双层辉光离子渗含钛表面冶金高速钢及其摩擦磨损特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验采用双层辉光离子渗金属技术进行了含钛表面冶金高速钢的研制,并对其性能尤其是摩擦磨损特性进行了研究。
     为获得含钛表面冶金高速钢,首先采用双辉渗金属技术,对不同含碳量的基体表面进行W、Mo、Ti三元共渗,以形成类似高速钢合金成分的等离子合金化层(渗层)。实验结果表明,渗层组织为合金铁素体,合金珠光体和白亮层;渗层的显微硬度总高于基体的显微硬度;渗层的厚度与合金元素浓度与工艺参数、源极成分配比、基体含碳量密切相关:合金元素浓度和渗层厚度随着源极电压Vs的提高而增加;随着阴极电压Vc的提高呈∧型,最佳值在400~500V间;随着气压p的提高也呈∧型,最佳值在40~70帕;随着极间距d的增大而减少,控制在15~20mm之间为最佳;随着工作温度T的升高而增加,随着基体含碳量的提高而迅速降低;增加源极成份配比中钛的比例,可以提高渗层中钛元素的浓度。本实验获得的最佳工艺参数为基材为低碳钢;源极成份配比为W:Mo:Ti=25%:25%:50%;Vs为1000V;Vc为400V;p为70帕;d为20mm;T为1100℃;t为5h。
     然后,将渗层进行渗碳处理,以获得足够的合金碳化物。渗层经渗碳后,合金碳化物为M_3C(Fe_3C)、M_6C(Fe_3W_3C)、M_7C_3(Fe_7C_3)和MC(TiC、Y-MoC、WC)型碳化物;显微组织为粒状合金珠光体+不同形态(粒状、棒状)的合金碳化物,而且合金碳化物的分布与普通冶铸高速钢相比更为细小、弥散、均匀。
     最后,对渗碳后的渗层进行淬、回火,以获得最终的含钛表面冶金高速钢。其合金碳化物为M_6C(Fe_3W_3C)、M_7C_3[(FeWMo)_7C_3]和MC(TiC、γ-MoC)型碳化物;显微组织为回火马氏体,其上分布着的均匀细小的粒状碳化物。其碳化物比普通冶铸高速钢细小均匀得多。
     含钛表面冶金高速钢与普通冶铸高速钢相比,硬度、红硬性都有所提高,经淬、回火后的含钛表面冶金高速钢,硬度为760~890 HV0.1(相当于62~69HRC),心部硬度510 HV0.1(相当于50HRC)。红硬性为760HV0.1左右(相当于62HRC)。
    
     北京工业大学硕士学位论文
    一
     含钛表面治金高速钢的摩擦磨损特性为在干摩擦条件下主要表现为粘着磨损,
    其耐磨性随实验载荷及硬度的增大而增强;含钛表面冶金高速钢的碳化物的形状、
    大小及均匀性较好,有利于其耐磨性的提高;随着含钛量的提高含钛表面冶金高速
    钢的耐磨性明显增强,但因双辉渗过程中钛元素的渗入比较困难,其耐磨性受到影
    响,但源极成分配比含钛50%的表面冶金高速钢的耐磨性达到了普通高速钢的要求,
    并略高于普通高速钢。
Metallurgical HSS on surface containing Ti (MHSSST) is obtained by Double-glow Plasma Surface Alloying (Xu-TEC), and its properties especially its wear behavior have been studied.
    The fist step to obtain MHSSST is to solute W Mo Ti into the surface of different carbon-content steels by Xu-TEC. The alloying layer is formed with three kinds of microstructure which are alloying ferrite, alloying pearlite and whiter-light layer, The mirco-hardness of the alloying layer is higher than that of matrix. The alloying layer thickness (Ld) and alloying element concentration (C) are affected by the processing parameter -, composition of the source electrode -, carbon-content of the matrix etc. The effects have been studied and concluded:
    With the increasing of source electrode Voltage (Vs) and heating temperature (T), heat preservation time (t), the Ld and C increase;
    With the increasing of carbon-content of matrix, the Ld and C decrease;
    Ld and C have a A outline with the increasing of air pressure(p) and cathode voltage (Vc).
    The best processing parameters have been concluded which are source electrode voltage(Vs)1000V; cathode voltage(Vc)400V; air pressure (p)70Pa; distance between Source electrode and cathode(d)20mm; heating temperature(T)1100 C; heat preservation time (t)5h; the material of matrix Low carbon steel; composition of source electrode Ti50% 25%W, 25%Mo.
    The second step for the MHSSST is carburizing the alloying layer for adequate alloying carbides. After carburizing, the microstructure is the grain-like alloying pearlite
    
    
    
    with alloying carbides in different shapes. By method of X-ray diffraction analysis, The alloying carbides are M3C(Fe3C) M6C(Fe3W3C) M7C3(Fe7C3) and MC(TiC -MoC WC) carbides.
    Finally, MHSSST is formed by quenching and tempering the workpieces. the microstructure of the MHSSST is tempering martensite in the alloying layer with tiny grain-like alloying carbides which are M6C(Fe3W3C)> M7C3[(FeWMo)7C3]> and MC(TiC\ -MoC), the alloying carbides is smaller and more uniform.
    Comparing with common HSS , the properties (hardness > red hardness) of the MHSSST are higher . The hardness of the alloying layer of the MHSSST is 760?890HV0.1 equaling 62?9HRC; the hardness of core is 510HV0.1, equaling 50HRC; the red hardness of the alloying layer is 760HV0.1,equaling 62HRC.
    Wear behavior of the MHSSST has been studied:
    Adhesive wear is the main wear behavior of the MHSSST;
    With the increasing of the power, the wear resistance increases;
    With the increasing of hardness of the alloying layer, the wear resistance increases;
    The alloying carbides of the MHSSST are tiny> granular ?uniform, which is good for the wear resistance .
    With the increasing of Ti concentration, the wear resistance of MHSSST increases rapidly, Because it is difficult to solute Ti into the matrix by Xu-TEC, The wear resistance of MHSSST is limited, but the MHSSST with 50%Ti in the composition of source electrode has good wear behavior, which has met the needs of wear resistance of the common HSS or even a little higher.
引文
[1]赵文轸,材料表面工程导论,西安交通大学出版社,1998,10
    [2]李金桂,现代表面工程的重大进展,材料保护,2000,vol.3
    [3]钱苗根,姚寿山编著,现代表面技术,机械工业出版社,1999,4
    [4]王笑天,金属材料学,机械工业出版社,1987,9
    [5]张炜,浅谈钢(材)的表面合金化技术,唐钢科技,1996(1):29-32
    [6]李成明,博士学位论文,双层辉光离子放电和等离子体特性及其对钨钼共渗影响的研究,北京科技大学,1998,12
    [7]徐重,双层辉光离子渗金属技术的现状及发展,表面技术,1997,26(3):1-3
    [8]李家全,双辉光离子渗金属技术,等离子体应用技术快报,1996(1):6-7
    [9]胡地等,刀具材料的现状和发展,武汉化工学院学报,1997,3:54-57
    [10]郭耕三,高速钢及热处理,机械工业出版社,1985,5
    [11]Sudarshan T S.Surface Modefecation Technology Engineer Guide. Beijing:Qinghua University Press, 1992:297(SUDARSHAN T S 著,玉殿译,表面改性技术工程师指南,北京:清华大学出版社,1992:297)
    [12]Sh, Kheirandish etc, Effect of titaninm on cast structure of high speed steel, M.S. T1998,4vol, 14,312-315
    [13]S.R. Bradbury etc, The effect of product quality on the integrity of advanced surface engineering treatments applied to hss circular saw blades, Surface and Coating Technology85(1996)215-220
    [14]刘小平等,表面冶金高速钢及应用,材料科学与工艺,1997,1:16-18
    [15]唐宾等,表面冶金高速钢组织的研究,热加工工艺,1993,1:21-23
    [16]Li, Yanjun; Jiang, Qichuan; Zhao, Yiguang; He, Zhenming Influence of Ti on MC carbide in M2 steel Journal of Materials Science and Technology v 13 n 6 1997. p 471-474
    [17]王从曾等,不等电位空心阴极放电及其在离子渗金属中的应用,金属热处理学报,1991,12(3:)43-48
    [18]王从曾等,多重空心阴极溅射靶及其应用,金属热处理学报,2000,5:17-19
    [19]王敏,高速钢的组织超细化与超塑性变形力学行为,钢铁,1998,9:48-50
    [20]李正邦,张和生,郭培民,林功文,中国高速钢和模具钢的发展建议,中国钨业,vol.14
    
    
    [21]谢贤清,张荻,刘金水,TiC颗粒对ZA43合金组织及力学性能的影响,热加工工艺,2000,(5):3-5
    [22]古凤英,高原,贺志勇等,双辉渗金属高速钢的研究,太原工业大学学报,1996(4):1-7
    [23]Zhu hanliang,Guo jingjie, Jia jun,Li peiyong,Precipitated phases of A357 Al alloy refined with Ti,Acta Metal lurgica Sinica,2000, (1):17-20
    [24]杨忠民,张旭等,双层辉光离子渗Inconel 625合金的工艺特性,北京科技大学学报,1999,(3):19-21
    [25]黄拿灿,吴起白,胡社军,许承惠等,Ti,Y离子注入65Nb钢的表面优化,金属学报,2000,(6):634-637
    [26]Richter, J.; Hetmanczyk, M.; Cwajna, J, Characterization of carbide phase in nonledeburitic high-speed steel containing Ti and Nb, journal of Materials Processing Technology 53 1-2 Aug 1995 Elsevier Science B.V.p 341-348 0924-0136
    [27]L.A., Zarychta, A., Ligarski, M. Phase transformations during heat treatment of W-Mo-V 11-2-2 type high-speed steels with increased contents of Si and Nb or Ti Dobrzanski, Journal of Materials Processing Technology 53 1-2 Aug 1995 Elsevier Science B.V. p 109-120 0924-0136
    [28]Dobrzanski, L.A.; Ligarski, M. Role of Ti in the W-Mo-V high-speed steels, Journal of Materials Processing Technology v 64 n 1-3 Feb 1997 Elsevier Science Inc p 101-116 0924-0136
    [29]李成明,赵晋香,田林海等,离子钨钼共渗的表观过程,材料科学与工艺,2000,(1):56-58
    [30]G.A.罗伯茨,R.A.卡里著,工具钢,冶金工业出版社,1987,3
    [31]刘家浚,材料磨损原理及其耐磨性,清华大学出版社,1993,11
    [32]戚正风,冯屈原,吴立志,高速钢的红硬性,材料研究,2001,5
    [33]孙一唐,工具钢及其热处理,机械工业出版社,1986.,12
    [34]高彩桥,金属的摩擦磨损与热处理,机械工业出版社,1988,12
    [35]周平安等,材料耐磨抗蚀及其表面技术概论,机械工业出版社,1986,4
    [36]刘家浚等,材料的粘着磨损与疲劳磨损,机械工业出版社,1989,5
    [37]高彩桥,摩擦金属学,哈尔滨工业大学出版社,1988,3
    
    
    [38]李清斌,王晓春,合金中的扩散性相变与合金热力学,辽宁科学技术出版社,1984,12
    [39]王金国,周宏等,高碳高钒高速钢的高温硬度及热处理研究,材料研究,2001,4
    [40]汪泓宏,田民波,离子束表面强化,机械工业出版社,1992
    [41]张剑峰,周志方,摩擦磨损与抗磨技术,科技翻译出版社,1993
    [42]杨烈宇,等离子表面工程,中国科技出版社,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700