快速凝固Mg-Zn系镁合金的组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有密度低、高比强度、高比刚度、导热性好、电磁屏蔽性优异、对振动及冲击能量的吸收高等优点,是非常重要的轻量化结构用绿色工程材料,在汽车、电子、航空航天等科技前沿领域具有广泛的应用前景。其中Mg-Zn合金是一种典型的沉淀强化合金,具有较高的室温和中温强度、良好塑性以及耐腐蚀性能。但该合金的凝固温度区间大,铸造及成型性能差,且晶粒细化困难,因而不能作为铸件或锻件材料,极大地限制了其工业应用。快速凝固(Rapidly solidification,简称RS)技术是制备高性能材料的有效方法之一,可以显著细化合金的组织、减小成分偏析、扩展合金元素在基体中的极限固溶度、形成亚稳相。采用该方法制备的Mg-Zn合金有望解决上述问题。本论文拟采用RS技术和合金化技术相结合,在细化晶粒的同时,通过添加合金化元素,使合金中均匀分布着细小、弥散的、热稳定的沉淀相,从而进一步改善合金的高温性能。
     本文采用雾化-双辊急冷法,以Mg-6Zn(wt.%)合金为基体,通过Ca、RE(Ce和La)合金化及复合合金化技术,制备出了RS Mg-Zn-Ca、Mg-Zn-Ce和Mg-Zn-Ca-RE合金薄片及片状粉末,系统地研究了Ca、RE合金化以及复合合金化对RS Mg-Zn合金薄片的微观组织、物相种类、热稳定性和等时时效硬化行为的影响。在此基础上,通过热挤压工艺制备了快速凝固/粉末冶金(Rapidly solidification/Powder metallurgy,简称RS/PM)Mg-Zn系镁合金棒材,分为两个系列合金:(1)RS/PM Mg-Zn-Ca系合金,主要包括Mg-6Zn-5Ca和Mg-6Zn-5Ca-RE (3Ce和0.5La)合金;(2)RS/PM Mg-Zn-Ce系合金,主要包括Mg-6Zn-5Ce和Mg-6Zn-5Ce-1.5Ca合金。论文还对合金的微观组织、室温和高温力学性能及抗蠕变性能进行了研究。主要得到以下结论: (1) RS Mg-Zn系合金薄片的组织与性能
     Ca的加入显著改善了RS Mg-Zn合金薄片的组织和性能。随着Ca含量的增加,合金中低熔点的Mg51Zn20相逐渐被熔点更高的Ca2Mg6Zn3和Mg2Ca相替代,合金的热稳定性逐渐提高。当Ca的含量高于1.5wt.%时,合金的组织显著细化,最小晶粒尺寸达到3~5μm,热稳定的弥散相的体积分数大幅度增加。RS Mg-6Zn-5Ca合金表现出显著的等时时效硬化行为,其硬度最大值达到120.8±4.5Hv。合金的硬化行为主要是由晶粒内部细小、弥散的Ca2Mg6Zn3相的析出引起的,晶界处则形成了尺寸相对较大的Mg2Ca和Ca2Mg6Zn3等热稳定的析出相,这都有助于合金在高温下保持较高的硬度值。
     Ce有助于细化RS Mg-Zn合金薄片的组织和提高合金的热稳定性。随着Ce含量的增加,合金的组织逐渐细化,最小晶粒尺寸达到4~7μm,同时合金中高熔点的弥散相的体积分数大幅度增加。Ce与Zn、Mg形成了熔点更高(470~500℃)的Mg-Zn-Ce相(T相),使合金中低熔点的Mg51Zn20相显著减少,大幅度提高了合金的热稳定性,合金的等时时效硬化行为却逐渐减弱。但在RT~400℃热处理温度范围,Mg-6Zn-5Ce合金的硬度值明显高于其它成分的Mg-Zn-Ce合金,其硬度最大值为91.5±7Hv,主要强化机制为细晶强化和弥散强化。该合金中高熔点的T相的原子百分比为80.8at.%Mg,12.4at.%Zn和6.8at.%Ce,其中(Zn/Ce)at约为2:1。
     在RS Mg-6Zn-5Ca合金薄片中添加RE(Ce和La)后,合金中形成了一种固溶有少量(约2~3at.%)Ca的Mg-Zn-RE相(简称为T′相)。T′相的熔点与T相的相近,均明显高于Ca2Mg6Zn3相。与此同时,随着RE含量的增加,Ca2Mg6Zn3相中溶入了少量的RE元素,使Ca2Mg6Zn3相的热稳定性提高了约6~16℃。这些都有助于提高RS Mg-Zn-Ca-RE合金的热稳定性。Mg-6Zn-5Ca-3Ce合金表现出显著的等时时效硬化行为,其最高硬度值达到162.4±5.5Hv,这主要是由晶粒内部细小、弥散的Ca2Mg6Zn3相的析出引起的,而晶界处形成了高熔点的T′相、Mg12Ce和Mg2Ca相,这都有助于合金在高温下保持较高的硬度值。(2) RS/PM Mg-Zn系合金棒材的微观组织、室温和高温力学性能及抗蠕变性能
     在热挤压过程中,合金的组织显著细化,同时析出相的体积分数大幅度增加,但合金中的主要物相没有发生明显的变化。对于RS/PM Mg-Zn-Ca系合金,Ca和RE(Ce和La)的依次加入可以大幅度提高合金的室温和高温性能。在Mg-6Zn合金中添加5wt.%Ca后,合金的晶界处形成了大量、热稳定的Mg2Ca和Ca2Mg6Zn3相,有效地强化了晶界,使合金在200℃条件下的抗压强度由40.7MPa(Mg-6Zn)大幅度提高到202.3MPa(Mg-6Zn-5Ca) ;而后者的最小蠕变速率是前者的1/134(200℃/50MPa条件下)。进一步加入RE后,除了Mg2Ca相外,合金的晶界处还形成了大量、高熔点的T′相,同时RE还有助于改善Ca2Mg6Zn3相的热稳定性,从而使合金的高温抗压强度(200℃)提高到234.0MPa(Mg-6Zn-5Ca-3Ce合金)和244.6MPa(Mg-6Zn-5Ca-3Ce-0.5La合金)。在175℃/50MPa条件下,后两种合金的最小蠕变速率分别约为Mg-6Zn-5Ca合金的1/2和1/4。
     对于RS/PM Mg-Zn-Ce系合金,Ce和Ca的依次加入可以大幅度提高合金的室温和高温性能。在Mg-6Zn合金中添加5wt.%Ce后,合金的晶粒内部和晶界处形成了大量细小、弥散的T相,使Mg-6Zn-5Ce合金的高温(200℃)抗压强度高达225.9MPa;而该合金的最小蠕变速率是Mg-6Zn合金的1/1075(200℃/50MPa条件下)。由于T相的热稳定性明显优于Ca2Mg6Zn3相,因此,RS/PM Mg-6Zn-5Ce合金的抗蠕变性能明显优于RS/PM Mg-6Zn-5Ca合金。进一步加入1.5wt.%Ca后,合金的晶界处形成了形状不同的、固溶有微量(约1at.%)Ca的Mg-Zn-Ce相(其中(Zn/Ce)at≈1.5:1),使合金的高温抗压强度(200℃)达到258.2MPa;其最小蠕变速率约为Mg-6Zn-5Ce合金的1/2(200℃/90MPa条件下)。
Magnesium alloys have great potentials to be used as structural materials in the fields of electronic, automobile and airspace industries mainly because of their low densities, high specific strength, good dimension stability, electromagnetism shield and etc. As one of the precipitation strengthening alloys, the Mg-Zn alloy exhibits moderate strength, good plasticity and corrosion resistance. However, its wide crystallization temperature range leads to the poor casting property and the difficulty in grain refinement. Thus, the Mg-Zn alloy can not be used as industrial castings or forgings, and its applications is remarkably limited. Rapidly solidification (RS) is an effective method to prepare high performance materials, characteristics of grain refinement, microstructural homogeneity, solid solubility extension and the formation of non-equilibrium phases. The problems in the Mg-Zn alloy as mentioned above are desirable to be resolved by rapid solidification processing. In the present work, the combination of rapid solidification processing and alloying has been adopted to develop the Mg-Zn based alloys with uniform fine-scale dispersions of thermal stable intermetallic precipitates in order to further improve the high-temperature performance of the alloys.
     In the present dissertation, the atomization-twin rolls quenching technology has been utilized to successfully prepare the RS Mg-Zn based alloys in the form of flakes, including the RS Mg-Zn, Mg-Zn-Ca, Mg-Zn-Ce and Mg-Zn-Ca-RE (Ce and La) alloys. The effects of the sole Ca and RE additions and the combined additions on the microstructures, phase compositions, thermal stability and isochronal age-hardening behaviors of the RS Mg-Zn alloy have been systematically investigated. On the basis of the study mentioned above, the rapidly solidification/powder metallurgy (RS/PM) Mg-Zn based alloys in the form of rods have been prepared by hot extrusion. These alloys can be divided in two series: (1) RS/PM Mg-Zn-Ca system alloys, mainly including Mg-6Zn-5Ca and Mg-6Zn-5Ca-RE (3Ce and 0.5La) alloys; (2) RS/PM Mg-Zn-Ce system alloys, mainly including Mg-6Zn-5Ce and Mg-6Zn-5Ce-1.5Ca alloys. The microstructures, mechanical properties at room and elevated temperatures and creep resistance have been investigated. The main results are listed as follows: (1) Microstructures and properties of the RS Mg-Zn based alloy flakes
     The Ca addition improves the microstructures and properties of the RS Mg-Zn alloy remarkably. With the increase of Ca, the Mg51Zn20 phase with a low melting point in the alloys are gradually replaced by the Ca2Mg6Zn3 and Mg2Ca phases, which have relatively high melting points. Therefore, the thermal stability of the alloys increases gradually with the increment of Ca. With the Ca content higher than 1.5wt.%, the alloys are characteristics of the notably refined microstructures and the remarkably higher volume fractions of dispersions. The minimal grain size of the alloys is about 3~5μm. For the RS Mg-6Zn-5Ca alloy, the isochronal age-hardening behavior of the alloy is distinct and the maximum hardness is 120.8±4.5Hv, mainly due to the precipitation of fine and dispersed Ca2Mg6Zn3 within the grains. In addition, the Mg2Ca and Ca2Mg6Zn3 phases with relatively larger sizes are observed at the grain boundary. All of them are beneficial for the alloy to maintain a relatively high hardness at high temperatures.
     The Ce addition is beneficial for the refinement of the microstructures and remarkable improvement of the thermal stability of the alloy. With the increase of Ce, the microstructures are gradually refined and the volume fractions of dispersions are increased remarkably. The minimal grain size of the alloys is about 4~7μm. The stable intermetallic compound i.e. the Mg-Zn-Ce ternary phase (T phase) with a high melting point(470~500℃) is formed in the RS Mg-Zn-Ce alloys at the expense of the Mg51Zn20 phase and thus the thermal stability of the alloys is enhanced. However, the isochronal age-hardening behavior of the alloys gradually decreases with the increase of Ce. The hardness of the RS Mg-6Zn-5Ce alloy is much higher than the other Mg-Zn-Ce alloys at the range of RT to 400℃and the highest hardness of the alloy is 91.5±7Hv, mainly caused by fine microstructure and the precipitation of dispersed precipitates. In the RS Mg-6Zn-5Ce alloy, the atomic percentage of the T phase is 80.8at.%Mg,12.4at.%Zn and 6.8at.%Ce,and the (Zn/Ce)at is about 2:1.
     With the addition of RE (Ce and La) in the RS Mg-6Zn-5Ca alloy, a Mg-Zn-RE phase with a few Ca (about 2~3at.%) is formed in the alloy, which is shortened as the T′phase. The melting point of the T′phase is close to that of the T phase, but much higher than that of the Ca2Mg6Zn3 phase. Moreover, with the increase of RE in the Mg-6Zn-5Ca alloy, a little of RE is detected in the Ca2Mg6Zn3 phase and leads to the improvement of the thermal stability of the Ca2Mg6Zn3 phase. Both the′T phase a nd the Ca2Mg6Zn3 phase containing RE are beneficial to the improvement of the thermal stability of the RS Mg-Zn-Ca-RE alloys. The Mg-6Zn-5Ca-3Ce alloy exhibits an obvious isochronal age-hardening behavior and the highest hardness of the alloy is 162.4±5.5Hv, mainly derived from fine and dispersed Ca2Mg6Zn3 within the grains. Moreover, the T′phase, Mg12Ce and Mg2Ca are detected at the grain boundaries, which contributes to the enhancement of the hardness. (2) Microstructures, strength at room temperature (RT) and high temperatures and creep resistance of the RS/PM Mg-Zn based alloy rods
     The microstructures of the alloys are sharply refined and the volume fractions of dispersions are increased remarkably in the hot-extrusion state, but the kinds of the mostly phases are not changed. For the RS/PM Mg-Zn-Ca system, the mechanical properties of the alloys at RT and elevated temperatures can be improved by the sequential additions of 5wt.%Ca and RE (Ce and La) in the RS/PM Mg-Zn alloy. With the addition of 5wt.%Ca in the Mg-Zn alloy, some relatively stable Ca2Mg6Zn3 and high-melting Mg2Ca phases which are found at the grain boundaries lead to the effective strengthening of the grain boundaries. Thus, the compressive strength of the alloy at 200℃is remarkably enhanced from 40.7MPa (Mg-6Zn) to 202.3MPa (Mg-6Zn-5Ca) with Ca additions. The minimum creep rate of the latter one is about 134 folds lower than that of the former (200℃/50MPa). With the further addition of RE in the Mg-Zn-Ca alloy, there are some′T phases with a higher melting point at the grain boundaries besides Mg2Ca phases. Moreover, the RE addition is beneficial to the improvement of the thermal stability of the Ca2Mg6Zn3 phase. Therefore, the high-temperature strength (200℃) of the alloy is further enhanced up to 234.0MPa (Mg-6Zn-5Ca-3Ce alloy) and 244.6MPa (Mg-6Zn-5Ca-3Ce-0.5La alloy), respectively. The minimum creep rate of the latter two alloys is about 2 and 4 folds lower than that of the former (175℃/50MPa).
     For the RS/PM Mg-Zn-Ce system alloys, the mechanical properties of the alloys at RT and elevated temperatures can be increased by the sequential addition of Ce and Ca in the RS/PM Mg-Zn alloy. With the addition of 5wt.%Ce in the Mg-Zn alloy, a lot of fine and dispersed T phases are formed within the grains and at the grain boundaries. So the compressive strength of RS/PM Mg-6Zn-5Ce alloy at 200℃is enhanced up to 225.9MPa. The minimum creep rate of the alloy is about 1075 folds lower than that of Mg-6Zn alloy (200℃/50MPa). The creep resistance of the RS/PM Mg-6Zn-5Ce alloy is much higher than that of the RS/PM Mg-6Zn-5Ca alloy due to the higher thermal stability of the T phase than the Ca2Mg6Zn3 phase. With the further addition of Ca in the Mg-6Zn-5Ce alloy, a lot of the Mg-Zn-Ce phases in the different shapes with the (Zn/Ce)at about 1.5:1 and containing a few of Ca (about 1at.%) are observed at the grain boundaries. So it can be inferred that the enhanced high-temperature strength and creep resistance of the alloy may be resulted from the dissovement of the Ca in the Mg-Zn-Ce phase. The high-temperature (200℃) strength of the alloy is up to 258.2MPa and the minimum creep rate of the alloy is about 1/2 of that of the Mg-6Zn-5Ce alloy (200℃/90MPa).
引文
[1] Kainer K U. Magnesium Alloys and Technology. Weinheim: WILEY-VCH, 2003, 1-3
    [2] Kim S H, Kim D H, Kim N J. Structure and Properties of Rapidly Solidified Mg-Al-Zn-Nd Alloys. Material Science and Engineering A, 1997, 226-228: 1030-1034
    [3]刘子利,丁文江,袁广银,等.镁铝基耐热铸造镁合金的进展.机械工程材料, 2001, 25 (11): 1-4
    [4]刘刚强,陈乐平,艾云龙.稀土Nd对ZM5合金组织与性能影响的研究.特种铸造及有色合金, 2005, 25(7): 496-498
    [5]吉泽升,李德锋,孙荣滨.镁合金压铸技术的发展现状.轻合金加工技术, 2001, 29(12): 1-4
    [6] Letzig D, Swiostek J, Bohlen J, et al. Wrought magnesium alloys for structural applications. Materials Science and Technology, 2008, 24(8): 991-996
    [7] Polmear I J. Magnesium alloys and applications. Material Science and Technology, 1994, 10(1): 1-16
    [8] Cahn R W.非铁合金的结构和性能.丁道云.北京:科学出版社, 1999, 104-129
    [9]张诗昌,段汉桥,蔡启舟,等.主要合金元素对镁合金组织和性能的影响.铸造, 2001, 50 (6): 310-314
    [10]张世军,黎文献,余琨,等.铈对镁合金AZ31晶粒大小及铸态力学性能的影响.铸造, 2002, 51(12): 767-771
    [11]张世军,黎文献,余琨,等.添加含碳熔剂细化镁合金晶粒的方法.特种铸造及有色合金, 2002 (4): 64-65
    [12]郭旭涛,李培杰,曾大本,等.稀土在耐热镁合金中的作用.稀土, 2002, 23(2): 63-67
    [13] Zenji H, Takayoshi F, Langdon T G. The Potential for Scaling ECAP: Effect of Sample Size on Grain Refinement and Mechanical Properties. Materials Science and Engineering A, 2001, 318(1-2): 34-41
    [14] Bowen J R,Gholinia A,Roberts S M,et al. Analysis of the Billet Deformation Behavior in Equal Channel Angular Extrusion. Materials Science and Engineering A, 2000, 287(1): 87-99
    [15] Wu S D, Wang Z G, Jiang C B, et al. The formation of PSB-like shear bands in cyclically deformed ultrafine grained copper processed by ECAP. Scripta Materialia, 2003, 48(12): 1605-1609
    [16] Yamashita A, Horita I, Langdon T G. Improving the Mechanical Properties of Magnesium and a Magnesium Alloy through Severe Plastic Deformation. Materials Science and Engineering A, 2001, 300(1-2): 142-147
    [17]张新建,乐启炽,崔建忠,等.近液相线半连续铸造AZ91D镁合金微观组织研究.材料与冶金学报, 2002, 1(3): 218-221
    [18] Jones H. A perspective on the development of rapidly solidification and nonequilibrium processing and its future. Materials Science and Engineering A, 2001, 304-306: 11-19
    [19] Das S K, Davis L A. High performance aerospace alloys via rapid solidification processing. Materials Science and Engineering, 1988, 98: 1-12
    [20]虞觉奇,易文质.二元合金状态图集.上海:上海科学技术出版社,1987,60-61
    [21] Clark J B, Zabfyr L, Moser Z. Binary alloy phase diagrams. Ohio: American society for metals,1986, 1563-1566
    [22] Wei L Y, Dunlop G L, Westengen H. The intergranular microstructure of cast Mg-Zn and Mg-Zn-Rare earth alloys. Metallurgical and materials transactions A, 1995, 26(8): 1947-1955
    [23]陈晓强,刘江文,罗承萍.高强度Mg-Zn系合金的研究现状与发展趋势.材料导报, 2008, 22(5): 58-62
    [24] Wu A R, Xia C Q, Gu Y. Microstructure and mechanical properties of the Mg-Rare earth alloys. Heat Treatment of Metals, 2005, 30(8): 21-23
    [25]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社, 2002, 70-73
    [26] Taylor L. Metallography Structure and Phase Diagrams. Ohio: American Society for Metals, 1973, 341-342
    [27]徐春杰.细晶Mg-Zn-Y合金的制备?组织?性能及强化机理: [西安理工大学博士学位论文].西安:西安理工大学材料学院, 2007, 4-5
    [28] Buha J. Reduced temperature (22-100℃) ageing of an Mg-Zn alloy. Material Science and Engineering A, 2008, 492(1-2): 11-19
    [29] Gao X, Nie J F. Structure and thermal stability of primary intermetallic particles in an Mg-Zn casting alloy. Scripta Materialia, 2007, 57(7): 655-658
    [30] Luo C Q, Liu J W, Liu H W. Effect of Al/Zn ratio on the microstructure andstrengthening of Mg-A1-Zn alloys. Material Science and Forum, 2005, 488-489: 205-210
    [31]张珣.镁合金产业的现状与发展.世界有色金属, 2002, (9): 10-13
    [32]彭建,张丁非,杨椿楣,等. ZK60镁合金铸坯均匀化退火研究.材料工程, 2004, (8): 32-36
    [33]刘正,王越,王中光,等.镁基轻质材料的研究与应用.材料研究学报, 2000, 14(5): 449-456
    [34] Mordike B L, Eber T. Magnesium Properties-applications-potential. Material Science and Engineering A, 200l, 302(1): 37-45
    [35] Kainer KU. Magnesium Alloys and their Applications. Germany: Munich, 2000, 3-8
    [36]刘正,张奎,曾晓勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社, 2002, 9-10
    [37] Robert S. Magnesium Products Design. New York: The International Magnesium Association, 1987, 373-374
    [38] Raynor G V. Physical Metallurgy of Magnesium and Its Alloys. London: Pergamon, 1959, 6-8
    [39]波尔特诺伊KИ,列别杰夫A A.镁合金手册.林裴.北京:冶金工业出版社, 1959, 8-10
    [40] Roberts C S. Magnesium and its alloys. New York: Wiley, 1960, 135-139
    [41] Ma C J, Liu M, Wu G H, et a1. Microstructure and mechanical properties of extruded ZK60 magnesium alloy containing rare earth. Materials Science and Technology, 2004, 20(12): 1661-1665
    [42]麻彦龙,左汝林,汤爱涛,等.钇对铸态ZK60镁合金晶界析出相形态的影响.重庆大学学报, 2005, 28(2): 51-54
    [43] Li Q, Wang Q D, Zhou H T, et a1. High strength extruded Mg-5Zn-2Nd- 1.5Y-0.6Zr-0.4Ca alloy produced by electromagnetic casting. Material Letters, 2005, 59(19-20): 2549-2554
    [44] Luo A, Pekguleryuz M O. Cast magnesium alloy for elevated temperature applications. Journal of Materials Science, 1994, 29(20): 5259-5271
    [45] He S M, Peng L M, Zeng X Q, et a1. Comparison of the microstructures and mechanical properties of a ZK60 alloy with and without 1.3wt% gadolinium addition. Materials Science and Engineering A, 2006, 433(1-2): 175-181
    [46] Neite G, Kubota K, Higashi K, et al. Magnesium-based Alloys. Weinheim: Wiley-VCH, 1996, 113-212
    [47]吴安如,夏长清.铈含量对ZK60镁合金组织和性能的影响.材料热处理学报, 2006, 27(1): 45-48
    [48] Ma C J, Liu M P, Wu G H, et a1. Tensile properties of extruded ZK60-RE alloys. Materials Science and Engineering A, 2003, 349(1-2): 207-212
    [49] Padezhnova E M, Mel'nik E V, Miliyevskiy R A, et al. Investigation of the Mg-Zn-Y system. Russian Metallurgy, 1982, (4): 185-188
    [50] Luo Z P, Zhang S Q. High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy. Journal of Materials Science Letters, 2000, 19(9): 813-815
    [51] Singh A, Tsai A P. On the cubic W phase and its relationship to the icosahedral phase in Mg-Zn-Y alloys. Scripta Materialia, 2003, 49(2): 143-148
    [52] Singh A, Watanabe M, Kato A, et al. Formation of icosahedral-hexagonal H phase nano-composites in Mg-Zn-Y alloys. Scripta Materialia, 2004, 51(10). 955-960
    [53] Singh A, Nakamura M, Watanabe M, et al. Quasicrystal strengthened Mg-Zn-Y alloys by extrusion. Scripta Materialia, 2003, 49(5): 417-422
    [54] Singh A. Watanabe M, Kato A, et al. Microstructure and strength of quasicrystal containing extruded Mg-Zn-Y alloys for elevated temperature application. Materials Science and Engineering A, 2004, 385 (1-2): 382-396
    [55]罗治平,张少卿,隗国,等.低Zn?高RE含量Mg-Zn-Zr-RE合金的相组成.航空学报, 1994, 15 (7): 860-865
    [56] Singh A, Tsai A P. A new orientation relationship OR4 of icosahedral phase with magnesium matrix in Mg-Zn-Y alloys. Scripta Materialia, 2005, 53(9): 1083-1087
    [57] Singh A, Watanabe M, Kato A, et al. Crystallographic orientations and interfaces of icosahedral quasicrystalline phase growing on cubic W phase in Mg-Zn-Y alloys. Materials Science and Engineering A, 2005, 397(1-2): 22-34
    [58] Xu D. K, Liu L, Xu Y B, et al. The effect of precipitates on the mechanical properties of ZK60-Y alloy. Materials Science and Engineering A, 2006, 420(1-2): 322-332
    [59] Rudi R S, Kamado S, Ikeya N, et a1. High temperature strength of semi-solid formed Mg-Zn-Al-Ca alloys. Materials Science Forum, 2000, 350-351: 79-84
    [60]王斌,易丹青,周玲伶,等.稀土元素Y和Nd对Mg-Zn-Zr系合金组织和性能的影响.金属热处理, 2005, 47(7): 9-11
    [61] Unsworth W, King J F. Magnesium Technology. London: The Insititute ofMetals, 1986, 25-26
    [62] Vital A, Angermann A, Dittmann R, et a1. Highly sinter-active (Mg-Cu)-Zn ferrite nanoparticles prepared by flame spray synthesis. Acta Materialia, 2007, 55(6): 1955-1964
    [63] Unsworth W. A new alloy of Mg-Zn-Cu has improved as-cast mechanical properties. Light Metals Age, 1987, 45: 10-13
    [64] King J F. Development of magnesium diecasting alloys. In: Proc Conf Magnesium Alloys and Their Application. Wolsburg: Verkstoff Informationsgesellschaft, 1998, 37-38
    [65] Horie T, Iwahori H, Awano Y, et al. Creep properties of Mg-Zn alloy improved by calcium addition. Journal of Japan Institute of Light Metals, 1999, 49(7): 272-276
    [66] Park W W, Jardim P M, You B S, et al. Characterization of Mg-Zn-Ca alloys for high temperature application. In: Proceedings of the Second Israeli International Conference on Magnesium Science & Technology“Magnesium 2000”. Israel: MRILTD, 2000, 198-202
    [67]杨光昱,介万奇,郝启堂. Mg-xCa-5Zn-3Al-0.2Mn镁合金砂型铸造组织和力学性能研究.稀有金属材料与工程, 2006, 35(2): 217-222
    [68]杨光昱,介万奇,郝启堂. Mg-5Zn-3Al-0.2Mn铸造合金的组织和室温力学性能.中国有色金属学报, 2006, 16(2): 205-211
    [69] Anyanwu I A, Kamado S, Honda T, et al. Heat resistance of Mg-Zn-A1-Ca alloy castings. Materials Science Forum, 2000, 350-351: 73-78
    [70] Zhang Z, Trembalay R, Dube D. Microstructure and creep resistance of Mg-10Zn-4A1-0.15Ca permanent moulding alloy. Materials Science and Technology, 2002, 18(4): 433-437
    [71]刘静远.快速凝固Mg-Zn-Y合金的制备?组织及性能: [南京工业大学硕士学位论文].南京:南京工业大学材料学院, 2006, 7-8
    [72]李月珠.快速凝固技术和材料.北京:国防工业出版社, 1993, 80-83
    [73]李金富,杨根仓,周尧和.深过冷Ni-50%Cu合金的晶粒细化.金属学报, 1998, 34(2): 113-118
    [74] Lu K. Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties. Materials Science and Engineering R: Reports, 1996, 16(4): 161-165
    [75] Gilgien P, Zryd A, Kurz W. Microstructure selection maps for Al-Fe alloy. Acta Metallurgica et Materialia, 1995, 43(9): 3477-3487
    [76]陈振华,严红革,陈吉华,等.镁合金.北京:化学出版社, 2004, 175-185
    [77]陈吉华,陈振华,严红革,等.快速凝固镁合金的研究进展.化工进展, 2004, 23(8): 816-821
    [78]陈振华,夏伟军,陈吉华,等.耐热镁合金.北京:化学出版社, 2007, 307-310
    [79]吉泽升.日本镁合金研究进展及新技术.中国有色金属学报, 2004, 14(12): 1977-1984
    [80] Hwang S M, KANG Y H. Analysis of Flow and Heat Transfer in Twin Roll Strip Casting by Finite Element Method. Journal of engineering for industry, 1995, 117 (3): 304-315
    [81] Liang X, Pan F, Zhou S, et al. Edge Containment of a Twin Roll Caster for Near Net Shape Strip Casting. Journal of Materials Processing Technology, 1997, 63(1-3): 788-791
    [82] Murty Y V, Adler R P I. High Speed Casting of Metallic Foils by Double-Roller Quenching Technique. Journal of Material Science, 1982, 17(7): 1945-1954
    [83] Singer A R E, Roche A D, Day L. Atomization of Liquid Metals Using Twin Roller Technique. Powder Metallurgy, 1980, 23(2): 81-85
    [84]梁高飞,张卫,于艳,等.薄带连铸Kiss点前界面热流模型与凝固过程.上海交通大学学报, 2008, 42(9): 1402-1404
    [85] Huang S C, Fielder H C. Amorphous ribbon formation and the effects of casting velocity. Materials Science and Engineering, 1981, 51(1): 39-46
    [86]程天一,章守华.快速凝固技术与新型合金.北京:宇航出版社, 34-35
    [87]谢贤清,虞觉奇,刘金水.双辊快速凝技术研究进展.金属成形工艺, 1998, 16(6): 43-47
    [88] Clark C R, Suryanaryana C, Froes F H. Solid Solubility Extension in Binary Aluminum and Magnesium Alloys by Mechanical Alloying. Advances in Powder Metallurgy and Particulate Materials, 1995, 1: 135-143
    [89] Larionova T V, Park W W, You B S. A Ternary Phase Observed in Rapidly Solidified Mg-Ca-Zn Alloys. Scripta Materialia, 2001, 45 (1): 7-12
    [90] Inoue A, Kawamura Y, Matsushita M, et al. Novel hexagonal structure and ultra-high strength of magnesium solid solution in the Mg-Zn-Y system. Journal of Material Research, 2001, 16(7): 1894-1900
    [91] Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1at%Zn-2at%Y alloy studied by atomic- resolution Z-contrast STEM. Acta Materialia, 2002, 50(15): 3845-3857
    [92] Ping DH, Hong K, Kawamura Y, et al. Local chemistry of a nanocrystalline high-strength Mg97Y2Zn1 alloy. Philosophical Magazine Letters, 2002, 82(10): 543-551
    [93] Matsuda M, Ii S, Kawamura Y, et al. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy. Materials Science and Engineering A, 2005, 393(1-2): 269-274
    [94] Amiya K, Ohsuna T, Inoue A. Long-Period Hexagonal Structures in Melt-Spun Mg97Ln2Zn1(Ln=Lanthanide Metal) Alloys. Material Transactions, 2003, 44(10): 2151-2156
    [95] Matsuura M, Konno K, Yoshida M, et al. Precipitates with peculiar morphology consisting of a disk-shaped amorphous core sandwiched between 14H-typed long period stacking order crystals in a melt-quenched Mg98Cu1Y1 alloy. Material Transactions, 2006, 47(4): 1264-1267
    [96] Kawamura Y, Kasahara T, Izumi S, et al. Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure. Scripta Materialia, 2006, 55(5): 453-456
    [97] Wu Y J, Zeng X Q, Lin D L, et al. The microstructure evolution with lamellar 14H-type LPSO structure in an Mg96.5Gd2.5Zn1 alloy during solid solution heat treatment at 773K. Journal of Alloys and Compounds, 2009, 477(1-2): 193-197
    [98] Itoi T, Seimiya T, Kawamura Y, et al. Long period stacking structures observed in Mg97Zn1Y2 alloy. Scripta Materialia, 2004, 51(2): 107-111
    [99] Yoshimoto S, Yamasaki M, Kawamura Y. Microstructure and mechanical properties of extruded Mg-Zn-Y alloys with 14H long period ordered structure. Material Transactions, 2006, 47(4): 959-965
    [100] Yamasaki M, Anan T, Yoshimoto S, et al. Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate. Scripta Materialia, 2005, 53(7): 799-803
    [101] Sugamata M, Hanawa S, Kaneko J. Structures and Mechanical Properties of Rapidly Solidified Mg-Y Based Alloys. Materials Science and Engineering A, 1997, 226-228: 861-866
    [102] Kawamura Y, Morisaka T, Yamasaki M. Structure and Mechanical Properties of Rapidly Solidified Mg97Zn1RE2 Alloys. Materials Science Forum, 2003, 419-422: 751-756
    [103]塙悟史,宫崎武志,菅又信.急冷凝固Mg-Ce合金の組繊と機械的性質.軽金属, 1999, 49(1): 14-17
    [104] Koike J, Kawamura Y, Hayashi K, et al. Mechanical Properties of Rapidly Solidified Mg-Zn Alloys. Materials Science Forum, 2000, 350-351: 105-110
    [105] Hondo K, Sugamata M, Kaneko J, et al. Strucutres and Mechanical Properties of Rapidly Solidifed Mg-Ag Based Alloy. Journal Institute of Light Metals, 2002, 52(6): 276-281
    [106] Inoue K, Kawamura Y, Nishida M. Development of High Strength Magnesium Alloys by Rapid Solidification. Materials Science Forum, 2003, 419-422: 757-762
    [107] Mabuchi M, Kubota K, Higashi K. Development of Mg-Si alloys by I/M and R/S Routes. In: Light Weight Alloys for Aerospace Applications. Nevada: TMS, 1995, 463-470
    [108] Asano Y, Kaneko J, Sugamata M, et al. Microstructure and properties of rapidly solidified Mg-5%Ca-Al-Zn alloys. Journal of Japan Institute of Light Metals, 2005, 55(3): 137-141
    [109] Juarez-Islas J A. Rapid solidification of Mg-Al-Zn-Si alloys. Materials Science and Engineering A, 1991, 134: 1193-1196
    [110] Gjestland H, Nussbaum G, Regazzoni G, et al. Stress-relaxation and creep behaviour of some rapidly solidified magnesium alloys. Materials Science and Engineering A, 1991, 134: 1197-1200
    [111] Sanchez C, Nussbaum G, Azavant P, et al. Elevated Temperature Behaviour of Rapidly Solidified Alloys Containing Rare Earths. Materials Science and Engineering A, 1996, 221(1-2): 48-57
    [112] Nie J F, Muddle B C. Precipitation in Magnesium Alloy WE54 during Isothermal Ageing at 250℃. Scripta Materialia, 1999, 40(10): 1089-1094
    [113] Voge l M., Kraft O., Dehm G., et al. Quasi-crystalline Grain-boundary Phase in the Magnesium Die-cast Alloy ZA85. Scripta Materialia, 2001, 45(5): 517-524
    [114] Bae D H, Kim S H, Kim W T, et al. High Strength Mg-Zn-Y Alloy Containing Quasicrystalline Particles. Materials Transaction, 2001, 42(10): 2144-2147
    [115]郭学峰,魏建峰,张忠明.镁合金与超高强度镁合金.铸造技术, 2002, 23(3): 133-136
    [116] Kawamura Y, Hayashi K, Koike J, et al. High Strength Nanocrystalline Mg-Al-Ca Alloys Produced by Rapidly Solidified Powder Metallurgy Processing. Materials Science Forum, 2000, 350-351: 111-116
    [117] Miyazaki T, Kaneko J, Sugamata M. Structures and Properties of Rapidly Solidified Mg-Ca Based Alloys. Materials Science and Engineering A, 1994,181-182: 1410-1414
    [118] Kawamura Y, Inoue A. Development of High Strength Magnesium Alloys by Rapid Solidification. Materials Science Forum, 2003, 419-422: 709-714
    [119] Kawamura Y, Yoshimoto S. High strength Mg-Zn-Y alloys with LPSO structure. In: Magnesium Technology. Warrendale: Minerals, Metals & Materials Society, 2005, 13-17
    [120] Inoue A, Kato A, Zhang T, et al. Mg-Cu-Y Amporphous Alloys with High Mechanical Strengths Produced by Metallic Mold Casting Method. Materials Transaction, 1991, 32 (7): 609-616
    [121] Spassov T, Rangelova V, Neykov N. Nanocrystallization and Hydrogen Storage in Rapidly Solidified Mg-Ni-RE Alloys. Journal of Alloys and Compounds, 2002, 334 (1-2): 219-223
    [122]申泽骥,李宝东.铸造镁合金熔炼技术进展.中国铸造装备与技术, 2001, (6): 1-4
    [123]蔡叶,苏华钦,耿鑫明.镁合金熔炼中若干问题的研究.能源研究与利用, 1994, (4): 12-15
    [124] Zeng X Q, Wang Q D, Lu Y Z, et al. Study on ignition proof magnesium alloy with beryllium and rare earth additions. Scripta Materialia, 2000, 43(5): 403-409
    [125]赵云虎,王渠东,丁文江. Be对铸造镁合金组织和力学性能的影响.特种铸造及有色合金, 2000, (3): 9-10
    [126]盛绍顶.快速凝固AZ91镁合金及其颗粒增强复合材料的研究: [湖南大学博士学位论文].长沙:湖南大学材料学院, 2008, 22-25
    [127] Clark J B. Age Hardening in a Mg-9wt%Al alloy. Acta Metallurgica. 1968, 16(2): 141-152
    [128] Bai J, Sun Y S, Xue F, et al. Microstructure and Creep Properties of Mg-6Al-(Sr, Ca) Alloys. Acta Metallurgica Sinica, 2006, 42(12): 1267-1273
    [129] Luo A A, Balogh M P, Powell B R. Creep and Microstructure of Magnesium-Aluminum-Calcium Based Alloys. Metallurgical and Materials Transactions A, 2002, 33(3): 567-574
    [130] Voge l M, Kraft O, Arzt E. Effect of Calcium Additions on the Creep Behavior of Magnesium Die-Cast Alloy ZA85. Metallurgical and Materials Transactions A, 2005, 36(7): 1713-1719
    [131] Oh J C, Ohkubo T, Mukai T, et al. TEM and 3DAP characterization of an age-hardened Mg-Ca-Zn alloy. Scripta Materialia, 2005, 53(6): 675-679
    [132] Jardim P M, Solorzano G, Vander Samde J B. Second phase formation in melt-spun Mg-Ca-Zn alloys. Materials Science and Engineering A, 2004, 381(1-2): 196-205
    [133] Levi G, Avaraham S, Zilberov A, et al. Solidification, solution treatment and age hardening of a Mg-1.6wt.%Ca-3.2wt.%Zn alloy. Acta Materialia, 2006, 54(2): 523-530
    [134] Nie J F, Muddle B C. Precipitation hardening of Mg-Ca(-Zn) alloys. Scripta Materialia, 1997, 37 (10): 1475-1481
    [135] Park W W, You B S, Moon B G, et al. Microstructural change and precipitation hardening in melt-spun Mg-X-Ca alloys. Science and Technology of Advanced Materials, 2001, 2(1): 73-78
    [136] Maeng D Y, Kim T S, Lee J H, et al. Microstructure and strength of rapidly solidified and extruded Mg-Zn alloys. Scripta Materialia, 2000, 43(5): 385-389
    [137] Cai J, Ma G C, Liu Z, et al. Influence of rapid solidification on the microstructure of AZ91HP alloy. Journal of Alloys and Compounds, 2006, 422(1-2): 92-96
    [138] Luo A A. Recent magnesium alloy development for elevated temperatureapplications. International Materials Reviews, 2004, 49(1): 13-30
    [139]徐春杰,郭学锋,张忠明.热挤压快速凝固AZ91D镁合金棒材的组织和性能.兵器材料科学与工程, 2006, 29(1): 9-12
    [140] Villars P, Calvert L D. Pear′sso nHandbook of Crystallographic Data for Intermetallic Phases. Ohio: ASM, 1985, 30-32
    [141] Easton M, David S. Grain Refinement of Aluminum Alloys. Metallurgical and Materials Transactions A , 1999, 30(6): 1613-1633
    [142] Dahle A K, Lee Y C, Nave M D, et al. Development of the as-cast microstructure in magnesium-aluminium alloys. Journal of Light Metals, 2001,1(1): 61-72
    [143]刘子利,沈以赴,李子全,等.铸造镁合金的晶粒细化技术.材料科学与工程学报, 2004, 22(1): 146-149
    [144]潘金生.材料科学与基础.北京:清华大学出版社, 2007, 210-230
    [145] Zou H H, Zeng X Q, Zhai C Q, et al. Effects of Nd on the microstructure of ZA52 alloy. Materials Science and Engineering A, 2005, 392(1-2): 229-234
    [146] Gao X, Nie J F. Characterization of strengthening precipitate phases in a Mg-Zn alloy. Scripta Materialia, 2007, 56(8): 645-648
    [147] Han L H, Hu H, Northwood D O. Effect of Ca additions on microstructure and microhardness of an as-cast Mg-5.0wt.%Al alloy. Materials Letters, 2008, 62(3): 381-384
    [148] Borwn R. Magnesium Automotive Meeting. Light Metal Age, 1992, 50(5-6): 18-20
    [149] Somekawa H, Singh A, Mukai T. High fracture toughness of extruded Mg-Zn-Y alloy by the synergistic effect of grain refinement and dispersion of quasicrystal-line phase. Scripta Materialia, 2007, 56(12): 1091-1094
    [150] Lee J Y, Lim H K, Kim D H, et al. Effect of volume fraction of quasicrystal on the mechanical properties of quasicrystal-reinforced Mg-Zn-Y alloys. Materials Science and Engineering A, 2007, 448-451: 987-990
    [151] Petsol′d F , Beyer B. Structure of magnesium alloys with zinc and rare earth metals. Metal Science and Heat Treatment, 1971, 13(5): 369-371
    [152] Drits M E, Padezhnova E M, Miklina N V. The combined solubility of neodymium and zinc in solid magnesium. Russian Metallurgy, 1971, (1): 143-146
    [153] Dobatkina T V, Muratova E V, Drozdova I I. Crystallization of magnesium alloys in the system Mg-La-Zn. Russian Metallurgy, 1987, (1): 205-208
    [154] Drits M E, Drozdova E I, Korol′kova I G, et al. Investigation of polythermal sections of the Mg-Zn-Ce system in the Mg-rich region. Russian Metallurgy, 1989, (2): 195-197
    [155] Yang J, Wang J, Xiao We L, et al. Structure and mechanical properties of Mg-Zn-RE system alloys. Materials Science Forum, 2007, 561-565: 199-202
    [156] Tang Y L, Zhao D S, Luo Z P, et al. Morphology and the structure of quasicrystal phase in as-cast and melt-spun Mg-Zn-Y-Zr alloys. Scripta Metallurgica et Materialia, 1993, 29(7): 955-958
    [157] Luo Z P, Zhang S Q, Tang Y L, et al. On the stable quasicrystals in slowly cooled Mg-Zn-Y alloys. Scripta Metallurgica et Materialia, 1995, 32(9): 1411-1416
    [158] Singh A. Phase relations, formation and morphologies in Mg-Zn-RE (RE=Y, rare earth) alloys. In: Magnesium Technology. Warrendale: TMS Publications, 2008, 337-342
    [159] Janot C. Quasicrystals. Oxford: Clarendon Press, 1994, 76-77
    [160] Wei L Y, Dunlop G L, Westengen H. Solidification behaviour and phase constituents of cast Mg-Zn-misch metal alloys. Journal of Materials Science,1997, 32(12): 3335- 3340
    [161] Kim S G, Inoue A, Masumoto T. Increase of mechanical strength of a Mg85Zn12Ce3 amorphous alloy by dispersion of ultrafine HCP-Mg particles. Materials Transactions JIM, 1991, 32(9): 875-878
    [162]糸井貴臣、矢野佑一郎、筆谷秀一,等.急冷凝固Mg97Zn1RE2合金の微細組織観察.軽金属, 2006, 56(10): 543-549
    [163] Wei L Y, Dunlop G L. Crystal symmetry of the pseudo-ternary T-phases in Mg-Zn-rare earth alloys. Journal of Materials Science Letters, 1996, 15(1): 4-7
    [164]朱旻. Ca, RE合金元素对Mg-Zn系合金微观组织及力学性能影响分析: [东南大学硕士学位论文].南京:东南大学材料学院, 2003, 36-37
    [165] Huang M L, Li H X, Ding H, et al. Isothermal section of Mg-Zn-La System in Mg rich corner at 350℃. Acta Metallurgica Sinica, 2008, 21(5): 329-335
    [166]余琨,黎文献,张世军. Ce对镁及镁合金中晶粒的细化机理.稀有金属材料与工程, 2005, 34(7): 1013-1016
    [167] Xiao W L, Jia S S, Wang J, et al. Effects of cerium on the microstructure and mechanical properties of Mg-20Zn-8Al alloy. Materials Science and Engineering A, 2008, 474(1-2): 317-322
    [168] Wei L Y, Dunlop G L, Westengen H. Precipitation Hardening of Mg-Zn and Mg-Zn-RE Alloys. Metallurgical and Materials Transactions A, 1995, 26(7): 1705-1716
    [169] Li Q, Wang Q D, Wang Y X, et al. Effect of Nd and Y addition on microstructure and mechanical properties of as-cast Mg-Zn-Zr alloy. Journal of Alloys and Compounds, 2007, 427(1-2): 115-123
    [170] Du W W, Sun Y S, Min X G, et al. Microstructure and mechanical properties of Mg-Al based alloy with calcium and rare earth additions. Materials Science and Engineering A, 2003, 356(1-2): 1-7
    [171] Zhang P. Creep behavior of the die-cast Mg-Al alloy AS21. Scripta Materialia, 2005, 52(4): 277-282
    [172] Gu X, Shiflet G J, Guo F Q, et al. Mg-Ca-Zn bulk metallic glasses with high strength and significant ductility. Journal of Material Research, 2005, 20(8): 1935-1938
    [173] Kato A, Horikiri H, Inoue A, et al. Microstructure and mechanical properties of bulk Mg70Ca10Al20 alloys produced by extrusion of atomized amorphous powders. Materials Science and Engineering A, 1994, 179-180(1): 707-711
    [174] Anyanwu I A, Gokan Y, Suzuki A, et al. Effect of substituting cerium-richmischmetal with lanthanum on high temperature properties of die-cast Mg-Zn-Al-Ca-RE alloys. Materials Science and Engineering A, 2004, 380(1-2): 93-99
    [175] Huang D M, Chen Y Q, Tang Y B, et al. Indentation creep behavior of AE42 and Ca-containing AE41 alloys. Materials Letters, 2007, 61(4-5): 1015-1019
    [176] Shepeleva L, Bamberger M. Microstructure of high pressure die cast AZ91D modified with Ca and Ce. Materials Science and Engineering A, 2006, 425(1-2): 312-317
    [177] Wu G H, Fan Y, Gao H T, et al. The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D. Materials Science and Engineering A, 2005, 408 (1-2): 255-263
    [178]朱旻,孙扬善,薛烽,等. Ca的低合金化对Mg-Zn-RE系镁合金显微组织及力学性能的影响.江苏冶金, 2002, 30(6): 1-5
    [179] Cadek J, Sustek V, Kloc L, et al. Threshold creep behaviour of an Mg-Zn-Ca-Ce-La alloy processed by rapid solidification. Materials Science and Engineering A, 1996, 215(1-2): 73-83
    [180] Sustek V, Spigarelli S, Cadek J. Creep behaviour at high stresses of a Mg-Zn-Ca-Ce-La alloy processed by rapid solidification. Scripta Materialia, 1996, 35(3): 449-454
    [181]闵学刚.几种合金元素对改善AZ91合金显微组织和力学性能的作用的研究: [东南大学博士学位论文].南京:东南大学材料学院, 2002, 95-98
    [182] Omori G, Matsuo S, Asada H. Aging Characteristics of Mg-0.2wt%Ce Alloy. Journal of Japan Institute of Light Metals, 1970, 20(10): 490-497
    [183] Omori G, Matsuo S, Asada H. Precipitation process in a Mg-Ce alloy. Transactions of the Japan Institute of Metals, 1975, 16(5): 247-255
    [184]米国发,李庆春.快速凝固Al-8wt%Cr合金显微组织及其耐热性研究.材料工程, 1997, (5): 3-5
    [185] Spigarelli S, Cerri E, Evangelista E, et al. Interpretation of constant load and constant-stress creep behavior of a magnesium alloy produced by rapid solidification. Materials Science and Engineering A, 1998, 254(1-2): 90-98
    [186] Das S K, Chang C F. High strength magnesium alloys by rapid solidification processing. In: Rapidly solidified crystalline alloys. Warrendale: The Metallurgy Society, 1985, 137-156
    [187] Das S K, Chang C F. Rapidly solidified Mg-Al-Zn-Rare earth alloys. In: Rapidly Solidified Materials. Ohio: ASM Metal Park, l986, l29-l35
    [188] Das S K, Chang C F. Rapidly solidified high strength corrosion resistant magnesium base metal alloys. US. 4765954, 1988-8-23
    [189] Battles C J, Gibson M A, Venkatesan K. Enhanced age-hardening behavior in Mg-4wt%Zn micro-alloyed with Ca. Scripta Materialia, 2004, 51(3): 193-197
    [190] Wang J L, Liao R L, Wang L D, et al. Investigations of the properties of Mg-5Al-0.3Mn-xCe (x=0-3, wt.%) alloys. Journal of Alloys and Compounds, 2009, 477(1-2): 341-345
    [191] LüY Z, Wang Q D, Zeng X Q, et al. Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloys. Materials Science and Engineering A, 2000, 278(1-2): 66-76
    [192] Khomamizadeh F, Nami B, Khoshkhooei S, et al. Effect of rare-earth element additions on high-temperature mechanical properties of AZ91 magnesium alloy. Metallurgical and Materials Transactions A, 2005, 36(12): 3489-3494
    [193] Fang X Y, Yi D Q, Wang B, et al. Effect of yttrium on microstructures and mechanical properties of hot rolled AZ61 wrought magnesium alloy. Transactions of Nonferrous Metals Society of China, 2006. 16(5): 1053-1058
    [194] Wang J L, Yang J, Wu Y M, et al. Microstructures and mechanical properties of as-cast Mg-5Al-0.4Mn-xNd (x=0, 1, 2 and 4) alloys. Materials Science and Engineering A, 2008, 472(1-2): 332-337
    [195] Liu B, Zhang M L, Wu R Z, et al. Effects of Nd on microstructure and mechanical properties of as-cast LA141 alloys. Materials Science and Engineering A, 2008, 487(1-2): 347-351
    [196] Zhang J H, Zhang D P, Tian Z, et al. Microstructures, tensile properties and corrosion behavior of die-cast Mg-4Al-based alloys containing La and/or Ce. Materials Science and Engineering A, 2008, 489(1-2): 113-119
    [197] Xiao W L, Jia S S, Wang J L, et al. The influence of mischmetal and tin on the microstructure and mechanical properties of Mg-6Zn-5Al-based alloys. Acta Materialia , 2008, 56(5): 934-941
    [198] Lee S G, Gokhale A M, Patel G R, et al. Effect of process parameters on porosity distributions in high-pressure die-cast AM50 Mg-alloy. Materials Science and Engineering A, 2006, 427(1-2): 99-111
    [199] Horie T, Iwahori H, Seno Y, et al. High temperature strength of Mg-Zn-Ca alloy improved by mischmetal and zirconium additions. Journal of Japan Institute of Light Metals, 2000, 50(4): 152-156
    [200] Jun J H, Park B K, Kim J M, et al. Microstructures and mechanical propertiesof Mg-Zn-RE-Ca casting alloys. Materials Science Forum, 2006, 510-511: 214-217
    [201] Gao X, Zhu S M, Muddle B C, et al. Precipitation-hardened Mg-Ca-Zn alloys with superior creep resistance. Scripta Materialia, 2005, 53(12): 1321-1326
    [202] Cahn R.金属与合金工艺.雷廷权译.北京:科学出版社, 1999, 35-36
    [203] Matsuda M, Ii S, Kawamura Y, et al. Interaction between long period stacking order phase and deformation twin in rapidly solidified Mg97Zn1Y2 alloy. Materials Science and Engineering A, 2004, 386(1-2): 447-452
    [204] Miller W S, Humphreys F J. Strengthening mechanisms in particulate metal matrix composites. Scripta Metallurgica et Materialia, 1991, 25(1): 33-38
    [205]丁绍松.合金元素Ca对AE系合金显微组织和力学性能的影响: [东南大学硕士学位论文].南京:东南大学材料学院, 2003, 51-52
    [206] Wu Y, Piccone T J, Shiohara Y, et al. Dendritic growth of undercooled nickel-tin Part I. Metallurgical Transactions A, 1987, 18(6): 915-924
    [207] Piccone T J, Wu Y, Shiohara Y, et al. Dendritic growth of undercooled nickel-tin Part II. Metallurgical Transactions A, 1987, 18(6): 925-932
    [208] Kaplan H, Hryn J, Clow B. Magnesium Technology 2000. Nashville: TMS, 2000, 279-284
    [209] Luo A A, Shinoda T. Magnesium Alloy Having Superior Elevated-Temperature Properties and Die castability. US. 5855697, 1999-01-05
    [210] Hajime I, Takasuke M, Akihisa T, et al. Microstructure and strength of rapidly solidified magnesium alloys. Materials Science and Engineering A, 1994, 179-180: 712-716
    [211]桂英,徐永波,韩恩厚.铸造Mg-RE合金的显微结构及其蠕变行为.材料研究学报, 2003, 17(6): 603-608
    [212]张洪杰,孟健,唐定骧.高性能镁-稀土结构材料的研制?开发与应用.中国稀土学报, 2004, 22(1): 40-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700