Ti6A14V合金双辉离子Mo-N共渗组织结构及腐蚀-磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金(例如Ti-6Al-4V),具有比强度高、热强性好、耐蚀及生物相容性好等优点,广泛应用于航空航天、化工、生物医疗领域,然而钛合金耐磨性差以及易发生粘着的缺点,限制了它的应用。如何解决这个问题,一直是人们所关注的课题。
     现有许多表面工程技术被用来提高钛合金的抗磨性,同时又不影响钛合金的耐蚀性及生物相容性。硬质涂层、离子注入及离子氮化等技术可以明显改善钛合金在低载荷和低滑动速度下的摩擦性能,但采用上述技术在Ti-6Al-4V表面获得的表面改性层在冲击载荷的作用下,表面改性层易产生裂纹或剥离而失效。解决这个问题的方法之一是通过增加改性层的厚度来承受在滑动摩擦过程中高的剪切应力。然而利用硬质涂层、离子注入及离子氮化技术一方面很难获得较厚的改性层,另一方面增加改性层的厚度也可能导致残余应力增加,易造成改性层剥落。针对其它表面改性技术的局限,本文采用一种等离子表面改性技术—双层辉光离子渗金属技术,对Ti-6Al-4V合金进行表面Mo-N共渗改性研究。
     本文采用双层辉光离子渗金属技术对钛合金Ti-6Al-4V表面进行Mo-N合金化处理,通过调整三种不同的氮氩比获得相应的表面扩散层,并对改性层的组织结构、电化学特性、摩擦学及腐蚀-磨损性能分别研究。
     研究结果表明:氮氩比在一定程度上影响表面合金层的组织结构。热力学角度和动力学角度两方面研究表面改性层的电化学特性,并在相同的腐蚀条件下与Ti-6Al-4V基材的电化学性能进行对比,结果显示,Mo-N改性层自腐蚀电位均得到了提高,腐蚀速率与基材相比较未显现恶化倾向。在空气、NaCl及H_2SO_4等不同介质中,Mo-N改性层不仅显著降低了摩擦系数,而且耐磨性亦显著提高。
Titanium and its alloys, such as Ti-6Al-4V, are widely applied to aerospace, chemical and bioengineering due to their high ratio of strength to weight, high temperature resistance, corrosion resistance and biocompatibility. However, their poor wear resistance and a tendency to galling are the major concerns to potential users.
    Numerous surface engineering technologies have been explored to enhance the wear resistance of the titanium alloys while maintaining their corrosion resistance and biocompatibility. Coating, plasma immersion ion implantation (PHI), and plasma nitriding are amongst the technologies explored. Whereas the wear resistance of Ti-6Al-4V alloy at low stresses and low velocities can be improved by the above techniques, cracking and debonding often occur at the modified layers at high sheer stresses. One of the solutions to the problems is increase the thickness of modified layers to withstand the high shear stresses during sliding wear. However, thick modified layers are difficultly obtained using coating, PHI, and plasma nitriding technologies. On the other hand, increasing thickness of the modified layers may result in an increase in residual stress and the risk of debonding. Therefore, a Mo-N modified layer was explored for the surface modification of Ti-6Al-4V alloy using an innovative plasma surface alloying te
    chnology. The objective of the study is to characterize the tribological properties of the thick, adhesive, and wear resistant surface modified layer obtained using this technology.
    In the paper, the double glow plasma surface alloying technique is carried out on titanium alloy Ti6A14V. The surface alloy layers were obtained with the three different ratio of N to Ar. The structure, electrochemical, wear and corrosive-wear behaviors of the surface alloy layers were investigated respectively.
    Results of the diffusion layer structure were investigated. It indicate that the surface alloy layer's structure is affected by the ratio of N to Ar to a certain degree. In view of thermodynamics and kinetics, the electrochemical properties of the surface alloy layers were investigated and compared with that of TJ6A14V base material. Results indicate that self-corroding electric potentials is higher than that of Ti6A14V base material, and corrosion-rate to be similar or equivalent in experimental conditions. The wear and corrosive-wear behaviors'of the surface alloy layers were studied. The results show that these Mo-N diffusion layers not only significantly lowers the coefficient of friction, but also enhances the wear resistance of the titanium alloy in different solutions.
引文
1.徐滨士,马世宁,表面工程与维护,北京,机械工业出版社,1996
    2.徐滨士等,中国表面工程的发展,中国机械工程,1996,7(5)
    3.Hondros E D., Surface Engineering-The New Challenge in Materials Techonlogies Surface Engineering Volume 1(Fundamentals of coatings) 1993, (1): 1~9
    4.Liu X.H.et al, Synthesis of gradient thin film by ion beam enhanced deposition, Materials science and engineering, 1991, A139:220~226
    5.Ding X.J.et al, Application of ion inplantation by MEVVA source, in metals surface modification, Nuclear Physics review, 1997, 14(3): 170~175
    6.Z.K.Shang et al,Plasma Source ion implantation project at Southwestern Institute of Physics, Suface and Coatings Technology, 1996, 85:105~110
    7.苏金珊,激光热处理现状及进展,中国机械工程学会热处理分会成立25周年学术会议论文集,181
    8.Zhong Xu et al., u.s patent , No.4,520,268
    9.Pan Junde et al., Chine patent, No.ZL91102088.8.
    10.徐重等,双层辉光离子渗属技术,金属热处理学报,1982,(6):71
    11.Zhong Xu etc., Plasma Surface Alloying, Surface Engineering, 1986, 2(2)
    12.Zhong Xu, U.S.Patent 4,520,268
    13.Zhong Xu, U.S.Patent 4,731,539
    14.Zhong Xu, U.K.Patent 2,150,602
    15.Zhong Xu, Canada Patent 1,212,486
    
    
    16.Zhong Xu, Australia Patent 580,734
    17.Zhong Xu, Japan Patent 1,872,305
    18.Xu Zhong etc, double glow surface alloying process,Third pacific Rim International conference on Advanced Materials and Preessing,Hawaii, 1998, 6
    19.唐宾等,表面冶金高速钢组织的研究,热加工工艺,1993,(1):21.
    20.H.Randhawa.etc., Surface and Coatings Technology, 1987, (31): 303~308
    21.Yen Yu, Yen Tiemei. et al, Titanium source in the world, Progresses of Non ferrous Metal in china , 1984, (2): 2.
    22.刘世友,钛工业的开发现状与展望,稀有金属与硬质合金,1997,12
    23.康士臣,林瑞广,国内外钛材的发展及应用,化工装备技术,1999,20,3
    24.Zhou Lian et al,Present Situation and Developmentn of china's Ti Industry-Titaniam 95,Proceedings of the 8th world comference on Titanium,Pnimingham,1995:60
    25.彭艳萍等,国外航空钛合金的发展应用及其特点分析,材料工程,1997,(10):3~6
    26.Sherman, A Metal.Jom, 1997,5:38
    27.Keller M Metal.Jom.1997, 5:42
    28.金红,钛在民用领域中的开发应用现状及发展前景,稀有金属,1998,22(6):434~438
    29.罗国珍等,中国钛的研究和发展,稀有金属材料与工程,1997,10:1~5
    30.刘永辉,张佩芬编,金属腐蚀学原理,北京,航空工业出版社,1993
    31.美国专利,No2614041
    
    
    32.C.Lutynski, G.Simansky, A.J.MC Evily, Fretting fatigue Ti6A14V alloy, in 'Materials Evaluation under Fretting Conditions'(ed. S.R.Brown), ASTM STP 780, 1981, 150~164
    33.D.W.Lum, J.J.Crosby, Fretting rexoxtant coatings for titanium alloys, in 'Corrosion Fatigue,Chemistry, Mechanics and Microstructure', NACE, Houston1981: 631~650
    34.R.B.Waterhouse, Avoidanceoffrettingfatilures, in'FrettingFatigue' (ed. R.B. Waterhouse), Barking, Applied Science Publ., 1981:221~240
    35.L.Xue, A.K.Koul, M.Bibby, A Survey of surface Treatments to improve to improve the fretting fatigue resistance of Ti6A14V,, Proc.Conf. on Computer Methods and Experinebtal Measurement for Surface Treatment Effect Ⅱ, Milan, Italy, Computational Mechanice Pubi., 1995:265~272
    36.刘道新,何家文,金石,表面涂层和改性技术控制微动破坏中的应用,航空表面工程第三届学术年会,无锡,1995,11
    37.J.P.Donulus, Fretting resistant coatings for titanium alloys,in Titanium Science and Technology', (ed,R.I.Jaffee), Vol.4, Plenum Press, New Your, 1973
    38.D.F.Betteridge, Surface engineering in the aero-engine industry;past, present and future, in 'Surface Engineering and Heat Treatment, Past, Present and Future'(edP.H.Morton), 1991: 43~79
    39.R.C.Bill, Fretting wear and fretting fatigue;How are they reiated? Transactions of the ASME,J.of Lb.Tech, 1983, 105:230~230
    40.E.Broszeit, K.H.Kioos, B.O.Schweighofer, The fretting fatigue behavior of the titanium alloy Ti6A14V, in'TitaniumScienceand Technoiogy', (ed. G. Lutjering, U,Zwicker, W.Bunk),Vol.4,Deutsche Gosellschaft fur Metallk
    
    unde e.v., 1984:2171~2178
    41.B.O.Schweighofer, K.H.Kioos, E.Broseit, Investigations on the suitability of ion-plated metallic coatings on Ti6A14V, at fretting fatigue ioad, Z.Werkst offtech, 1987, 18:69~73
    42.R.C.Bill, fretting wear and fretting fatigue; How are they related? Transacitons of the ASME,J.of Lob.Rech., 1983, 105:60~66
    43.R.C.Bill,Selected fretting wear resistant coatings for Ti6A14V alloy, wear, 1985, 106:283~301
    44.S.Aaritas,R.P.M.Procter, W.A.GrantEffect of ion implantation on fatigue, fretting and fretting corrosion of Ti6A14V, Materials Science and Engineering, 1989, Al15:307~314
    45.Daoxin Liu, Bin Tang, Xiaodong Zhu, Hua Chen, Jiawen Heand Jean-Pierre Celis, Surface&Coating Technology., 1999, 6: 116~119, 234~238
    46.辛湘杰,薛峻峰,董敏,钛的腐蚀、防护及工程应用,合肥,合肥,安徽科学技术出版社,1988
    47.刘道新,唐宾,潘俊德,何家文,钛合金的耐蚀性研究,摩擦学学报,2001,21(2):81~85
    48.秦林,钛合金双层辉光离子渗Mo及Mo-N共渗层组织性能研究,太原理工大学硕士学位论文,2000,4
    49.徐重,王振民,金属热处理,1978,(2)
    50.蒙继龙,吴护林,邹敢锋,机械工程学报,1995,31(4)
    51.王从曾,唐宾,苏永安等,不等电位空心阴极离子渗金属工艺特性及其应用,金属热处理学报,1991,(3):43~50
    52.秦林,钛合金双层辉光离子渗Mo及Mo-N共渗层组织性能研究,太
    
    原理工大学硕士学位论文,2000,4
    53.L.赫兰,真空镀膜技术,,北京,国防工业出版社,1962
    54.王从曾等,不等电位空心阴极放电特性的研究,太原工业大学学报,1990,21(4)
    55.秦林,钛合金双层辉光离子渗Mo及Mo-N共渗层组织性能研究,太原理工大学硕士学位论文,2000,4
    56.贺志勇等,双层辉光离子镍铬共渗最佳工艺参数的研究,金属热处理学报,1990,(3):64~73
    57.秦林,钛合金双层辉光离子渗Mo及Mo-N共渗层组织性能研究,太原理工大学硕士学位论文,2000,4
    58.左景伊,腐蚀数据手册,1982
    59.Daoxin Liu, Bin Tang, Xiaodong Zhu, Hua Chen, JiawenHe and Jean-Pierre Celis, Surface&CoatingTechnology, 1999, 6: 116~119, 234~238
    60.刘永辉,电化学测试技术,北京,北京航空航天学院出版社,1986
    61.Buchholtz B.W.,Kustas F.M.[J].Tribology Trans, 1996, 39(2)
    62.刘永辉,电化学测试技术,北京,北京航空航天学院出版社,1986
    63.何奖爱,王玉玮,材料磨损与耐磨材料,东北,东北大学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700