转子系统的降维及非线性动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着旋转机械日益向高功率、高转速、高效率以及柔性化方向的发展,工程领域中许多振动故障都与系统的非线性因素紧密相关。转子系统的非线性动力学研究历来受到研究者的重视。本文应用非线性动力学理论与方法,研究了转子系统中的若干重要问题,其主要研究目标为:1、以工程应用为背景,研究大型旋转机械的非线性动力学降维问题以及连续转子系统的非线性油膜力/密封力耦合振动特性;2、研究浮环轴承/转子系统的非线性振动特性,揭示浮环轴承/刚性转子和悬臂转子的动力学演化规律;3、针对转子的轴向摩擦问题,分析不同参数影响下,转子摩擦程度以及丰富的非线性动力学行为。本文的主要研究工作和成果包含以下几个部分:
     1、综述了动力系统的降维方法研究现状、应用及最新进展,阐明了转子非线性动力学的研究方法、研究现状和发展趋势。
     2、研究连续转子系统的近似惯性流形与非线性Galerkin降维方法,与标准Galerkin方法进行对比分析,验证了非线性Galerkin方法应用在连续转子系统中的有效性,分析了连续转子/轴承/密封系统的非线性动力学演化规律。结果表明:在截断模态的数目相同情况下,非线性Galerkin优于标准Galerkin方法。连续转子系统的油膜/密封耦合系统中,转子的响应主要表现为同步周期运动与非同步的概周期运动形式,并且在概周期运动领域存在多周期运动窗口。
     3、研究浮环轴承支撑的刚性转子和悬臂转子的动力学特性。通过改变不同的系统参数,揭示参数变化对系统稳定性的影响规律,并且利用非线性Galerkin方法的后处理格式,对连续悬臂转子系统进行分析。结果表明:浮环轴承转子系统的运动形式主要表现为周期运动,倍周期运动,概周期运动和混沌运动,并且浮环厚度、内外间隙比、润滑油粘度等参数对系统特性有重要的影响。对于考虑陀螺力矩下的连续悬臂转子系统,浮环轴承的运动规律也有所改变。
     4、研究轴向摩擦转子系统的弯扭耦合振动。主要结论为:横向振动表现为由周期运动变成多周期甚至混沌运动,并且伴随着轴心轨迹逐渐放大。扭转运动相图逐渐变得混乱,频谱中出现许多复杂频率成分。由于耦合作用,扭转和横向振动中或多或少地都会出现相同的频率成分,并且单盘摩擦影响小于双盘摩擦。
Modern turbomachinery are increasingly designed in high power, high speed, high efficiency and high flexibility. A large number of vibration failures are closely related with the nonlinear factors of a rotor system in engineering fields. It has been attract to more attention of the researchers about the nonlinear dynamics of rotor system. Application the nonlinear dynamics theories and methods in this thesis, several important problems of the rotor system are researched. Merely purpose includes: 1. the study on the dimension reduce of the rotor dynamic system in the large turbo- machinery and the vibration characters of a continue rotor with nonlinear oil film forces and the seal fluid forces together. 2. It is revealed that the floating ring bearing-rigid rotor and the overhang rotor at the evolution of dynamics by researching the nonlinear vibration characters of floating ring bearing/rotor. 3. The friction degrees and the rich dynamic behaviors under the different system parameters for the rotor with the axial rubs. Several works and results included in the thesis are as follow:
     1. The dimension reduction methods, application and latest developed are summarized. Besides, the research methods, status and further trends in rotor dynamics are indicated.
     2. The approximately inertial manifold and nonlinear Galerkin method in a continue rotor system is studied. Comparing to the standard Galerkin method, the effectiveness is explained at the application of the nonlinear Galerkin method in a continue rotor system. Furthermore, the dynamic characters in a continue rotor/bearing/seal are analyzed. The investigation shows that the nonlinear Galerkin method has an advantage over the standard one with when the same order of truncations, transitions, or bifurcations, of the rotor whirl from being synchronous to non-synchronous as the unstable speed is exceeded. The non-synchronous oil/seal whirl is a quasi-periodic motion. In the regime of quasi-periodic motion, the“windows”of multi-periodic were found.
     3. The rigid rotor and overhung rotor with floating ring bearing supporting is researched at the vibration characters. The influence discipline of system stability is revealed by adopting the varying parameters of rotor and floating ring. Furthermore, a continuous overhung rotor with gyroscopic moment is studied by the post-process version of nonlinear Galerkin method. The results show that the dynamic behaviors include periodic motion, double-periodic motion, quasi-periodic motion and chaos. Several parameters as the thickness of floating ring, the ratio of inner/outer oil gap, viscosity of lubricating oil are influence on the stability of system. The dynamical response is also revealed in an overhung rotor system with gyroscopic moment.
     4. The study on lateral and torsional vibrations of a rotor system with axial rubs. The conclusions include that the lateral vibration of rotor experiences changes from being periodic to multi-periodic and chaotic eventually. At the same time the vibrational amplitude is also enlarged. The phase portrait of the torsional response becomes complex as many frequency components appear in amplitude-frequency spectrum. Due to the couple effect, more or less same frequency components appear both in the lateral and the torsional motions. The single disk contact/rubs have less influence to the rotor dynamics than the two disk rubs have.
引文
[1]闻邦椿,武新华,丁千等,故障旋转机械非线性动力学的理论与实验,北京:科学出版社,2004
    [2]张文,转子动力学理论基础,北京:科学出版社,1990
    [3]钟一愕,何衍宗等,转子动力学,北京:清华大学出版社,1987
    [4]虞烈,刘恒,轴承一转子系统动力学,西安:西安交通大学出版社,2001
    [5]孟光.转子动力学研究的回顾与展望,振动工程学报,2002,15(1):1-9.
    [6]江哲生,董卫国,毛国光,国产1000 MW超超临界机组技术综述,电力建设,2007,28(8):6-13
    [7] Childs DW, The space shuttle sain engine high-pressure fuel turbopump rotordynamic instability problem, ASME Journal of Engineering for Power, 1978, 100(1): 48-57.
    [8] Baxter NL, Case study of rotor in stability in the utility industry, Public Service,USA,1984
    [9] C. Foias, G. R. Sell, and R. Temam, Inertial manifolds for nonlinear evolutionary equations, J.Diff. Eqs., 1988, 73: 309-353.
    [10] C. Foias, O. Manley and R. Temam, Modelling of the interaction of small and large eddies in two dimensional turbulent flows, Math. Modelling Numer. Anal. , 1988, 22, 93–114
    [11] C. Foias, M. S. Jolly, I. G. Kevrekidis, etl. On the computation of inertial manifolds. Phys. Lett. A, 1988, 131(7-8): 433–436
    [12] C Foias, G R. Sell, and E S. Titi. Exponential Tracking and Approximation of Inertial Manifolds for Dissipative Nonlinear Equations,Journal of Dynamics and Differential Equations, 1989, 1(2):199-244
    [13] R. Temam. Infinite-dimensional dynamical systems in mechanics and physics, volume 68 of Applied Mathematical Sciences. Springer-Verlag, New York, second edition, 1997.
    [14] J. C. Robinson. Infinite-dimensional dynamical systems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001. An introduction to dissipative parabolic PDEs and the theory of global attractors.
    [15] P. Constantin, C. Foias, B. Nicolaenko, etl. Integral manifolds and inertialmanifolds for dissipative partial differential equations, volume 70 of Applied Mathematical Sciences. Springer-Verlag, New York, 1989.
    [16] C. Foias, O. Manley & R. Temam, On the interaction of small and large eddies intwo-dimensional turbulent flows, Math. Modelling and Numerical Analysis, M2AN 1988, 22: 93-114.
    [17] M. Marion and R. Temam, Nonlinear Galerkin methods, SIAM J. Numer. Anal., 26, 1989: 1139–1157
    [18] J. C. Robinson. A concise proof of the“geometric”construction of inertial manifolds. Phys. Lett. A, 1995, 200(6): 415–417
    [19] M. Marion. Approximate inertial manifold for reaction-diffusion equations in high space dimension, Journal of dynamics and differential equations, 1989, 1(3):245-267
    [20] J. Sembera, M. Benes. Nonlinear Galerkin method for reaction–diffusion systems admitting invariant regions. Journal of Computational and Applied Mathematics, 2001, 136: 163–176
    [21]何银年,李开泰等,非线性Galerkin算法的收敛性和复杂性,高校应用数学学报,1999,14(3):341-349
    [22]王宗信,范先令等,非自治无穷维动力系统的惯性流形,应用数学和力学,1998,19(7):649-657
    [23]李海明,杨奎元,高维反应扩散方程的非线性Galerkin方法,兰州大学学报自然科学版,1994,30(3);15-18
    [24]伍渝江,关于二维Navier-Stokes方程非线性Galerkin校正的注记,应用数学,2002,15(1) :11-15
    [25]罗宏,蒲志林,铁磁链方程的近似惯性流形,四川师范大学学报(自然科学版),2008,31(2):131-133
    [26]罗宏,Nonlocal Kuramoto-Sivashinsky方程近似惯性流形的构造,重庆理工大学学报(自然科学),2010,24(9):89-93
    [27]吴景珠,赵鹏等,阻尼Bossinesq方程的惯性流形,云南大学学报(自然科学版),2010,32( S1):310-314
    [28]宋敉淘,曹登庆等,应用非线性Galerkin方法求解微梁的动态响,动力学与控制学报,2009,7(3):205-211
    [29] M. Marion and R. Temam, Nonlinear Galerkin methods: the finite elements case. Numer. Math, 1990,57: 205-226
    [30] A. A. O. Ammi, M. Marion, Nonlinear Galerkin methods and mixed finiteelements: two-grid algorithms for the Navier-Stokes equations, Numer. Math, 1994, 68: 189-213
    [31] B. Garcia-Archilla, J. Novo, E. S. Titi, Postprocessing the Galerkin Method: A Novel Approach to Approximate Inertial Manifolds, SIAM Journal on Numerical Analysis, 1998, 35: 941-972
    [32] B. Garcia-Archilla, J. Novo, E. S. Titi. An approximate Inertial Manifolds Approach to Postprocessing the Galerkin Method for the Navier-Stokes Equations, Mathematics of Computation, 1999, 68: 893-911
    [33] H. G. Matthies and M. Meyer, Nonlinear Galerkin methods for the model reduction of nonlinear dynamical systems, Computers and Structures, 2003, 81, 1277-1286
    [34] A. Debussche, R. Temam, Inertial manifold with delay, Appl. Math. Lett, 1995, 8(2):21-24
    [35]张家忠,陈丽莺等,基于时滞惯性流形的浅拱动力屈曲研究,振动与冲击,2009,28(6):100-103
    [36] J. Z. Zhang, Y. Liu, etl. Dynamic Snap-through Buckling Analysis of Shallow Arches under Impact Load Based on Approximate Inertial Manifolds. Dynamics of Continuous. Discrete and Impulsive Systems, Series B (DCDIS-B). 2007, 114: 287-291
    [37] Cao Dengqing, Wang Jinlin, etl. A novel order reduction method for nonlinear structural dynamical system under external periodic excitations. Science in China Series E: Technological Sciences. 2010, 53(3): 684-691
    [38]曹登庆,王晋麟等,预估校正Galerkin方法及其在大型转子-轴承系统中的应用,振动与冲击,2010,29(2):94-98
    [39] G. Kerschen, J. Golinval, etl, The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview, 2005, 41:147-169
    [40]于海,陈予恕,高维非线性动力学系统降维方法的若干进展,力学进展,2009,39(2):154-164
    [41] M. F. A. Azeezs, A. F. Vakakis, Proper orthogonal decomposition(POD) of a class of vibroimpact oscillations, Journal of Sound and vibration, 2001, 240(5), 859-889
    [42] S. Bellizzia, R. Sampaio, POMs analysis of randomly vibrating systems obtained from Karhunen–Loève expansion, Journal of Sound and Vibration,2006, 297: 774–793
    [43] R. V. Kappagantu, B. F. Feeny, Part 2: Proper Orthogonal Modal Modeling of a Frictionally Excited Beam. Nonlinear Dynamics 23: 1–11, 2000.
    [44] S.Y. Shvartsman a, C. Theodoropoulos a, etl. Order reduction for nonlinear dynamic models of distributed reacting systems. Journal of Process Control, 2000, 10: 177-184
    [45] P. Glosmann and E. Kreuzer, Nonlinear System Analysis with Karhunen–Loève Transform, Nonlinear Dynamics, 2005, 41: 111-128
    [46] P. B. Gonc-alvesa, F. M. A. Silvaa, etl. Low-dimensional models for the nonlinear vibration analysis of cylindrical shells based on a perturbation procedure and proper orthogonal decomposition, Journal of Sound and Vibration,2008, 315: 641-663
    [47] M. A. Trindade, C. Wolter, R. Sampaio, Karhunen–Loève decomposition of coupled axial/bending vibrations of beams subject to impacts, Journal of Sound and Vibration, 2005, 279: 1015-1036
    [48] R. Kappagantu and B. F. Feeny, An“OPTIMAL'”modal reduction of a system with frictional excitation, Journal of Sound and Vibration, 1999, 224(5): 863-877
    [49] G. Quaranta, P. Mantegazza, P. Masarati, Assessing the local stability of periodic motions for large multibody non-linear systems using proper orthogonal decomposition, Journal of Sound and Vibration, 2004, 271: 1015-1038
    [50] K. Kunisch and S. Volkwein, Control of the burgers equation by a reduced-order approach using proper orthogonal decomposition, Journal of Optimization Theory and Applications, 1999, 102(2): 345-371
    [51]李小康,倪振华等,本征正交分解用于屋盖风振分析的模态截断准则,振动工程学报,2009,22(3),274-279
    [52]王丹生,高智,基于特征正交分解的梁结构损伤识别,振动与冲击,2009,28(11):122-125
    [53]罗振东,王瑞文等,非定常的Navier-Stokes方程基于特征正交分解的差分格式,中国科学A辑:数学,2007,37(6):709-718
    [54]陈刚,李跃明,基于POD降阶模型的气动弹性快速预测方法研究,宇航学报,2009,30(5),1765-1769.
    [55]陈予恕,非线性振动系统的分叉和混沌理论,北京:高等教育出版社,1993
    [56]陈予恕,唐云等,非线性动力学中的现代分析方法,北京:科学出版社,1992
    [57] M. O. A. Mokhtar. Floating ring journal bearings: theory, design and optimization, Tribology international, 1981, 14(2): 113-120
    [58] R. J. Trippett, D. F. Li, High-speed floating-ring bearing test and analysis. Tribology Transactions, 1984, 27(1):73-81
    [59] A. Boyaci, H. Hetzler, etl. Analytical bifurcation analysis of a rotor supported by floating ring bearings, Nonlinear Dynamics, 2009, 57:497-507
    [60] L San Andre’s and J. Kerth. Thermal effects on the performance of floating ring bearings for turbochargers. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2004, 218(5):437-450
    [61] B. Schweizer, Oil whirl, oil whip and whirl/whip synchronization occurring in rotor systems with full-floating ring bearings, Nonlinear dynamics 2009, 57: 509-532
    [62] B. Schweizer, Dynamics and stability of turbocharger rotors, Arch Appl Mech, 2010, 80: 1017-1043
    [63] B. Schweizer, Total instability of turbocharger rotors-Physical explanation of the dynamic failure of rotors with full-floating ring bearings. Journal of Sound and Vibration, 2009, 328: 156–190
    [64] B. Schweizera, Mario Sievertb, Nonlinear oscillations of automotive turbocharger turbines, Journal of Sound and Vibration,2009, 321:955-975
    [65]岑少起,尉迟铁业,张少林等,圆锥浮环动静压轴承有限元解和试验研究,机械工程学报,1996,32(5):63-69
    [66]梁辉,郭红,张少林等,动静压浮环电主轴基本理论研究,郑州工业大学学报,1999,20(2):64-66
    [67]华绍杰,具有深浅腔的圆柱浮环动静压混合滑动轴承特性及其应用性研究,机械设计,1997,5:17-19
    [68]孟凡明,岑少起,郭红,惯性项对动静压浮环轴承推力部分静特性的影响,郑州工业大学学报,2000,21(2):100-101
    [69]岑少起,杨金锋,郭红等,惯性项对动静压浮环径向轴承压力场的影响,郑州工业大学学报,2001,22(3):6-8
    [70]岑少起,郭红,薛东岭,透平膨胀机组动静压浮环轴承稳定性研究,机械强度,2002,24(1):32-34
    [71]康召辉,任兴民等,浮环涡动对浮动环轴承油膜压力分布影响的研究,航空动力学报,2010,25(5):1197-1202
    [72]康召辉,任兴民等,浮环轴承系统中浮动环涡动运动研究,振动与冲击,2010,29(8):195-197
    [73]康召辉,任兴民等,浮环轴承系统中浮动环作用机理研究,振动工程学报,2009,22(5):533-537
    [74]虞烈,弹性箔片轴承的气弹润滑解,西安交通大学学报,2004,38 (3):327 -330
    [75]虞烈,戚社苗,耿海鹏,弹性箔片空气动压轴承的完全气弹润滑解,中国科学E辑工程科学:材料科学,2005,35 (7):746-760
    [76]耿海鹏,戚社苗,虞烈,有大预紧效应的多叶径向箔片轴承的分析,航空动力学报,2006,21(3):569-574.
    [77]汤双清,胡欢,磁悬浮轴承的应用现状与展望,机床与液压,2009,37(12):209-211
    [78]刘淑琴,磁悬浮轴承技术在电主轴中的应用,机械工人,2005(8): 21- 22.
    [79]徐龙祥,周波,磁浮多电航空发动机的研究现状及关键技术,航空动力学报,2003(1):51- 59
    [80] A. Muszynska, Rotor to stationary element rub-related vibration phenomena in rotating machinery: literature survey, The shock and vibration digest, 1989, 21(3), 3-11
    [81] R.F. Beatty, Differentiation of rotor response due to radial rubbing, Trans. ASME, Journal of Vibration, Acoustics, Stress and Reliability in Design, 1985, 107:151-160.
    [82] F. K. Choy, J. Padovan, Nonlinear transient analysis of rotor-casing rub events, Journal of Sound and Vibration, 1987, 113(3):529-545.
    [83] S. K. Choi, S. T. Noah, Mode-locking and chaos in a Jeffcott rotor with bearing clearances, Transitions of the ASME, Journal of Applied Mechanics, 1994, 61:131-138
    [84] Y. S. Choi, Noah S T, Nonlinear steady-state response of a rotor-support system, Trans, ASME, Journal of vibration, Acoustics, stress and Re1iability in Design, 1987, 109:255-261.
    [85] Chon K H, K. P. Yip, et.al, Modeling nonlinear determinism in short time series from noise driven discrete and continuous systems, International Journal of Bifurcation and Chaos, 2000, 10(20):2745-2766.
    [86] M. L. Adams, I. A. AbuMahfouz, Exploratory research on chaos concepts asdiagnostic tools for assessing rotating machinery vibration signatures, Proceedings of IFTOMM Fourth International Conference on Rotor Dynamics,Chicago, USA, September 1994,7-9
    [87] F. F. Ehrieh, Rotor dynamics response in nonlinear anisotro pie mounting systems, Proeeedings of IFTOMM Fourth International Conferenee on Rotor Dynamies, Chieago, USA, September, 1994, 1-6
    [88] J. L. ISaksson, Dynamics of a rotor with annular rub,Proceedings of IFTOMM Fourth International Conference on Rotor Dynamics, Chicago, USA, September, 1994, 85-90
    [89] F. Chu, Z. Zhang. Periodic quasi-periodic and chaotic vibrations of a rub-impact rotor system supported on film bearings, International Journal of Engineering Science, 1997, 35:963-973
    [90] F. Chu, Z. Zhang, Bifurcation and chaos in a rub-impact Jeffcott rotor system, Journal of Sound and vibration, 1998, 210(1):1-18
    [91] H. C. Piccoli, H I. Weber, Experimental observation of chaotic motion in a rotor with rubbing, Nonlinear Dynamics, 1998, 16: 55-70
    [92] Y. B. Kim, S. T. Noah. Quasiperiodic response and stability analysis for a nonlinear Jeffcott rotor, Journal of Sound and vibration, 1996, 190: 239-53
    [93] J. Jiang, H. Ulbrich, Stability analysis of sliding whirl in a nonlinear Jeffcott rotor with cross-coupling stiffness coefficients, Nonlinear Dynamics, 2001, 24: 269-83
    [94] S. Edwards, A. W. Lees, M. I. Friswell, The influence of torsion on rotor/stator contact in rotating machinery. Journal of Sound and vibration, 1999, 225: 767-778
    [95] E. V. Karpenko, E. E. Pavlovskaia, M. Wiercigroch, Bifurcation analysis of a preloaded Jeffcott rotor, Chaos, Solitons & Fractals 2003, 15: 407-416.
    [96] P. Goldman, A. Muszynska, Rotor-to-stator, rub-related, thermal/mechanical effects in rotating machinery. Chaos, Solitons &Fractals 1995, 5:1579-1601.
    [97] A. Muszynska, P. Goldman, Chaotic responses of unbalanced rotor bearing stator systems with looseness or rubs, Chaos, Solitons & Fractals, 1995, 5:1683-1704.
    [98] S. Yanabe, S. Kaneko, Y. Kanemitsu et al., Rotor vibration due to collision with annular guard during passage through critical speed, ASME trans., Journal of Vibration and Acoustics, 1998, 120: 544-550. 90
    [99] Q. Ding and Y. S. Chen, Nonstationary motion and instability of a shaft/casing system with rubs, Journal of Vibration and Control, 2001, 7(3): 327-338.
    [100]褚福磊等.碰摩转子系统中的阵发性及混沌,航空动力学报,1996,11(3):261-264.
    [101]褚福磊,张正松转子-轴承系统发生动静件碰摩时的混沌路径,应用力学学报,1998,15(2):81-86
    [102]褚福磊,汤晓瑛,唐云,碰摩转子系统的稳定性,清华大学学报自然科学版,2000,40(4):119-123
    [103]陈安华,朱萍玉,钟掘.转子系统动静件径向摩擦的振动特征,湘潭矿业学院学报,1998,13(1):33-38
    [104]陈安华,刘德顺,朱萍玉.转子系统非线性振动研究进展,湘潭矿业学院学报,1999,14(2):59-65.
    [105]陆启韶,张思进,王士敏,转子-弹性机壳系统碰摩的分段光滑模型分析,振动工程学报,2000,13(2):178-186
    [106]张思进,陆启韶,王琪.转子与定子几何不对中引起的碰摩分析,振动工程学报,1998,11(4):492-496.
    [107]张彦梅,陆启韶,张思进,一种非稳态油膜力模型下转子系统的碰摩分岔分析,振动工程学报,2002,13(1):68-73
    [108]刘献栋,李其汉,杨绍普,质量偏心旋转机械整圈碰摩的稳定性及其Hopf分叉,振动工程学报,1999,12(1):40-46.
    [109]罗跃纲,金志浩,刘长利等,非线性摩擦力对碰摩转子-轴承系统混沌运动的影响。东北大学报(自然科学版),2003,24(9):843-846
    [110]丁千,转子-轴承系统受轴向摩擦时的振动,机械强度,2004,26( 2) : 132-137.
    [111]徐可君,秦海勤,一种考虑径向-轴向碰摩的双盘转子-机匣系统力学模型的建立,振动与冲击,2007,26( 8):17-21
    [112]徐可君,秦海勤,径向-轴向碰摩双盘转子-机匣系统的数值仿真分析,振动与冲击,2007,26(7):74-84
    [113] Yuan Z. W., Chu F. L and Hao R.J, Simulation of rotor’s axial rub-impact in full degrees of freedom, Mechanism and Machine Theory,2007, 42: 763–775
    [114]陈予恕,非线性振动,天津:天津科技出版社,1983
    [115]王洪礼,张琪昌,非线性动力学理论及应用,天津:天津科学技术出版社,2002
    [116]黄文虎,夏松波,焦映厚等,旋转机械非线性动力学设计基础理论与方法,北京:科学出版社,2006
    [117] J. Shaw and S. W. Shaw, Instabilities and bifurcations in a rotating shaft, Journal of sound and vibration, 1989, 132(2): 227-244
    [118] J. Shaw and S. W. Shaw, Nonlinear resonance of an unbalanced rotating shaft with internal damping, Journal of sound and vibration, 1991, 147(3): 435-451
    [119]丁千,材料内阻、密封力激励下转子系统失稳机理的非线性分析,[博士学位论文],天津:天津大学,1997
    [120] Z. Ji and J. W. Zu, Method of multiple scales for vibration analysis of rotor–shaft systems with non-linear bearing pedestal modal, Journal of Sound and Vibration, 1998, 218(2): 293-305
    [121] A. Raghothama, S. Narayanan, Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method, Journal of Sound and Vibration, 1999, 226: 469-492
    [122]张亚红,华军等,精细积分法在迷宫密封转子系统非线性动力学特性计算中的应用,计算力学学报,2005,22(5):541-545
    [123]刘占生,崔颖等,200MW汽轮机低压转子-轴承系统的非线性动力学分析,动力工程,2004,24(3):345-350
    [124]刘恒,陈绍汀,非线性系统全局动态特性的PCM法及其在转子轴承系统中的应用,应用力学学报,1995,12(3):7-15
    [125]刘恒,虞烈等,Poincare型胞映射分析方法及其应用,力学学报,1999,31(1):91-99
    [126]郭丹,陈绍汀,非线性动力系统全局分析的变胞胞映射法与转子/轴承系统的全局稳定性,应用力学学报,1996,13(4):8-15
    [127]俞翔,朱石坚等,PMUCR方法在高维非线性动力学系统中的应用,应用力学学报,应用力学学报,2006,23(2):232-236
    [128]袁小阳,朱均,多圆盘转子-滑动轴承系统自激振动的计算与分析,西安交通大学学报,1997,31(8):80-86
    [129]吕延军,刘恒等,非线性径向主动电磁轴承-转子系统的耦合动力学特性及稳定性,机械强度,2005,27(3):301-306
    [130]赵永辉,王莉,非线性转子—SFD支承系统的分叉,航空动力学报,1999,14(4),353-356
    [131]李立,郑铁生等,求非线性转子-轴承系统周期响应的一种计算方法,应用力学学报,1995,12(3):21-25
    [132]李德信,徐健学,非线性转子-轴承系统的周期解及近似解析表达式,计算力学学报,2004,21(5):557-563
    [133]孟志强,孟光等,轴承-转子系统自激振动及迟滞、跳跃现象,润滑与密封,2007,32(1):7-10
    [134] A. Muszynska, J. W. Grant, Stability and Instability of a Two-Mode Rotor Supported by Two Fluid-Lubricated Bearings. Journal of vibration and Acoustics, 1991, 113(3): 316-324
    [135] G. Adiletta, A. R.Guido, C. Rossi, Chaotic Motions of a Rigid Rotor in Short Journal Bearings. Nonlinear Dynamics, 1996, 10: 251-269
    [136] G. Adiletta, A. R.Guido, C. Rossi, Nonlinear Dynamics of a Rigid Unbalanced Rotor in Journal bearings. Part I: Theoretical Analysis. Nonlinear Dynamics. 1997,14: 57-87
    [137] G. Adiletta, A. R.Guido, C. Rossi, Nonlinear Dynamics of a Rigid Unbalanced Rotor in Journal bearings. Part II: Experimental Analysis. Nonlinear Dynamics. 1997, 14: 157-189
    [138] J. C. Deepak. S. T. Noah. Experimental Verification of Subcritical Whirl Bifurcation of a Rotor Supported on a Fluid Film Bearing. Journal of Tribology. 1998, 120: 605-609
    [139] M F. AbAzeez, A F. Vakakis, Numerical and experimental analysis of a continuous overhung rotor undergoing vibro-impacts, International Journal of Non-Linear Mechanics,1999, 34:415-435
    [140] H. F. Castroa, K. L. Cavalcaa, etl, Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model. Journal of Sound and Vibration,2008, 317:273-293
    [141]丁千,朗作贵,曹树谦,双跨柔性转子-轴承系统动力学理论与实验研究,工程力学,2005,22(2):162-167
    [142] Q. Ding, A. Y. T. Leung. Numerical and Experimental Investigations on Flexible Multi-Bearing Rotor Dynamics. Journal of Vibration and Acoustics. 2005, 127:408~415
    [143]杨金福,杨昆,傅忠广,转子滑动轴承系统中油膜谐波振荡过程的试验研究.燃气涡轮试验与研究,2007,3:42-47
    [144]陈铁锋,荆建平等,双裂纹转子振动特性的有限元和实验研究,噪声与振动控制,2010,5:15-19
    [145]张帅,杨勇等,基于HHT的转子系统定点碰摩实验研究,振动与冲击,2010,29(7):121-125
    [146]赵广,刘占生等,转子-联轴器-轴承-隔振器系统不对中及锁频故障实验研究,动力学与控制学报,2009,7(2):171-176
    [147]陈策,杨金福等,动静压混合气体润滑轴承动态稳定性实验研究,润滑与密封,2007,32(12):30-35
    [148]任朝晖,陈宏等,双盘悬臂转子轴承系统碰摩故障数值仿真与实验分析,中国机械工程,2006,17(17):1829-1833
    [149]朱占方,褚福磊,碰摩转子系统动力学特性的实验研究,汽轮机技术,2005,47(3):190-192
    [150]谢振宇,徐龙祥等,磁悬浮轴承转子系统动态特性的实验研究,航空动力学报,2004,19(1):30-37
    [151]韩清凯,任云鹏等,转子系统油膜失稳故障的振动实验分析,东北大学学报(自然科学版),2003,24(10):959-961
    [152]周明,李其汉等,弹性环式挤压油膜阻尼器实验研究与应用,航空动力学报,1998,13(4):408-412
    [153] D. W. Childs, Dynamic analysis of turbulent annular seals based on Hirs’lubrication, Journal of Lubrication Technology, 1983, 105: 429-439
    [154] L. San Andres, Dynamic force and moment coefficients for short length annular seals, Journal of Tribology, 1993, 115: 61–70
    [155] A. Muszynska, Improvements in lightly loaded rotor/bearing and rotor/seal Models, ASME Trans., Journal of Vibration and Acoustics, 1988, 110: 129-136
    [156] A. Muszynska and D. E. Bently, Frequency-swept rotating input perturbation techniques and identification of the fluid force models in rotor/bearing/seal systems and fluid handling Machines, Journal of Sound and Vibration, 1990, 143, 103-124
    [157] A. Muszynska and D. E. Bently, Anti-swirl Arrangements Prevent Rotor/seal Instability, ASME Trans., Journal of Vibration and Acoustics, 1989, 111, 156-162
    [158] Q. Ding, J. E. Cooper and A. Y. T. Leung, Hopf bifurcation analysis of a rotor/seal system, Journal of Sound and Vibration, 2002, 252, 817-833
    [159] J. Hua, S. Swaddiwudhipong, Z. S. Liu, etl, Numerical analysis of nonlinear rotor-seal system, Journal of Sound and Vibration, 2005, 283, 525-542
    [160] M. Cheng, G. Meng and J. Jing, Non-linear dynamics of a rotor-bearing-seal system. Archive of Applied Mechanics,2006, 76:215-227
    [161] X. Shen and M. Zhao, Effect of the seal force on nonlinear dynamics and stability of the rotor-bearing-seal system. Journal of Vibration and Control, 2009, 15, 197-217
    [162] Q. Ding and A.Y.T. Leung, Nonstationary processes of rotor/bearing system in bifurcation. Journal of Sound and Vibration, 2003, 268: 33-48
    [163] D. Younesian and E. Esmailzadeh, Non-linear vibration of variable speed rotating viscoelastic Beams, Nonlinear Dynamics, 2010, 60: 193-205
    [164] M. Ansari, E. Esmailzadeh and D. Younesian. Internal-external resonance of beams on non-linear viscoelastic foundation traversed by moving load,Nonlinear Dynamics, 2010, 61: 163-182
    [165] G. Rega and H. Troger, Dimension reduction of dynamical systems: methods, models, applications, Nonlinear Dynamics, 2005, 4:1-15
    [166] A. Steindl, H. Troger, Methods for dimension reduction and their application in nonlinear dynamics, International Journal of Solids and Structures, 2001, 38, 2131-2147
    [167]张文,郑铁生,马建敏等,油膜轴承瞬态非线性油膜力的力学建模及其表达式,自然科学进展,2002,12(3):255-260
    [168]徐小峰,张文,一种非稳态油膜力模型下刚性转子的分岔和混沌特性,振动工程学报,2000,13(2):247-252
    [169] S. Park, W. K. Chung, Y. Youm, etl, Natural frequencies and open-loop responses of an elastic beam fixed on a moving cart and carrying an intermediate lumped mass, Journal of Sound and Vibration, 2000, 230:591-615
    [170] K. H. Low. On the methods to derive frequency equations of beams carrying multiple masses, International Journal of Mechanical Sciences, 2001, 43, 871-881
    [171] Q, Ding, A. Y. T. Leung and J. E. Cooper, Dynamic analysis of a self-excited system with hysteretic non-linearity, Journal of Sound and Vibration, 2001, 245, 151-164
    [172] Shaw M.C., Nussdorfer T.J. An analysis of the full-floating journal bearing , Report No.866, NACA
    [173]沈那伟,陈照波,焦映厚等,浮环轴承支承悬臂转子系统转子动力学特性分析,2010,29(s):180-183
    [174]杨金福,王永军,陈策等,浮环轴承非线性耦合动力润滑特性研究,2007年11月,第八届全国摩擦学大会论文集
    [175]丁千,陈予恕,弹性转子-轴承系统稳定性分析,应用力学学报,2000, 17(3): 111-116
    [176] G. Ying, G. Meng, J. Jing, Turbocharger rotor dynamics with foundationexcitation, Archive of Applied Mechanics, 2009, 79: 287-299
    [177] K. Nandakumar and A. Chatterjee, Nonlinear secondary whirl of an overhung rotor, Proc. R. Soc. A ,2010, 466, 283-301
    [178] W. Qin, G. Chen, G. Meng, Nonlinear responses of a rub-impact overhung rotor, Chaos, Solitons and Fractals, 2004, 19: 1161-1172
    [179]陈宏,张晓伟,宋雪萍等,考虑密封的悬臂转子系统的裂纹故障分析,应用力学学报,2006,23(1):145-149
    [180] P. Goldman, A. Muszynska, Chaotic behaviour of rotor/stator systems with rubs. Trans. ASME, Journal of Engineering for Gas Turbines and Power, 1994, 116: 692-701.
    [181] Q. Ding, Backward whirl and its suppression of a SFD-mounted rotor/casing system in passage through critical speed with rubs. Journal Vibration and Control, 2004, 10(4): 561-574
    [182]何正嘉,黄昭毅.机械故障诊断案例选编.西安:西安交通大学出版社, 1991, 113-118
    [183]徐可君,秦海勤.偏心量对轴向碰摩系统弯扭耦合非线性振动特性影响的分析.应用力学学报,2006,23(4): 577-582
    [184]张跟胜,丁千,陈予恕,轴向摩擦双盘转子的振动分析,机械强度,2009, 31(5):712-718
    [185]张跟胜,多盘转静子系统轴向摩擦的振动分析,[硕士学位论文],天津:天津大学,2007
    [186]李朝峰,耦合故障复杂转子-轴承非线性系统的运动稳定性与实验研究,[博士学位论文],辽宁:东北大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700