Bandgap and Homogeneity. iWAT 2008. International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, 2008. Mar.2008, pp.458– 461.
    [19] Ki Hyuk Kim and Aine. J.E.S., Analysis and Modeling of Hybrid Planar-Type Electromagnetic-Bandgap Structures and Feasibility Study on Power Distribution Network Applications, IEEE Transactions on Microwave Theory and Techniques. Jan.2008, vol 56.no.1, pp.178-186.
    [20] Rajo-Iglesias.E, Quevedo-Teruel.O, and Inclan-Sanchez.L. Design considerations in planar soft surfaces. LAPC 2008. Mar.2008, pp.289– 292.
    [21] Kamgaing. T and Ramahi. O. M. A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface. IEEE Microwave and Wireless Components Letters. Jan.2003,vol. 3.no.1, pp.21-23.
    [22] Fengmin Zhang; Zhengwei Du; and Qiang Wang. A Novel Approach to Enhance the Bandwidth of Mushroom-like EBG Structures. ICMMT 2007. Apr.2007, pp.1-4.
    [23]闫敦豹,王超,付云起,袁乃昌.一种新型宽带电磁带隙结构.电子与信息学报.Jun.2005, vol.27.no.6, pp.991-994.
    [24]张丰敏,杜正伟,王蔷,龚克.一种展宽电磁带隙结构的带隙带宽的新方法.电子学报. June.2007, vol.35no.6, pp.74-77.
    [25] Bruce Archambeault and Albert E. Ruehli. Analysis of Power /Ground-Plane EMI Decoupling Performance Using the Partial-Element Equivalent Circuit Technique. IEEE Transactions on Electromagnetic Compatibility. Nov. 2001,vol.43. no.4, pp.437-445.
    [26] J. M. Hobbs, H. Windlass and V. Sundaram. Simultaneous Switching Noise Suppression for High Speed Systems Using Embedded Decoupling. 2001 Electronic Components and Technology Conference. 2001, pp.339-343.
    [27] Guang-Tsai Lei, Robert W. Techentin, and Barry K. Gilbert. High-Frequency Characterization of Power/Ground-Plane Structures, IEEE Transactions on Microwave Theory and Techniques. May. 1999, vol. 47. no. 5, pp.562-569.
    [28] Tzong-Lin Wu, Sin-Ting Chen, and Jiunn-Nan Hwang. Numerical and experimental investigation of radiation caused by the switching noise on the partitioned dc power/ground-planes of high-speed digital PCB. IEEE Trans. On electromagnetic compatibility. Feb.2004, vol.46. no. 1,pp.33-45.
    [29] Madhavan Swaminathan, Joungho Kim, Istvan Novak, and James P. Libous. Power Distribution Networks for System-on-Package: Status and Challenges. IEEE Transactions on advanced Packaging. May. 2004, vol.27. no.2, pp.286-300.
    [30] S. Van den Berghe, F. Olyslager, D. De Zutter, J. De Moerloose, and W. Temmerman. Study of the Ground Bounce Caused by Power Plane Resonances. IEEE Transactions on Electromagnetic Compatibility. 1998, vol.40. no.2, pp.111-119.
    [31]刘涛,曹祥玉,文曦等.紧凑型电磁带隙结构的设计方法分析.电子技术应用. May.2008, vol.38.no.9, pp.90-92.
    [32] Kamgaing. T and Ramahi. O.M. A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface. IEEE Microwave and Wireless Components Letters. Jan.2003, vol.13.no.1, pp.21-23.
    [33] Abhari R. and Eleftheriades,G.V. Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits. IEEE Transactions on Microwave Theory and Techniques. June.2003, vol 51.no.6, pp.1629–1639.
    [34] Shahparnia. S and Ramahi. O.M. Simultaneous switching noise mitigation in PCBusing cascaded high-impedance surfaces. Electronics Letters. Feb.2004, vol. 40. no.2, pp. 98-100.
    [35] Kamgaing. T. and Ramahi. O.M. Design and modeling of high-impedance electromagnetic surfaces for switching noise suppression in power planes. IEEE Transactions on Electromagnetic Compatibility. Aug.2005, vol.47.no.3, pp.479– 489.
    [36] Tzong-Lin Wu, Yen-Hui Lin, and Sin-Ting Chen. A novel power planes with low radiation and broadband suppression of ground bounce noise using photonic bandgap structures. IEEE Microwave and Wireless Components Letters. July.2004, vol.14.no.7, pp.337–339.
    [37] Jinwoo Choi, V. Govind, and M. Swaminathan. A novel electromagnetic bandgap (EBG) structure for mixed-signal system applications. IEEE Radio and Wireless Conference. Sep.2004, pp.243-246.
    [38] Tzong-Lin Wu, Chien-Chung Wang, Yen-Hui Lin, Ting-Kuang Wang, and Chang. G. A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits. IEEE Microwave and Wireless Components Letters. March.2005, vol 15.no.3,.pp.174-176.
    [39] Chien-Chung Wang, Sung-Mao Wu, Chia-Hsing Chou, Chih-Wei Tsai, and Ting-Kuang Wang. A Novel Embedded Power Plane with 10GHz Stopband for Simultaneous Switching Noise. 2005 Electronic Components and Technology Conference. pp.769-771.
    [40] Jie Qin and Ramahi. O.M. Wideband SSN suppression and EMI reduction from printed circuit boards using novel planar electromagnetic bandgap structure. EMC 2006. 2006 IEEE International Symposium on Electromagnetic Compatibility. Aug.2006, vol.1, pp.151– 155.
    [41] Ramahi. O.M., Mohajer-Iravani. B., and Qin. J. EMI Suppression and Switching Noise Mitigation in Packages and Boards using Electromagnetic Band Gap Structures. International Symposium on Signals, Systems and Electronics. 2007. pp.271–274.
    [42] Scogna. A.C. and Schauer. M.A. Novel Electromagnetic Bandgap Structure for SSN Suppression in PWR/GND plane pairs. Electronic Components and Technology Conference 2007. ECTC '07. Proceedings. 57th. pp.1206–1211.
    [43] Xiao-Hua Wang, Bing-Zhong Wang, Ye-Hai Bi, and Wei Shao.A Novel Uniplanar Compact Photonic Bandgap Power Plane With Ultra-Broadband Suppression of Ground Bounce Noise. IEEE Microwave and Wireless Components Letters. May2006, vol.16. no.5,.pp.267-268.
    [44] Wei-Hua Chen, Hou Zhang, Jian Wang, and Kai Shen.A novel Z-bridged electromagnetic bandgap power plane for suppression of simultaneous switching noise. Microwave and Optical Technology Letters. February 2009, vol.51. no.2, pp.483-486.
    [45] Long Li, Qiang Chen, Qiaowei Yuan, and Kunio Sawaya. Ultrawideband Suppression of Ground Bounce Noise in Multilayer PCB Using Locally Embedded Planar Electromagnetic Band-Gap Structures. IEEE Antenna and Wireless Propagation Letters. 2009, vol.8, pp.740-743.
    [46] J.Lee, H.Kin, and J.Kim. Broadband suppression of Simultaneous switching noise and radiated emissions using high-DK thin film electromagnetic bandgap power distribution network for high speed digital PCB applications. 2005 Electromagnetic Compatibility. Aug.2005, vol.3, pp.967-970.
    [47] M.S.Zhang, Y.S.Li, C,Jia, L.P.L, and J.Pan. A double-surface electromagnetic bandgap structure with one surface embedded in power planes for ultra—wideband SSN suppression. IEEE Microwave and Wireless Component Letters. Oct.2007, vol.17.no.10,pp.706-708.
    [48] M.S.Zhang, Y.S.Li, C,Jia, and L.P.Li. A power plane with wideband SSN suppression using a multi-via electromagnetic bandgap structure. IEEE Microwave and Wireless Component Letters. Apr.2007, vol.17.no.4, pp.307—309.
    [49] Jongbae Park, Albert Chee W. Lu, Kai M. Chua, Lai L. Wai, Junho Lee, and Joungho . Kim Double-Stacked EBG Structure for Wideband Suppression of Simultaneous Switching Noise in LTCC-Based SiP Applications.IEEE Microwave and wireless components letters, Sep.2006, vol.16, no.9, pp.481-483.
    [50] Hongmin Lu, Xinli Zhang, Yu Zhi-yong, and Yimin Zhao. Wideband GBN suppression in high-speed printed circuit boards and packages using double-side electromagnetic band-gap structure. Nov. 2008, pp.1093– 1095.
    [51] Ting-Kuang Wang, Chia-Yuan Hsieh, Hao-Hsiang Chuang, and Tzong-Lin Wu. Design and modeling of a stopband-enhanced EBG structure using ground surface perturbation lattice for power/ground noise suppression. IEEE Transactions on Microwave Theory and Techniques, Aug 2009, vol.57.no.8, pp.2047-2054.
    [52] Ting-Kuang Wang, Tzu-Wei Han, and Tzong-Lin Wu. A Novel Power/Ground Layer Using Artificial Substrate EBG for Simultaneously Switching Noise Suppression. IEEE Transactions on Microwave Theory and Techniques. May 2008, vol.56. no.5, pp.1164-1171.
    [53] L .Rumsey P.M .Melinda, and P.K.Kelly. Photonic Bandgap structure used as filter in microstrip circuits. IEEE Microwave Guided Wave Letter. Oct.1998, vol.8.no.10, pp .336-338.
    [54] T.Kim and C.Seo. A novel Photonic Bandgap Structure for low-pass filter of wide stopband. IEEE Microwave Guided Wave Letter. Jan. 2000, vo1.10.no.1, pp.13-15.
    [55] F .Yang, Y.Qian, R .Coccioli and T.Itoh. Analysis and application of photonic Band gap (PBG) structure for microwave circuits. Electromagnetics. 1999, pp .241-254.
    [56] TY.Yun and K.Chang. Uniplanar one-dimensional photonic-bandgap structures and resonators. IEEE Trans. Microwave Theory Tech., Mar. 2001, vol.49. no.3, pp .543-549.
    [57] F.Yang, Y.Qian and T.Itoh. A novel high-Q image guide resonator using Band gap structures. IEEE MTT-S Int. Microwave Symp.Dig. Jun.1998, vol.3, pp.1803-1806.
    [58] J .Yu, S.Yao and L.Maleki. High-Q whispering gallery mode resonator filter with photonic bandgap spurious mode suppressing. Frequency Control Symposium and Exhibition, Proceeding of the 2000 IEEE /EIA International.2000, pp.471-474.
    [59] M,K.Fries and R.Vahldierk. Small microstrip patch antennas using slow-wave structure. Antennas and Propagation Society. IEEE International Sym. 2000. vol. 2, pp .770- 773.
    [60] I.J.鲍尔, E布哈蒂亚著;梁联倬,寇廷耀译.微带天线.电子工业出版社, 1984.
    [61] FanYang and Yahya Rahmat-Samii. Microstrip Antennas Integrated With Electromagnetic Band-Gap (EBG) Structures: A Low Mutual Coupling Design for Array Applications. IEEE Transactions on Antenna and Propagation. Oct.2003, vol.51.no.10, pp.2936-2946.
    [62] Yuan Yao, Xin Wang, and Zhenghe Feng. A Novel dual-band Compact Electromagnetic Bandgap (EBG) Structure and its Application in multi-antennas. IEEE Trans.Antennas and Propagation Society Internationals Symposium. 2006, pp.1943-1946.
    [63] Fan Yang and Y. Rahmat-Samii. Reflection Phase Characterizations of the EBG Ground Plane for Low Profile Wire Antenna Applications. IEEE Trans. Antennas and Propagation. Oct.2003, vol.51.no.10, pp.2691-2703.
    [64]梁乐.紧致型电磁带隙结构和双负媒质结构研究.西安电子科技大学博士学位论文. 2008.
    [65]付云起.微波光子晶体及其应用研究.国防科技大学博士学位论文. 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700