气旋式非接触真空吸取技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气旋式非接触真空吸盘作为一种新兴的气动执行元件,可以在对工件进行吸取和搬运的时候与工件保持非接触状态。因此它具有对被吸工件非接触、无损伤、无污染等优点,在制药、半导体等对工件要求无损和高洁净度的行业具有迫切而广泛的应用需求。
     虽然国际上已有此方面的文献报道,然而由于技术封锁,对气旋式非接触真空吸盘还没有公开的设计方法和理论可以应用。因此,要打破技术封锁,尽快研究出自己的气旋式真空吸取技术,需要对气旋式真空吸取的吸力产生机理、吸盘结构设计、动态工作特性和系统集成等多方面进行深入研究。
     通过理论分析、试验测试和系统实现等研究工作,本文取得了以下一些研究成果:
     (1)针对气旋式非接触真空吸盘真空吸力产生和调节的机理性分析需要,采用Fluent软件对吸盘内部流场进行了数值模拟,获得了吸盘内部强旋回流流动的流场分布规律以及吸盘工作参数对吸取力的影响,为吸盘的结构设计和性能测试打下了基础。
     (2)构建了吸盘性能综合试验系统,对数值分析所获得的流场分布规律进行了试验验证。试验研究了吸盘工作参数对吸力和工作动态过程的影响,获知影响吸取过程的主要因素是供气流量和吸取时初始间隙。得出为了减小工件振动,应尽量减小初始间隙并采用“先大后小”的流量控制原则,以及为避免扭转效应,气旋式非接触吸盘应多个成对使用的原则。这些结果对于气旋式非接触真空吸盘及其系统设计和操作具有非常重要的参考价值。
     (3)设计了一个实际的气旋式非接触真空搬运系统,验证了气旋式真空吸盘的机理分析和试验研究成果,获得了气旋式非接触真空搬运系统的设计和应用的宝贵经验。
As a novel pneumatic actuating component, Non-Contact Vortex Vacuum Cup could keep non-contact status when picking workpiece. It has merits of non-contact, non-damage and free-pollution so that it has an urgent and wide application requirement in medicine and semiconductor producing areas in which non-damage and high clean condition are required.
     Although there are some literatures about the Non-Contact Vortex Cup, there are still no public and ready theory and design method for application due to technical blockade. Therefore, in order to remove the blockade and master our own vortex vacuum cup technology, it is necessary to research on the working principle, structure design of the cup, dynamical working characteristics and system constitution.
     In this paper, some research results have been obtained through theoretical analysis, experiment and system implementation.
     (1) Focusing on the demand of working principle analysis of the non-contact vortex cup, the flow field of the vortex cup has been numerical simulated, so that the flow pattern and the relation of the lifting force with the working parameters have been obtained, which provided a basis for the structure design and experiment.
     (2) The testing system has been built, by which the flow pattern from the numerical analysis is tested for verification and the affection law of the vortex cup parameters on the lifting force and dynamical working process has been also experimented. Then the supply air flowrate and the initial gap have been aware of main factors affecting the levitation process. Thus to reduce the vibration when working some principles are summarized, such as minimum initial gap and "great-to-little" flow control method and pairing use of the vortex cups to avoid rotation effection. These results are very important for the design and operation of the non-contact vortex vacuum cup and its system.
     (3) A non-contact vacuum handling system is built up to verify the research results of the vortex cup and some valuable experiences of design and application for the non-contact handling system have been obtained.
引文
[1]门连通,白淑潘.非接触式搬运设备在液晶物流中的应用[J].物流技术,2006(5):27-29
    [2]郑学强,张佳辑等.一种新型磁悬浮工作平台的结构设计与特性分析[J].中国科技论文在线,2010,5(8):651-655
    [3]郭友军,王海鹏,谢文军.电磁悬浮和声悬浮过程的动态摄像研究[J].西北工业大学学报.2008,26(5):655-658
    [4]赵理曾,秦勇.光学悬浮及其应用[J].物理,1995,24(6):331-335
    [5]王新杰.光电反馈式静电悬浮技术研究[D].杭州:浙江大学硕士论文,2002
    [6]彭太江,杨志刚等.超声波悬浮能力及其试验研究[J].压电与声光,2006,28(2):229-231
    [7]VINCENAT V, PIERRE L, ALAN D. Non-contact handling in mocroassembly: Acoustical levitation[J]. Precision Engineering,2005,29:491-505
    [8]解文军.声悬浮优化设计理论及其应用[D].西安:西北工业大学博士论文.2002
    [9]http://www.vertinfo.com/vertnew/vertnewsview.asp?id=29162&isrc=0,2008-4-28
    [10]Shouichiro Iio, Masako Umebachi, Xin Li, etc. Performance of a non-contact handling device using swirling flow with various gap height[J]. The Visualization Society of Japan, 2010(13):319-326
    [11]博世力士乐中国.博世力士乐食品与包装解决方案
    [12]赵彤.气动技术的发展及在新领域中的应用[J].液压气动与密封,2004(2):1-5
    [13]SMC中国有限公司.新型搬送非接触产品.2007
    [14]SMC中国有限公司.SMC2007新产品鉴赏.2007
    [15]王涛,杨玉贵,彭光正.半导体及平板显示器制造业中的空气非接触搬运技术[J].液晶与显示,2009,24(3):404-407
    [16]Toshikazu Tanae. Non-Contact Carrying Device[P]. Patent United States Patent: US7452016B2,2008-11-18
    [17]Hiromitsu Tokisue, Kazuhiko Matsuoka. Development of Non-contact handling system for Semiconductor wafers[J]. Electronic Manufacturing Technology Symposium, 1989(4):246-249
    [18]吉田弘.非接触搬送机器NCTシリーズ[J].油空压技术,2005(4):24-27.
    [19]早川恭弘.非接触搬送の可视化[J].油空压技术,2007(8):7-11
    [20]詹典育,任志强.应用CFD模拟于新型气压真空吸盘设计[C].中国机械工程学会第二十二届全国学术研讨会论文集,2006:135
    [21]任志强.Application of CFD to the Design of Novel Pneumatic Vacuum Pads[R].台湾:国立云林科技大学.2008:1-20
    [22]詹典育.应用CFDRC模拟设计接触与非接触真空吸盘[D].台湾:国立云林大学硕士论文,2007:16-27
    [23]滕燕,李小宁,赵萍萍.流量自调式射流真空发生器[J].机械工程学报,2008,44(9):241-247
    [24]Xin Li, Kenji Kawashima, Maolin Cai. Research on a non-contact handling system using swirling flow[J]. Transactions of the Japan Fluid Power System Society,2007(1):1-6
    [25]Seikal Yo, Katsuaki Takahashi, Masayuki Hosonoe, Kazuo Nakano. Non-Contact Transport Apparatus[P]. United States Patent:US7690869B2,2010-4-6
    [26]香川利春,黎鑫.旋回流用非接触搬送装置[J].油空压技术,2008(3):8-11
    [27]叶骞,孟国香等.旋流式非接触吸盘[P].中国专利:CN2269693,2008-9-17
    [28]阮晓东,郭丽媛等.旋涡式非接触硅片夹持装置的流动计算及试验研究[J].机械工程学报,2010,46(16):189-194
    [29]Liyuan Guo, Xiaodong Ruan. Study on vortex non-contact holder[C].7th International Conference on Fluid Power Transmission and Control,2009:616-619.
    [30]阮晓东,郭丽媛,傅新,邹俊.涡旋式非接触硅片夹持装置[P].中国专利:CN101510521A,2009-8-19
    [31]徐立芳.非接触涡流负压搬运器的流场特性及试验研究[D].大连:大连海事大学硕士论文,2010:13-28
    [32]Wenqi Ma, Lifang Xu, Hechun Yu. Structural Optimization of Non-contact Vortex Negative Pressure Carrier[J]. Advanced Materials Research,2010(3):97-101
    [33]SMC 有限公司. SMC-Experts in the Photovoltaic Industry,2008.7
    [34]侍海静.基于节流-遮断功能分离的真空失效遮断器结构及试验研究[D].南京理工大学硕士论文,2008:1-2
    [35]Xin Li, Kenji Kawashima, Toshiharu Kagawa. Research on vortex cup with annular flat skirt[C].7th International Conference on Fluid Power Transmission and Control, 2009:587-592
    [36]Xin Li, Kenji Kawashima, Toshiharu Kagawa. Dynamic Characteristics of Vortex Levitation[C]. International Conference on Instrumentation, Control and Information Technology,2008:1175-1180
    [37]Xin Li, Kenji Kawashima, Toshiharu Kagawa. Vortex Levitation[J].10th International Conference on Fluid Control, Measurements, and Visualization.2009:17-21
    [38]Xin Li, Kenji Kawashima, Toshiharu Kagawa. Dynamic Modeling of Vortex Levitation[J].7th International Conference on System Simulation and Scientific Computing,2008:218-224
    [39]王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004:39-45
    [40]邵春收.新型双路涡流管的研究[D].南京:南京理工大学硕士论文,2009.9:12-13
    [41]周少伟,姜任秋等.涡流管内三维强旋流流场数值模拟[J].机械工程学报,2007,43(12):229-234
    [42]Fluent 6.3.Use's Guide. Fluent Inc.,2006
    [43]H.K.Versteeg, W. Malalasekera. An Introduction to Computational Fluid Dynamics:The Finite Volume Method[M]. New York,1995
    [44]GAMBIT Modeling Guide. Fluent Inc.,2003
    [45]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004:22-23
    [46]王瑞金,张凯.FLUENT技术基础与应用实例[M].北京:清华大学出版社,2007:37-39
    [47]SMC中国有限公司.现代实用气动技术[M].北京:机械工业出版社,1998:40-42
    [48]章宏甲,黄谊,王积伟.液压与气动传动[M].北京:机械工业出版社,2000:51-52
    [49]刘树红,吴玉林.应用流体力学[M].北京:清华大学出版社,2006:63-65
    [50]GB/T3452.3-1988
    [51]朱克勤,许春晓.粘性流体力学[M].北京:高等教育出版社,2009:83-84
    [52]赵孝保,周欣,顾伯勤.工程流体力学[M].南京:东南大学出版社,2004:150-151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700