混合动力汽车用无刷电无级变速器及其控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现如今,高度发展的汽车工业和持续增长的汽车使用量在全球已经引发了严重的环境和碳氢资源问题。为了缓解石油紧张带来的问题和减少空气污染物的排放量,新能源汽车已得到越来越多的关注。目前最有发展前途的技术是混合动力汽车和纯电动汽车。纯电动汽车完全依靠电能驱动,实现零排放和零油耗,但大规模储能的蓄电池成为目前的瓶颈,限制了其大规模商业化的发展。而混合动力汽车则是纯电动汽车到来前的过渡产品,可以有效的降低油耗和减少尾气的排放。这两种汽车目前已成为各国各大汽车公司的发展热点,并将在10年内实现大规模应用。
     本文的研究对象是混合动力汽车用动力系统,总共分为两个部分,前一部分是电无级变速器混合动力系统,后一部分是无刷电无级变速器混合动力系统。前一部分为基础,后一部分为拓展和创新。分别对两个系统进行了结构及原理分析,数学建模,等效电路分析,能量流动情况分析,控制策略提出,控制器软硬件设计和仿真实验等工作。
     首先从电无级变速器入手,分析了其工作原理和结构特点。对电无级变速器中的核心部件——双机械端口电机进行了数学建模,模型采用双同步速坐标系,分别给出了考虑和忽略定子和内转子绕组之间耦合情况下的数学模型。提出了交流电机等效电路统一建立方法,采用该方法可以方便地建立各种复杂交流电机的等效电路,并且能够对其电端口和机械端口进行清晰的定义,同时能够分析和计算电机中的能量流动情况。按照该方法,建立了双机械端口电机的等效电路,并分析了不同工况下的电机运行状态和能量流动情况。
     文中提出了双机械端口电机的两种控制方式:转速-转速控制和转矩-转速控制。基于两种控制方式提出了电无级变速器的总成控制策略,根据内燃机开启条件和最优效率曲线,在不同工况下需要采用不同的双机械端口电机控制策略。永磁同步电机的弱磁方法可以运用在双机械端口电机上,但是弱磁范围受到电机结构的影响。设计了一台双机械端口电机样机,并搭建了一个电无级变速器模拟实验平台,在该平台上进行了一系列的实验。
     在前一部分的基础上,提出了一种新型混合动力汽车用动力系统——无刷电无级变速器系统,其主要部件为无刷双机械端口电机。提出了其几种可能的结构,以一种结构为研究对象,详细分析了其工作原理,给出了需要特别注意的电机绕组的连接方式。说明了在不同工况下,无刷电无级变速器系统各部件中的能量流动情况。建立了无刷双机械端口电机数学模型和等效电路。
     文中提出了无刷双机械端口电机的两种控制策略:功率-转速控制和转速-转速控制。其中,功率-转速控制采用一种新型的三相桥控制方式,能够在不需要知道内、外转子位置和电机参数的情况下对电机回馈直流母线的能量进行控制,该方法简单易行,完全不受电机参数的影响。基于上述两种电机控制策略,提出了无刷电无级变速器总成控制策略,根据不同的工况采用不同的电机控制方法。提出了一种异步电机全转速范围内最大转矩输出控制策略,该策略能够最大限度地使用电机和控制器的电压电流极限,提高输出转矩,该策略也可以运用在无刷双机械端口电机上。制作了一台无刷双机械端口电机样机,搭建了无刷电无级变速器实验平台,在该平台上进行了一系列的实验,并且运用仿真和实验方法验证了所述控制策略的正确性。
Nowadays, the highly developed vehicle industry and the huge amount of cars aroused serious problems of envirment and resources. For releasing these issues, renewable power vehicle draws more and more attentions. The most promising technology is Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV). EV uses pure electrical power to drive cars which ensure zero emission and free from gasoline, but the battery capacity is the key problem which hinders its commecializtion. HEV is the transition product before EV's maturation which can effectively reduce oil consumption and exaust emission. These two kind of clear vehicles became the hot point in lots of car companies all over the world, and it is forseed that the commercialization will be realized in ten years.
     In this thesis, the research target is the dynamic system of HEV. All of the contents can be separated into two parts, the former one is about Electrical Variable Transmission (EVT) system; the latter one is Brushless Electrical Variable Transmission (BLEVT) system. It can be treated that the former one as the foundation, the latter one as expention and innovation. For both systems, the structures and operation principles are analized, the mathematic models and equivalent circuits are established, the control strategies are brought out, simulation and experiment works are done to prove the valitaty of these strategies.
     For EVT, the operation principles and structure are analized. The mathematic model of the key part of EVT—Dual-Mechanical-Port Electrical Machine (DMPEM)—has been established. The model is based on Dual-Synchronous-Coordinate (DSC), the conditions that with and without the coupling of inner rotor and stator windings are considered separately. The universal method of establishing AC machine equivalent circuit is proposed, by using it all of the equivalent circuits of complex AC machines can be get easely, and the operation modes and power flow conditions can be analized. Based on this method, the equivalent circuit of DMPEM is given.
     Two kinds of DMPEM control strategies are brought out:Speed-Speed Control (SSC) and Torque-Speed Control (TSC) strategies. Based on the two strategies, the EVT control strategy is given. Considering the Internal Conbustion Engine (ICE) on/off conditions and optimal efficiency curve, different DMPEM control strategies will be used in different operation modes. The field weakening algorithm of Permanent Magnet Electrical Machine (PMEM) can also be used in DMPEM, but the speed range is restricted by machine structure. A protype machine is built, and an EVT simulation platform is established, on which a series of experiments are done.
     Based on the foundation of EVT, a brand new system for HEV—BLEVT—and its key component Brushless Dual-Mechanical-Port Electrical Machine (BLDMPEM) are proposed. BLDMPEM may have several possible structures; the research work is carried out on one of them. The working principle of the system is discussed. For special attention, the machine windings conection method is highlighted. In different operation modes, the power flows in all of the componets of BLEVT are ploted. Finally, the mathematic model and equivalent circuit of BLDMPEM are established.
     The control strategies of BLDMPEM are proposed, they are Power-Speed Control (PSC) and Speed-Speed Control (SSC) separately. For PSC, a new kind of three-phase-bridge control method is put forward, by using which the feedback power to DC bus can be controlled without speed of both rotors' and it is immune to machine parameters variation. Based on the two methods, the BLEVT control strategy is given. Later, a kind of asynchronous machine maximum output torque in full speed range control strategy is proposed. This algorithm ensures the furthest using of voltage and current abilities of the controller for the largest output torque. This method can also be applied to BLDMPEM. A protype machine of BLDMPEM and a BLEVT experimental platform are built, based on which, the experiments are done. The experimental and simulation results show the validaty of proposed algorithm.
引文
[1]陈清泉,孙逢春,祝嘉光.现代电动汽车技术.北京理工大学出版社,2002.
    [2](美)M. Ehsani, Y. Gao, A. Emadi著,倪光正等译.现代电动汽车、混合动力电动汽车和燃料电池车——基本原理、理论和设计(第二版).机械工业出版社,2010.
    [3](波兰)A. Szumannowski著,陈清泉,孙逢春编译.混合电动车辆基础.北京工业大学出版社,2001.
    [4]史广奎.应用Advisor研究丰田混合动力系统.汽车工程,2003(9):13-16.
    [5]景升.看谁“混”的好.世界汽车,2008(2):96-103.
    [6]K. Muta, M. Yamazaki, J. Tokieda. Development of New-Generation Hybrid System THS Ⅱ-Drastic Improvement of Power Performance and Fuel Economy. SAE World Congress, Michigan,2004.
    [7]J. S. Hsu, C. W. Ayers, C. L. Coomer. Report on Toyota/Prius motor design and manufacturing assessment. Oak Ridge National Laboratory,2004.
    [8]K. Asano, Y. Inaguma, H. Ohtani et al. High Perfprmance Motor Drive Technologies for Hybrid Vehicles. Power Conversion Conference, Nagoya, 2007:1584-1589.
    [9]T.Backstrom. Integrated Energy Transducer Drive for Hybrid Vehicles [Doctor's thesis]. Royal Institute of Technology, Stockholm, June 2000.
    [10]T.Backstrom, C.Sadarangani, S.Ostlund. Integrated Energy Transducer for Hybrid Electric Vehicles.8th International Conference on Electrical Machines and Drives, 1997:239-243.
    [11]S.Chatelet, C.Sadarangani. Four-Quadrant Energy Transducer Test Bench, EVS19, 2002, Busan, Korea.
    [12]Erik Nordlund, Prof.Chandur Sadarangani. The Four-Quadrant Energy Transducer. 37th Industry Applications Conference, Pittsburgh PA, United states,2002, (1): 390-397.
    [13]Eriksson.S, Sadarangani.C. A Four-Quadrant HEV Drive System. IEEE 56th Vehicular Technology Conference, Vancouver, BC, Canada,2002(56):1510-1514.
    [14]Nordlund.E, Eriksson.S. Test and Verification of a Four-Quadrant Transducer for HEV Applications. IEEE Vehicle Power and Propulsion Conference, Chicago, IL, United states,2005:37-41.
    [15]E.Nordlund. The Four-Quadrant Transducer System. Doctor's thesis, Royal Institute of Technology, Stockholm, June 2005.
    [16]E.Nordlund, P.Thelin, C.Sadarangani. Four-Quadrant Energy Transducer for Hybrid Electric Vehicles.15th International Conference on Electrical Machines, Brugge, Belgium,2002.
    [17]E.Nordlund, C.Sadarangani. Hybrid Electrical Vehicles Simulations and System Description, EVS19, Busan, Korea,2002.
    [18]Hoeijmakers.M.J, Ferreira.J.A. The Electrical Variable Transmission.39th Industry Applications Conference, Seattle, WA, United states,2004(4):2770-2777.
    [19]Martin.J.Hoeijmakers, Marcel Rondel. The Electrical Variable Transmission in a city bus.35th IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004(4):2773-2778.
    [20]Longya Xu. Dual-Mechanical-Port Electric Machines-A New Concept in Design and Analysis of Electric Machines.40th Industry Applications Conference, Kowloon, Hong Kong, China,2004(4):2828-2834.
    [21]Longya Xu, Yuan Zhang, Xuhui Wen. Multi-opertional Modes and Control Strategies of Dual-Mechanical-Port Machine for Hybrid Electrical Vehicles. IEEE Transactions on Industry Applications,2009,2(45):747-755.
    [22]Zheng.P, Thelin.P, Chen.A, et al. Measurements and Calculations of Inductances of a 4QT Hybrid Electric Vehicle Prototype Machine. Published in Proceedings of the IEEE Vehicular Power and Propulsion Symposium, Paris, France,2004.
    [23]Zheng.P, Thelin.P, Nordlund.E, et al. Consideration of Skewed Slots in the Performance Calculations of a Four-Quadrant Transducer. Published in Proceedings of the IEEE Vehicular Power and Propulsion Symposium, Paris, France,2004.
    [24]Zheng Ping, Liu Ranran, Thelin.Peter, et al. Research on the Parameters and Performances of a 4QT Prototype Machine Used for HEV. IEEE Transactions on Magnetic,2007,43(1):0018-9464.
    [25]Ping Zheng, Ranran Liu, Peter Thelin, et al. Research on the Cooling System of a 4QT Prototype Machine Used for HEV. IEEE Transactions on Energy Conversion, 2008,23(1):61-67.
    [26]Ping Zheng, Ranran Liu, Qian Wu et al. Magnetic Coupling Analysis of Four-Quadrant Transducer Used for Hybrid Electric Vehicles, IEEE Transaction on Magnetics.2007,34(6):2597-2599.
    [27]Ping Zheng, Ranran Liu, Weiguang Fan et al. Research on the Control of a Radial-Radial Flux Compound-Structure Permanent-Magnet Synchronous Machine Used for HEVs.14th Symposium on Electromagnetic Launch Technology, Victoria, BC,2008:1-6.
    [28]Ranran Liu, Hui zhao, Chengde Tong et al. Experimental Evaluation of a Radial-Radial-Magnet Compound-Structure Permanent-Magnet Synchronous Machine Used for HEVs. IEEE Transaction on Magnetics.2009,45(1):645-649.
    [29]Ping Zheng, E.Nordlund, Thelin.P et al. Investigation of the Winding Current Distribution in a 4-Quadrant-Transducer Prototype Machine. IEEE Transaction on Magnetics.2005,41(5):1972-1975.
    [30]Ping Zheng, Thelin.P, Anyuan Chen et al. Influence of Saturation and Saliency on the Inductance of a Four-Quadrant Transducer Prototype Machine. IEEE Transaction on Magnetics.2006,42(4):1319-1322.
    [31]Zhao Jing, Zheng Ping, Ranran Liu et al. Investigation of an Axial-Axial Flux Compound-Structure Permanent-Magnet Synchronous Machine Used for HEVs. 14th Biennial IEEE Conference on Electromagnetic Field Computation, Chicago, IL, USA,2010:1-1.
    [32]韩建群,郑萍.基于Matlab的永磁同步双定子/双转子电机直接转矩控制的仿真建模.微电机,2007,40(4):1-4.
    [33]Shumei Cui, Yuan Cheng, C.C.Chan. A Basic Study of Electrical Variable Transmission and Its Application in Hybrid Electric Vehicle. IEEE Vehicle Power and Propulsion Conference, Windsor,2006:1-4.
    [34]Cui Shumei, Huang Wenxiang, Cheng Yuan et al. Design and Experimental Research on Induction Machine based Electrical Variable Transmission. IEEE Vehicle Power and Propulsion Conference, Arlingtion, TX,2007:231-235.
    [35]Cui Shumei, Huang Wenxiang, Zhang Qianfan. Research on Power Density Improvement Design of an HEV using Induction Machine based Electrical Variable Transmission. IEEE Vehicle Power and Propulsion Conference, China,2008.
    [36]Keyu Chen, Walter Lhomme, Alain Bouscayrol et al. Comparison of two Series-Parallel Hybrid Electric Vehicles focusing on control Structures and operation modes. IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, 2009:1308-1315.
    [37]Yuan Cheng, Keyu Chen, C. C. Chen et al. Global Modeling and Control Strategy Simulation for a Hybrid Electric Vehicle using Electrical Variable Transmission. IEEE Vehicle Power and Propulsion Conference, China,2008.
    [38]Yuan Cheng, Cui Shumei, Liwei Song et al. The Study of the Operation Modes and Control Strategies of an Advanced Electromechanical Converter for Automobiles. IEEE Transaction on Magnetics.2007,43(1):430-433.
    [39]Tao Fan, Xuhui When, Jingwei Chen et al. Permanent Magnet Dual Mechanical Port Machine Design for Hybrid Electric Vehicle Application. IEEE International Conference on Industrial Technology, Chengdu, China,2008:1-5.
    [40]赵峰,温旭辉,刘钧等.永磁-永磁型双机械端口电机系统建模.中国电机工程学报,2007,27(21):59-65.
    [41]温旭辉,赵峰,范涛等.基于双机械端口电机的新型电力无级变速系统研究.电工技术学报,2007,7(22):24-28.
    [42]赵莉,郭秋鉴,温旭辉等.双机械端口电机线性解耦控制.电工技术学报,2009,3(24):67-73.
    [43]赵莉,郭秋鉴,赵峰.混合动力汽车用双机械端口电机及其相关技术.变频器世界,2008,4:12-16.
    [44]Song Xuelei, Wen Xuhui, Zhao Feng et al. A Control and Drive System for Permanent Magnetic Dual Mechanical Port Electric Machine used in Hybrid Electric Vehicles. IEEE International Conference on Electrical Machines and Systems, Tokyo, Japan,2009:1-4.
    [45]庞珽,陈骁,黄声华,王双红,电无级变速器的内燃机最佳效率控制。电工技术学报,2011,26(6):26-32.
    [46]庞珽,黄声华,王双红,陈骁,双机械端口电机双同步坐标系控制。电网技术,2011,35(5):132-137.
    [47]Ting Pang, Shenghua Huang, Xiao Chen, et al. Research on Modeling and Several Other Prospective Problems of Dual Rotor Machine. International Conference on Electrical Machines and Systems, ICEMS 2008,2008:3612-3616.
    [48]庞珽。混合动力汽车电无级变速器传动机构及其控制系统研究[博士学位论文].华中科技大学,2010.
    [49]Wei Shi, Zhouyun Zhang, Surong Huang et al. Analyze of Dual-axle Four Quadrant Transducer Motor Operation Mode. International Conference on Electrical Machines and Systems, ICEMS 2008,2008:3568-3571.
    [50]王爱元,郭环球.永磁式双转子电机的理论与实践.上海电机学院学报,2000,(9):20-22.
    [51]史广奎,赵航,冯琦.双转子混合动力系统研究.汽车工程,2007,29(2):97-100.
    [52]Xikai Sun, Ming Cheng, Wei Hua et al. Optimal Design of Double-Layer Permanent Magnet Dual Mechanical Port Machine for Wind Power Application. IEEE Transactions on Magnetics,2009,45(10):4613-4616.
    [53]Guangwei Liu, Fengge Zhang, Xin Liu. Performance Analysis on Opposite Rotation Dual Mechnical Ports PMSM. IEEE International Conference on Electrical Machines and Systems, Wuhan, China,2008:2792-2796.
    [54]Xiao Chen, Shenghua Huang, Ting pang, Shuanghong Wang, The Principle and Mathematic Model of the Brushless Doubly-Fed Electrical Variable Transmission, International Conference on Electrical Machines and Systems, ICEMS 2008.2008: 3617-3621.
    [55]黄声华,万山明,庞珽.无刷双机械端口电机.中华人民共和国.发明专利.ZL200710053287.4,2010.
    [56]万山明,黄声华,陈骁等.双永磁型无刷双馈双机械端口电机.中华人民共和国.实用新型专利.ZL200920084113.9.
    [57]陈骁,黄声华,万山明等.一种无刷单馈双机械端口电机.中华人民共和国.实用新型专利.ZL200820193573.0.
    [58]万山明,黄声华,陈骁等.一种径向磁场的无刷双馈双机械端口电机.中华人民共和国.实用新型专利.ZL200820193574.5.
    [59]陈骁,黄声华,万山明等.一种轴向磁场的无刷双馈双机械端口电机.中华人民共和国.实用新型专利.ZL200820193571.1.
    [60]Fan Tao, Wen Xuhui, Xue Shan et al. A Brushless Permanent Magnet Dual Mechanical Port Machine for Hybrid Electric Vehicle Application. IEEE International Conference on Electrical Machines and Systems, Wuhan, China, 2008:3604-3607.
    [61]M. R. Cuddy, K. B. Wipke. Analysis of the Fuel Economy Benefit of Drive Train Hybridization. SAE,1997:101-103.
    [62]B. Johnston, T. Mcgoldrick, D. Funston et al. The Continued Design and Development of the University of California, Davis Future Car. SAE 1998:459-462.
    [63]K. L. Bulter, K. M. Stavens. A Versatial Computer Simulation Tool for Design and Analysis of Electric and Hybrid Drive Trains. SAE,1997:22-24.
    [64]S. R. Cikanek, K. E. Baly, R. C. Baraszu et al. Control System and Dynamic Model Validation for a Parallel Hybrid Electric Vehicle. American Control Conference, Califoria,1999:1222-1224.
    [65]Z. Rahman, K. L. Butler, M. Ehsani. A Comparison Study Between two Parallel Hybrid Control Concepts. SAE:2000-01-0994.
    [66]S. Delprat, G Paganelli, T. M. Guerra, et al. Algorithmic Optimization Tool for Evaluation of HEV Strategies. The 16th International Electric Vehicle Symposium, China.1999.
    [67]G Paganelli, J. J. Santin, T. M. Guerra, et al. Conception and Control of Parallel Hybrid Car Powertrain. The 15th International Electric Vehicle Symposium, Belgium.1998:215-216.
    [68]U. Zoelch, D. Schrode. Optimization Method for Rating the Components of a Hybrid Vehicle. The 14th International Electric Vehicle Symposium.1998:1-13.
    [69]C. Kim, E. NamGoong, S. Lee, et al. Fuel Economy Optimization for Parallel Hybrid Electric Vehicle with CVT. SAE,1999-01-1148:337-342.
    [70]M. Salman, N. J. Schouten, N. A. Kheir. Control Strategies for Parallel Hybrid Vehicle. American Control Conference,2000:524-528.
    [71]G Bradley, W. Gregory, R. Giorgio. Operation and Control Strategies for Hybrid Electric Automobile. SAE,2000-01-1537.
    [72]张欣,李国岫,宋建锋等.并联式混合动力汽车多能源动力总成控制单元的研究与开发.高技术通讯,2003(2):92-96.
    [73]曹珊.基于CAN总线的混合动力汽车辅助动力单元系统与控制策略研究,博士学位论文.吉林大学,2007.
    [74]杨宏亮,陈全世.混联式混合动力汽车控制策略研究综述.公路交通科技,2002,19(1):103-107.
    [75]J. Seiler, D. Schroder. Hybrid Vehicle Operating Strategies. The 15th International Electric Vehicle Symposium,1998.
    [76]Fan Tao, Wen Xuhui, Xue Shan et al. A Brushless Permanent Magnet Dual Mechanical Port Machine for Hybrid Electric Vehicle Application. IEEE International Conference on Electrical Machines and Systems, Wuhan, China, 2008:3604-3607.
    [77]马志云.电机瞬态分析.北京:中国电力出版社,1998.
    [78]辜承林.机电动力系统分析.武汉,华中科技大学出版社,1998.
    [79]辜承林,陈乔夫,熊永前.电机学.武汉:华中科技大学出版社,2003.
    [80]汤蕴璆,张奕黄,范瑜.交流电机动态分析.北京:机械工业出版社,2008.
    [81]汤蕴璆.电机学(第四版).北京:机械工业出版社,2011.
    [82]刘其辉,贺益康,张建华.交流历次变速恒频双馈型异步发电机的稳态功率关系.电工技术学报,2006,21(2):39-44.
    [83]卞松江.变速恒频风力发电关键技术研究[博士学位论文].浙江大学,2003.
    [84]张凤阁.磁场调制式无刷双馈电机研究[博士学位论文].沈阳工业大学,1999.
    [85]黄守道.无刷双馈电机的控制方法研究[博士学位论文].湖南大学,2005.
    [86]P. C. Roberts, R. A. McMahon, P. J. Tavner, et al. Equivalent Circuit for the Brushless Doubly Fed Machine (BDFM) Including Parameter Estimation and Experimental Verification. IEE Proceedings on Electric Power Applications,2005, 152(4):933-942.
    [87]张占松,蔡宣三.开关电源的原理与设计(修订版).北京:电子工业出版社,2004.
    [88]万山明.TMS320F281x DSP原理及应用实例.北京:北京航空航天大学出版社,2007.
    [89]苏奎峰,吕强,常天庆.TMS320X281xDSP原理及C程序开发.北京:北京航空航天大学出版社,2008.
    [90]张雄伟,曹铁勇.DSP芯片的原理与开发应用(第二版).北京:电子工业出版社,2000.
    [91]江思敏.TMS320LF240xDSP硬件开发教程.北京:机械工业出版社,2003.
    [92]清源科技.TMS320LF240xDSP应用设计教程.北京:机械工业出版社,2003.
    [93]刘和平,严利平,张学锋等.TMS320LF240xDSP结构、原理与应用.北京:北京航空航天大学出版社,2002.
    [94]S. Morimoto, Y. Takeda, T. Hirasa. Expansion of Operating Limits for Permanent Magnet Motor by Current Vector Control Considering Inverter Capacity. IEEE Transactions on Industry Applications.1990,26(5):866-871.
    [95]唐任远等.现代永磁电机,理论与设计.北京:机械工业出版社,2010.
    [96]S. Williamson, A. C. Ferreira, A. K. Wallace. Generalized theory of the brushless doubly-fed machine Part1:Analysis. IEE Proceedings on Electric Power Applications,1997,144(2):111-122.
    [97]S. Williamson, A. C. Ferreira. Generalized theory of the brushless doubly-fed machine Part2:Model verification and performance. IEE Proceedings on Electric Power Applications,1997,144(2):123-129.
    [98]R. A. McMahon, P. C. Roberts, X. Wang et al. Performance of BDFM as generator and motor. IEE Proceedings on Electric Power Applications,2006,153(2): 289-299.
    [99]B. V. Gorti, G C. Alexander, R. Spee. Power balance considerations for brushless doubly-fed machines. IEEE Transactions on Energy Conversion,1996,11(4): 687-692.
    [100]R. Pena, J. C. Clare, G M. Asher. Doubly Fed Induction Generator Using Back-to-Back PWM Converters and its Application to Variable-Speed Wing-Energy Generation. IEE Proceedings on Electric Power Applications,1996,143(3): 231-241.
    [101]R. Pena, J. C. Clare, G M. Asher. A Doubly Fed Induction Generator Using Back-to-Back PWM Converters Supplying an Isolated Load from a Variable Speed Wind Turbine. IEE Proceedings on Electric Power Applications,1996,143(5): 380-387.
    [102]S. Bhowmik, R. R. Spee, H. R. Enslin. Performance Optimization for Doubly Fed Wind Power Generation Systems. IEEE Transactions on Industry Applications, 1999,35(4):949-958.
    [103]A. M. EL-Refaie, T. M. Jahns. Optimal Flux Weakening in Surface PM Machine Using Fractional-Slot Concentrated Windings. IEEE Transactions on Industry Applications,2005,41(3):790-799.
    [104]刘伟.分数槽集中绕组永磁同步电机参数化设计研究[硕士学位论文].哈尔滨工业大学,2008.
    [105]马志源.电力拖动控制系统.北京:科学出版社,2004.
    [106]阮毅,陈伯时.电力拖动自动控制系统——运动控制系统(第四版).北京:机械工业出版社,2010.
    [107]X. Y. Xu, D. W. Novotny. Selecting the flux reference for induction machine drives in the field weakening region. Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting. USA,1991:361-367.
    [108]李叶松,雷力.基于转子磁场定向的异步电动机弱磁方法研究.电力电子技术,2007,41(5):34-35.
    [109]S. H. Kim, S. K. Sul. Maximum torque control of an induction machine in the field weakening region. IEEE Transactions on Industry Applications,1995,31(4): 787-794.
    [110]Yusivar F, Kihara T, Sato M, et al. Iq added flux weakening strategy for the rotor flux oriented control of a sinusoidal PWM VSI-fed induction motor. The 27th Annual Conference of the IEEE Industrial Electronics Society. USA 2001:1160-1165.
    [111]S. H. Kim, S. K. Sul.Voltage control strategy for maximum torque operation of an induction machine in the field- weakening region. IEEE Transactions on Industrial Electronics,1997,44(4):512-518.
    [112]H. Grotstollen, J. Wiesing. Torque capability and control of a saturated induction motor over a wide range of flux weakening. IEEE Transactions on Industrial Electronics,1995,42(4):374-381.
    [113]N. Bianchi, S. Bolognani. Design procedure of a vector controlled induction motor for flux-weakening operations. Conference Record of the 1997 IEEE Industry Applications Conference. USA,1997:104-111.
    [114]F. Briz, A. Diez, M. W. Degne et al. Current and flux regulation in field-weakening operation of induction motors. IEEE Transactions on Industry Applications,2001, 37(1):42-50.
    [115]M. Z. Ahmad, N. R. N. Idris. Overmodulation and field weakening in direct torque control of induction motor drives. First international Power and Energy Conference. Malaysia,2006:465-469.
    [116]S. Bolognani, M. Zigliotto. Novel digital continuous control of SVM inverters in the overmodulation range. IEEE Transactions on Industry Applications,1997, 33(2):525-530.
    [117]M. H. Shin, D. S. Hyun, S. B. Cho. Maximum torque control of stator-flux-oriented induction machine drive in the field-weakening region. IEEE Transactions on Industry Applications,2002,38(1):117-122.
    [118]吴芳,万山明,黄声华.一种过调制算法及其在永磁同步电动机弱磁控制中的应用.电工技术学报,2010,25(1):59-63.
    [119]L. Harnefors, K. Pietilainen, L. Gertmar. Torque-maximizing field weakening control:Design, analysis, and parameter selection. IEEE Transactions on Industrial Electronics,2001,48(1):161-168.
    [120]D. Casadei, M. Mengoni, G Serra et al. Field-weakening control schemes for high-speed drives based on induction motors:a comparison. IEEE Power Electronics Specialists Conference. Greece,2008:2159-2166.
    [121]P.Y.Lin, Y.S.Lai. Novel voltage trajectory control for field-weakening operation of induction motor drive. IEEE Transactions on Industry Applications,2011,47(1): 122-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700