多列车运行下地铁杂散电流分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地铁采用直流牵引供电方式,钢轨兼作为牵引电流的回流线,由于钢轨与大地不可能达到绝对的绝缘,会导致一部分电流泄漏到大地中,这部分电流就称为杂散电流。杂散电流会对地铁周围埋地金属结构进行电化学腐蚀,缩短金属管线的使用寿命,降低建筑设施的强度,严重时会威胁到人员的安全。因此,建立杂散电流分布模型,预测地铁运营时杂散电流、轨道电位等电气量的分布,可以为杂散电流防护的设计施工及运营维护提供了一定的理论依据,以保证地铁的建设质量与安全运行。
     目前,一般采用单列车模型对杂散电流的分布进行分析。单列车模型建模过程中边界条件为一个变电所(单边供电)或两个变电所(双边供电),并且列车也只考虑从邻近的变电所取流,这些假设都与地铁实际运行情况不相符,导致计算结果与实际值有较大的误差。
     为了更好的反映地铁实际线路上各电气量的分布,本文以更接近于实际线路的“钢轨-排流网-埋地金属-大地”(四层地网结构)结构为基础,将列车和牵引变电所都看作是注入电流源对地下结构进行作用从而产生杂散电流,利用微元算法及叠加原理,得到了多列车运行下杂散电流、轨道电位等量分布的数学模型(多列车杂散电流模型)。在此基础上,利用Matlab仿真软件编程建立了相应的仿真模型,通过仿真对某地铁线路多列车运行时全线杂散电流等量的分布及地网参数的影响进行了分析。仿真结果表明:多列车杂散电流模型能较准确地反映地铁整条线路上的杂散电流分布。
Metro adopts Direct Current (DC) traction for power supply, and rail, as the return line of traction current concurrently, cannot be absolute insulation with the earth. This causes part of the current to leak to the earth, which forms the alleged stray current. Stray current can cause electrochemical corrosion of the metal buried around the metro, shorten the service life of the metal pipes, reduce the intensity of the building facilities and even worse threaten the safety of the personnel. Therefore, the establishment of the stray current distribution model and the forecast of the electrical quantity distribution such as stray current, rail potential etc., when the metro is operating, can provide certain theoretical basis for the designation, construction, operation and maintenance of the stray current protection, to guarantee the construction quality and the operation safety.
     Currently, single-locomotive model is generally used in the analysis of the stray current distribution. The boundary condition is either one substation (one way feeding) or two substations (two way feeding) in the process of building single-section bus model. Besides, electric locomotive is only considered to obtain current from substation nearby. However, all these hypotheses do not match with the actual operation of the metro, which causes large errors between calculation results and the actual value.
     In order to better reflect the distribution of each electrical quantity in the actual metro lines, the thesis is based on "rail-drainage net-buried metal-earth"(underground structure with four layers), which is more closer to actual lines, and both the locomotive and traction substation are taken as injection current sources that affect the underground structures to produce the stray current. This thesis adopts micro-element algorithm and superposition principle to obtain the mathematical model (multi-locomotive stray current model) that inflects the stray current, rail potential and other quantities when multi-locomotive is operating. On this basis, it builds the corresponding simulation mode through Matlab simulation software. Based on the simulation, it analyzes the effect of the distribution of the full line stray current and ground network parameters under the situation of operating multi-locomotive in a metro line. Simulation results show that multi-locomotive stray current model can reflect the distribution of stray current in the whole line more accurately.
引文
[1]孔玮.城市轨道交通直流牵引系统故障分析及若干问题的研究[D].华北电力大学博士学位论文,2005
    [2]马洪儒.北京地下铁道的杂散电流腐蚀与防护[J].城市轨道交通,1990(1):11-19
    [3]高敬宇,易凡.地铁及轻轨杂散电流腐蚀的防护[J].天津理工学院学报,1996,12(1):32-36
    [4]W.V.贝克曼著,胡士信等译.阴极保护手册[M].北京:化学工业出版社,2005
    [5]Longhua MU. A Novel On-line Monitoring Device of Stray Current in DC Rail Transit Systems[C]. IEEE/PES International Conference on Power System Technology, 2007(10):61-64
    [6]刘燕,王京梅等.地铁杂散电流分布的数学模型[J].工程数学学报,2009(4):571-576.
    [7]庞源冰,李群湛等.城市轨道交通杂散电流研究[D].西南交通大学硕士学位论文,2008
    [8]魏国光.柏林地铁迷流防护记述[J].地下工程与隧道,1997(4):42-44
    [9]李威.地铁轨地过渡电阻及走行轨阻抗在线测量[J].中国矿业大学学报,2001(7):416-420.
    [10]Li wei, Wang Yuqiao, Wang aibing. Prediction for Rail to Ground Transition Resistance and Rail Portrait Resistance in Metro by Using BP Mode[J]. The Seventh International Conference on Electronic Measurement and Instruments,2005(9):269-272
    [11]易友祥,李凤沼等.一种积极有效的地铁杂散电流防护方案[J].天津理工学院学报.1995,1](2):1-5
    [12]Reza Fotouhi, Siamak Farshad. A New Novel Power Electronic Circuit to Reduce Stray Current and Rail Potential in DC Railway[J], International Power Electronics and Motion Control Conference, 2008,13:1575-1580
    [13]郑瞳炽.城市轨道交通牵引供电系统[M].北京:中国铁道出版社,2000
    [14]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1995
    [15]周伟.直流牵引供电系统杂散电流分布与防护研究[D].西南交通大学硕士学位论文,2007
    [16]俞蓉蓉.地下金属管道的腐蚀与防护[M].北京:石油工业出版社,1998
    [17]曹晓斌,吴广宇,付龙海等.地铁杂散电流的危害及其防治[J].电气化铁道,2006(4):32-34
    [18]穆漩.地铁杂散电流动态仿真系统设计与实现[D].首都师范大学硕士学位论文,2004
    [19]赵凌.直流牵引供电系统杂散电流分布的研究[D].西南交通大学硕士学位论文,2011
    [20]徐光强.直流牵引供电系统中杂散电流防护方案研究与设计[D].西南交通大学硕士学位论文,2003
    [21]Dev Paul. DC Traction Power System Grounding[J].IEEE Trans on Industry Applications, 2002(3):818-824.
    [22]吴世传.台北捷运系统台北车站与高铁及台铁共构处之杂散电流特性研究[D].台湾中原大学, 2002
    [23]李国欣.直流牵引回流系统分析及轨电位相关问题研究[D].中国矿业大学博士学位论文,2010
    [24]李威.地铁杂散电流腐蚀监测及防护技术[M].徐州,中国矿业大学出版社,2004
    [25]米琪,李庆林.管道防腐蚀手册[M].北京,中国建筑工业出版社,1994.
    [26]茹慧灵.油气管道保护技术[M].北京,石油工业出版社,2008
    [27]曹阿林.埋地金属管线的杂散电流腐蚀防护研究[D].重庆大学博士学位论文,2010
    [28]刘炜.城市轨道交通列车运行优化及牵引系统供电系统动态仿真[D].西南交通大学博士学位论文,2009
    [29]王亚玲,吴命利.直流牵引变电所在供电系统运行仿真中的建模[J].电气化铁道,2005(4):4-7
    [30]赵宇辉.地铁杂散电流腐蚀及其对隧道结构可靠度与耐久性的影响[D].西南交通大学硕士学位论文,2006
    [31]李振芳.地铁杂散电流分布及在线监测系统的研究[D].西南交通大学硕士学位论文,2007
    [32]胡宏亮,王崇林,张栋梁等.城市轨道交通系统杂散电流的分布规律研究[J].都市快轨交通,2005,18(05):31-33
    [33]Pham K D, Thomas R S. Analysis of stray current, track-to-earth potentials and substation negative grounding in DC traction electrification system: Proceedings of the IEEE/ASME Joint Railroad Conference Apr 17-19 2001
    [34]Yu J G. Effects of earthling strategies on rail potential and stray currents in DC transit railways:IEE Conference Publication n 453 Apr 20-23 19981EE p 303-309
    [35]Lee C H, Wang H M. Effects of grounding schemes on rail potential and stray currents in Taipei Rail Transit Systems IEE Proceedings; Electric Power Applications v 148 n2 March 2001
    [36]Fitzgerald, John H et al. Stray current control in rehabilitating rail transit facilities:Materials Performance v 38 n 5 1999 NACE p 36-41.
    [37]地铁杂散电流腐蚀防护技术规程(CJJ49-92).北京:中国计划出版社,1993.7
    [38]于松伟,杨兴山,韩连祥等.城市轨道交通供电系统设计原理与应用[M].西南交通大学出版社,2008.6
    [39]张孝雨,王崇林,张栋梁等.地铁杂散电流排流网钢筋截面计算[J].城市轨道交通研究,2005(8):43-49
    [40]Ian Cotton. Stray current control in DC mass transit system[J]. Vehicular Technology,2005, 54(2):722-730
    [41]马宏儒.北京地下铁道的杂散电流腐蚀与防护[J].城市轨道交通,1990,10:11-19
    [42]Thomas J B, Alan D Z. Stray current corrosion in electrified rail systems:ITI projects[R]. USA: Northwestern University of America,1998
    [43]C S Chang, L F Tian. Worst-case identification of touch voltage and stray current of DC railway system using genetic algorithm[J]. Electric Power Applications, IEE Proceedings.1999, 146(5):570-576
    [44]Zipse, D W. The hazardous multigrounded neutral distribution system and dangerous stray currents Record of Conference Papers. Fiftieth Annual Conference.2003 Petroleum and Chemical Industry Technical Conference (Cat.No.03CH37485)2003,23-45
    [45]李群湛编.城市轨道交通供电[M].成都:西南交通大学出版社,2005
    [46]王志宏.杂散电流及其防治[M].北京:煤炭工业出版社,1986
    [47]J Trevelyan, H P Hack. Analysis of stray current corrosion problems using the boundary element method[J].Boundary Element Technology IX,1994,347-356.
    [48]李威,王爱兵等.地铁杂散电流腐蚀的模糊综合评价方法研究[J].腐蚀科学与防护技术,2007,19(5):221-224
    [49]李威,王爱兵等.应用于地铁杂散电流腐蚀测量的硫酸铜电极实验研究[J].中国矿业大学学报,2005.,34(1):62-66
    [50]陈洁.轨道交通杂散电流分布规律的研究[D].徐州:中国矿业大学,2008
    [51]J G Yu. The Effects of Earthing Strategies on Rail Potential and Stray Currents in DC Transit Railways[C]. Int. Conf. on Developments in Mass Transit Systems, 1998:303-309.
    [52]Kinh D Pham. Analysis of stray current track-to-earth potentials & substation negative grounding in DC traction electrification system[C].ASME Joint Rail Conference,2006.
    [53]W M Sim, C F Chan. Stray current monitoring and control on Singapore MRT system[C].2004 International Conference on power System technology. Singapore,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700