Si对快速凝固AZ91镁合金组织和性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁基复合材料具有密度低、比强度高、比刚度高,以及良好的尺寸稳定性等优异性能,在诸多领域具有广阔的应用前景。快速凝固/粉末冶金(RS/PM)为制备颗粒增强金属基复合材料的重要方法之一。本文采用雾化-双辊急冷法制备了Si添加量不同的快速凝固AZ91粉末,然后把粉末通过热挤压制备成复合材料。研究了不同Si添加量对合金薄片的微观组织和时效硬化行为的影响,不同Si的添加对复合材料的显微组织,室温和高温力学性能,高温蠕变性能的影响,得到以下结论:
     1、采用雾化-双辊急冷法制备出了原位生成Mg2Si增强相的(1wt%Si)A1合金、(3wt%Si)A2合金、(5wt%Si)A3合金薄片。3种合金薄片均为细小等轴晶和部分蔷薇状的微细枝晶组成,其晶粒大小为1μm~3μm。随着Si添加量的增加,晶粒大小没有明显的变化。对三种合金薄片的热处理后发现,在473K和523K下热处理时,合金在60min时出现峰值时效。而在573K下的热处理时,在30min时硬度值就已接近峰值。其中A3合金薄片在473K下保温1h时拥有最高的硬度值为118.02HV。
     2、合金挤压板材的显微组织发生明显变化,晶粒明显增大,约为5~15μm。随着Si添加量的增加,合金中原位生成的Mg2Si颗粒逐渐长大。Si的加入后合金表现出优异的力学性能,其平均抗拉强度相比基体提高了约18%。合金的断裂延伸率随Si添加量的增加而下降,而A1合金相比基体合金断裂延伸率有了一定的提高。在室温下,A2合金具有最佳的力学性能,其6b最高可达472MPa,σ0.2、δ分别达到329MPa、4.70%。在高温下(473K),合金的抗拉强度随着si添加量的增加而增加,其中A3合金的抗拉强度达到了192MPa。合金在523K的抗拉强度下降迅速,都在90MPa左右。室温下A1和A2合金的断裂方式以韧性断裂为主,A3合金呈现了复合性断口特征,有撕裂棱的韧性断裂特征,同时也存在少量脆性断裂的解理痕。在断口上都发现了增强体Mg2Si明显被拉断的痕迹。
     3、研究了Si对RS/PM(AZ91)合金的抗蠕变性能的影响。发现在150℃/50MPa的蠕变条件下,A1合金的稳态蠕变速率相比基体有明显下降,约为基体的1/5,A2合金的稳态蠕变速率约为基体的1/8,A3合金的稳态蠕变速率约为基体的1/18。三种合金在(423K-473K)/(50MPa-90MPa)的实验条件下合金的蠕变机制为受扩散控制的位错攀移机制。
Magnesium alloy matrix composites have great potential for applications in a good many fields due to its low density, high specific strength and good dimension stability, etc. Rapid solidification/Powder metallurgy(RS/PM) is an important method to prepare particle reinforced metal matrix composites (MMCs). Different Si content enhanced AZ91 magnesium alloy powders were prepared through atomization-twin rolls quenching technology in the present dissertation, then the powders were consolidated into composite materials by hot extrusion The effects of different Si addition on the micro structures and age-hardening behavior of the alloy flakes were investigated. And the effects of different Si addition on microstructures, room and elevated temperature tensile properties, elevated creep properties of alloys were investigated. The conclusions are drawn as follows:
     1. Al(1wt%Si+AZ91)、A2(3wt%Si+AZ91)、A3(5wt%Si+AZ91) magnesium alloy flakes reinforced by in situ Mg2Si were prepared by atomization- twin rolls quenched technology. The three kinds of alloy flakes all exhibited fine equiaxed grains with the grain size of 1~3μm. And the grain sizes have no remarkably difference with the Si contents increased. After the hot treatment of the flakes, we found that, as aging at 473K and 523K for 60min, the value of microhardness reached maximum. When aging at 573K, the value of microhardness reached maximum in 30min. A3 alloy flakes had the topmost microhardness of 118.02HV after aging for 60min at 473K.
     2. After the process of extrusion, the microstructure of the alloy has changed significantly. The as-extruded materials exhibited equiaxed grains with the size of 5~15μm. Mg2Si particles generated in situ were grew up gradually as the increasing of Si content. By adding Si to alloy can significantly improve the mechanical properties. The average tensile strength compared to the matrix increased by about 18%. The fracture elongation of alloys decreased with the Si contents increasing. While compared to matrix, the fracture elongation of A1 alloy had a certain increase. At the room temperature, A2 alloy exhibits the best mechanical properties, its 0.2% yield tensile strength,ultimate tensile strength and elongation of rupture were 329MPa, 472MPa and 4.70%. Respectively, the alloy elevated temperature (473K) tensile properties improved as the Si addition increasing, and the tensile strength of A3 alloy reached to 192MPa. While at 523K, all of the alloys tensile strength decreased rapidly, were 90MPa around. The fracture characterization of A1 and A2 alloy exhibited ductile rupture at room temperature. A3 alloy presents the characteristics of compound fracture. The reinforcements Mg2Si were pulled off obviously in the fracture.
     3. By studying the effects of Si addition on RS/PM(AZ91) alloy elevated temperature creep resistance, found that under the conditions of 150℃/50MPa, the steady-state creep rate of Al alloy was markedly decreased compared to the matrix, is about 1/5 to the matrix. The steady-state creep rate of A2 alloy is of about 1/8 to the matrix. And A3 alloy is 1/18 to the matrix. The creep mechanism of the alloy are controlled by diffusion and dislocation climb mechanism under the experimental conditions of (423K-473K)/(50MPa-90MPa)
引文
[1]陈振华.镁合金.化学工业出版社,2004,1-30
    [2]Kainer K U. Magnesium Alloys and Technology. Weinheim:WILEY-VCH,2003, 1-3
    [3]刘子利,丁文江,袁广银等.镁铝基耐热铸造镁合金的进展.机械工程材料,2001,25(11):1-4
    [4]刘刚强,陈乐平,艾云龙.稀土Nd对ZM5合金组织与性能影响的研究.特种铸造及有色合金,2005,25(7):496-498
    [5]Luo A A, Shinoda T. Magnesium Alloy Having Superior Elevated-Temperature Properties and Die castability. IMRA America Inc, US Patent:US5855697,1997
    [6]Mordike B L. Magnesium and Magnesium Alloys. Journal of Japan Institute of Light Metals,2001,51(1):2-13
    [7]Letzig D, Swiostek j, Bohlen J, et al. Wrought magnesium alloys for structural applications. Materials Science and Technology,2008,24(8):991-996
    [8]Mabuchi M, Iwasaki H, Yanase K, etal. Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE. Scripta Materialia,1997,36(6):681
    [9]Valiev R Z, Islamgaliev R K, Alexandrov I V, etal. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science,2000,45(2):103
    [10]郭强,严红革,陈振华等.多向锻造工艺对AZ80镁合金显微组织和力学性能的影响.金属学报,2006,42(7):740
    [11]Shibata T, Kawanishi M, Nagahora J, etal. High Specific Strength of Extruded Mg-Al-Ga Alloys Produced by Rapid Solidification Processing. Materials Science and Engineering A,1994,179-180:632-636
    [12]Shechtman D. Project of High Specific Strength Magnesium Alloy, Israel Ministry of Army Forces and Israel Ministry of Industry and Trade, Produced by RSP, Israel,1999, 102
    [13]刘静远.快速凝固Mg-Zn-Y合金的制备、组织及性能:[南京工业大学硕士学位论文].南京:南京工业大学材料学院,2006,7-8
    [14]陈吉华,陈振华,严红革,等.快速凝固镁合金的研究进展.化工进展,2004,23(8):816-821
    [15]Hwang S M. Analysis of flow and heat transfer in Twin-Roll strip casting by finite element method. Engineering for Industry,1995,117(3):304-315
    [16]Liang X, Pan F, Zhou S, etal. Edge Containment of a Twin-Roll Caster for Near Net Shape Strip Casting. Mater. Process Technol,1997, (63):217-244
    [17]诺维柯夫.金属热处理理论.北京:机械工业出版社,1987,311
    [18]Hwang S M. Analysis of Flow and Heat Transfer in Twin-Roll Strip Casting by Finite Element Method. Eng. Ind. Trans. ASME,1995,117(3):304-315
    [19]Cahn R W著,丁道云,等译.非铁合金的结构与性能.北京:科学出版社,1999,38
    [20]Sugamata M, Hanawa S, Kaneko J. Structures and mechanical properties of rapidly solidified Mg-Y based alloys. Materials Science and Engineering A,1997, 226(22):861-866
    [21]Kawamura Y, Morisaka T, Yamasaki M, etal. Structure and mechanical properties of rapidly solidified Mg97Zn1RE2 alloys. Materials Science Forum,2003, 419-422:751-756
    [22]陈振华.变形镁合金.北京:化学工业出版社,2005,116-119
    [23]Koike J, Kawamura Y, Hayashi K, etal. Mechanical properties of rapidly solidified Mg-Zn alloys. Materials Science Forum,2000,350-351:105-110
    [24]Hondo K, Sugamata M, Kaneko J, etal. Structures and mechanical properties of rapidly solidified Mg-Ag based alloys. Japan Institue of Light Metals,2002, 52(6):276-281
    [25]Schemme K. Rapid solidification of Mg-Li-X alloys. DGM Conference on Magnesium Alloys and Their Application,1992,519
    [26]Inoue K, Kawarmura Y, Nishida M. Materials Science Forum,2003,419-422: 757-762
    [27]Michael M. Avedesian, Hugh Baker. ASM Speciality Handbook Magnesium and Magnesium Alloys. ASM International, Ohio,1999,22
    [28]Juarez-Islas J A. Rapid solidification of Mg-Al-Zn-Si alloys. Materials Science and Engineering,1991, A134:1193-1196
    [29]Nussbaum G, Reggazoni G, Gjestland H. in science and Engineering of Light Metals, Proc. Int. Conf. RASELM JILM. Tokyo,1991:114-120
    [30]Sanchez C, Nussbaum G, Azavant P, etal. Elevated Temperature Behaviour of Rapidly Solidified Alloys Containing Rare Earths. Materials Science and Engineering,1996, A221:48-57
    [31]Nie J F, Muddle B C. Precipitation in Magnesium Alloy WE54 during Isothermal Ageing at 250℃. Scripta Materialia,1999,40:1089-1094
    [32]Vogel M, Kraft O, Dehm G, etal. Quasi-crystalline Grain-boundary Phase in the Magnesium Die-cast Alloy ZA85. Scripta Materialia,2001,45:517-524
    [33]Bae D H, Kim S H, Kim W T, etal. High Strength Mg-Zn-Y Alloy Containing Quasicrystalline Particles. Materials Transaction,2001,42(10):2144-2147
    [34]Motegi T, Yano E, Tamura Y, etal. Clarification of grain refining mechanism of super-heat-treated Mg-Al-Zn Alloy Casting. Materials Science Forum,2000, 350-351:91
    [35]郭学峰,魏建峰,张忠明.镁合金与超高强度镁合金.铸造技术,2002,23(3):133-136
    [36]skibo D M, Schuster D M, Jolia L US Pat,4786467,1988,23
    [37]谭娟,马南钢.镁基复合材料的制备方法研究.材料导报,2006,20:261-164
    [38]Wang H Y, Jiang Q C, Li X L, etal. In situ synthesis of TiC/Mg composites in molten magnesium. Scripta Materialia,2003,48(9):1349-1354
    [39]钱志强,张荻,丁剑,等.原位增强镁基复合材料研究进展与原位反应体系热力学.材料科学与工程,2002,20(4):579-584
    [40]Wang H Y, Jiang Q C, Zhao Y Q, etal. Fabrication of TiB2 and TiB2-TiC particulates reinforced magnesium matrix composites. Materials Science and Engineering A,2004,372(1-2):109-114
    [41]Wang H Y, Jiang Q C, Zhao Y Q, etal. In situ synthesis of TiB2/Mg composite by self-propagating high-temperature synthesis reaction of the A-Ti-B system in molten magnesium. Alloys and Compounds,2004,379(1-2):14-17
    [42]Kondoh Katsuyoshi, Oginuma Hideki, Kimura Atsushi, etal. In-situ synthesis of Mg2Si intermetallics via powder metallurgy process. Materials Transcations JIM, 2003,44(5):981-985
    [43]陈振华.快速凝固粉末铝合金.北京:冶金工业出版社,2009,40
    [44]顾世真,周香林,李永兵,等.Si对喷射成形AZ91镁合金微观组织的影响.中国有色金属学报,2009,19(3):405-410
    [45]Kiehn J, etal. Key Eng Mater,1997,127-131(2):861
    [46]Lloyd D J. Particles reinforced aluminium and magnesium matrix composites. International Materials Reviews,1994,39:1-23
    [47]盛绍顶.快速凝固AZ91镁合金及其颗粒增强复合材料的研究.[湖南大学博士论文].长沙:湖南大学材料学院,2008,15
    [48]杜军,李文芳,刘耀辉,等.AZ91镁合金及其A1203纤维-石墨颗粒混杂增强复合材料的滑动摩擦磨损性能研究.摩擦学学报,2004,24(4):341-345
    [49]陈晓,傅高升,钱匡武.镁基复合材料的研究现状和发展趋势.铸造技术,2004,25(11):856
    [50]纪秀林,王树奇,谢建华.内生颗粒增强镁基复合材料的研究现状.上海有色金属,2004,25(3):136-140
    [51]张国定,赵昌正.金属基复合材料.上海交通大学出版社,1996,52
    [52]Khrussanova M, Bobet J L. J Alloys and Compounds,2000,307:283-289
    [53]哈宽富.金属力学性质的微观理论.北京:科学出版社,1983,28
    [54]戴永年,杨斌.有色金属材料的真空冶金.北京:冶金工业出版社,2000,62
    [55]郭旭涛,李培杰,曾大本.稀土在耐热镁合金中的应用.稀土,2002(2):64
    [56]Roklin L L, Nikitinal N I. Magnesium-Gadolinium and Magnesium-Gado-linium-Yttrium Alloys, Z. Metallkde,1994,85:819-823
    [57]亢春生,王武孝,袁森,等.镁合金及镁基复合材料的高温蠕变研究进展.铸造技术,2008,29(2):253
    [58]W Blum, P Zhang, B Watzingeretc. Comparative study of creep of the die-cast Mg-alloys AZ91, AS21, AS42, AM60 and AE42. Material Science and Engineering A,2001,268:735-740
    [59]Regev M, Botstein O, Bamberger M, etal. Continuous versus interrupted creep in AZ91D magnesium alloy. Mater Sci Eng A,2001,302:51-55
    [60]张新明,彭卓凯,陈健美等.耐热镁合金及其研究进展.有色金属学报,2004,14:1444-1445
    [61]闵学刚,孙扬善,袁广银等.Bi,Sb,Ca和Si对AZ91合金的组织和性能的影响.中国有色金属学报,2002,12(3):166-171.
    [62]袁广银,刘满平,朱燕萍等.Te对AZ91铸造镁合金组织和力学性能的影响.中国有色金属学报,2002,12(3):76-79.
    [63]LU Yi zhen, WANG Qu dong, ZENG Xiao qin, etal. Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloy. Mater Sci Eng A,2000,278:66-76.
    [64]Terada Y, Ishimatsu N, Sota R, etal. Creep characteristics of Ca-added die-cast AM50 magnesium. Mater Sci Forum,2003,419-422:459-464
    [65]Luo A A. Recent magnesium alloy development for automotive powertrain application. Mater Sci Fo-rum,2003,419-422:57-66
    [66]虞觉奇,易文质.二元合金状态图集.上海:上海科学技术出版社,1987,60-61
    [67]Unsworth W, King J F. Magnesium Technology. London:The Insititute of Metals,1986,25-26
    [68]Horie T, Iwahori H, Awano Y, etal. Creep properties of Mg-Zn alloy improved by calcium addition. Journal of Japan Institute of Light Metals,1999,49(7): 272-276
    [69]Mordike B L. Creep-resistant magnesium alloys. Mater Sci Eng A,2002,224: 103-112.
    [70]申泽骥,李宝东.铸造镁合金熔炼技术进展.中国铸造装备与技术,2001,6:1-4
    [71]赵云虎,王渠东,丁文江.Be对铸造镁合金组织和力学性能的影响.特种铸造及有色合金,2000,3:9
    [72]Wang H Y, Jiang Q C, Ma B X, et al. Modification of Mg2Si in Mg-Si alloys with K2TiF6, KBF4 and KBF4+K2TiF6. J Alloys Compd,2005,387:105-108
    [73]Zhang J, Fan Z, Wang Y Q, etal. Microstructural evolution of the in situ Al-15 wt.% Mg2Si composite with extra Si contents. Scr Mater,2000,42:1101-1106
    [74]刘天禧.双辊快速凝固制备AZ91镁合金薄片及其组织性能研究:[湖南大学硕士论文].长沙,湖南大学材料学院,2007,39
    [75]米国发,曾松岩,蒋祖龄,等.快速凝固二元Al-Cr合金的退火组织及显微硬度.金属学报,1994,30(1):A25-A28
    [76]Liao Lihua, Zhang Xiuqin, Li Xianfeng. Effect of silicon on damping capacities of pure magnesium and magnesium alloys. Materials Letters,2007,61:231-234
    [77]袁广银.轿车用耐热镁合金的应用基础研究:[博士后论文],上海,上海交通大学,2001,52
    [78]何肇基.金属力学性能试验.冶金工业出版社,北京:1988,5
    [79]周益春,郑学军,龙士国等.材料的宏微观力学性能.高等教育出版社,2009,135
    [80]闵学刚.几种合金元素对改善AZ91合金显微组织和力学性能的作用的研究:[东南大学博士论文].南京:东南大学,2001,84
    [81]Von Buch F, Perez-Prado M T. Five-power-law creep in single phase metals and alloys. Progress in Materials Science,2001,45:1-102
    [82]Regev M, Aghion E, Rosen A. Creep studies of coarse-grained AZ91D magnesium castings. Materials Science and Engineering A,1998,252(1):6-16
    [83]Regev M, Aghion E, Rosen A. Creep studies of AZ91D pressure die casting. Materials Science and Engineering A,1997,234-236:123-126
    [84]Millick K, Cadek J, Rys P. High temperature creep mechanisms in magnesium. Acta Metallurgy,1970,18:1071-1083
    [85]Pekguleryuz M O, Kaya A A. Creep resistant magnesium alloys for powertrain applications. Adv Eng Mater,2003,5 (12):86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700