电厂冷端多尺度能耗表征及控制规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热力发电厂冷端本质上是一个多设备、多过程的复杂系统,探寻其能耗表征及控制规律一直是电厂节能的关键,也是深度挖掘节能潜力,实现节能降耗的难点之所在,因此,研究其中的科学问题,提出既紧密结合实际、又有一定理论性和通用性的解决方案,对于进一步提高冷端系统经济性有重要意义。论文实现节能降耗的关键点:冷端最大能耗设备的优化设计、优化选型和系统的优化调度。而难点在于从现有的理论中进一步凝炼能耗的本质,为能耗降低提供理论上的解决方案。三部分既相互独立又相互支撑、相互印证。主要科学问题涉及:
     1.根据叶轮机械内流理论,对叶轮流道内二次流、旋涡、回流损失机理进行分析,指出传统理论的不足之处主要表现在两个方面:第一是其对象主要针对轴流式;第二是过于重视表象分析,疏于探索力学本质。在此基础上,从旋涡动力学角度寻找规律,指出和二次流损失相关的一些定性关系。
     2.找到影响二次流形成的关键性影响参数,将其作为自由参数进行优化,从而提出了一种基于二次流控制的叶型优化设计新方法。实例分析证明,该方法可以有效地削弱或消除二次流的影响,提高效率。
     3.从混流泵效率曲线特点及变化规律,分析了其对变速调节的适应能力;从混流泵的负载特性以及负载率对双速电机效率的影响规律,分析循环水泵采用双速电机调节的合理性、科学性。
     4.针对冷端凝汽器真空对机组性能的影响,以及循环水泵台数调节的特点,提出了最小匹配供水量的概念,以此为调节的导向。在研究有效控制循环水泵实际供水量对最小匹配供水量偏离程度的过程中,提出了多速交叉并联理论,以此为指导制定优化改造方案。
     5.综合考虑循环水泵不同改造方案对循环水流量、汽轮机微增功率、循环水泵电耗的影响,将基于设备优化改造的最优真空作为优化目标值,并确立了循环水系统的优化目标函数。最后以某电厂冷端优化改造为例,验证了多速交叉并联理论的科学性和有效性。
Cool-ends of the power plants are essentially complicated systems with many equipment and many processes. To decrease their energy consumption and to obtain the optimal control stratege is always concerned by thermal power plant energy-saving pursuer. At the same time, it is also pivotal and difficult part for deeply sinking energy-saving potential so as to realize the aim. Hence, to study on pivotal question and to put forward resoluble project has great significance for more improving the cool-end system economic. The project has theory connotation and currency characteristic with a certain extent. Three pivotal parts for energy-saving is proposed in the paper i.e. optimum design of the most energy consumption equipments in the cool-end system, optimization selecting type, system optimizing regulation. It is difficult to abstract energy consumption hypostasis from existing theory so as to provide theory support for solving energy consumption pivotal parts. Three part is independent, suspensory and probative one another. The main contributions of the paper are as follows:
     1. According to turbomachinery flow theory, loss mechanism has been analyzed for the secondary flow, vortex, return inside the impeller. Pointed out the inadequacy of traditional theory is mainly manifested in two aspects. The first is its object mainly for axial. The second is too much emphasis on appearance analysis, neglect to explore the mechanical nature. On this basis, from the point of vortex dynamics theory, some qualitative relations associated with the secondary flow losses is obtained.
     2. The critical impact parameter to affect the formation of secondary flow has been found. If it is as free parameters to optimize, an optimal design new method based on secondary flow control for blade can be obtained. As demonstrated by examples, this method can effectively reduce or eliminate the impact of secondary flow and improve efficiency.
     3. Its ability to adapt to the speed regulation has been analyzed from the efficiency curve characteristics and changing law for mixed flow pump.At the same time, rational and scientific features can be found for circulating pump with two-speed motor adjustment from mixed flow pump load characteristics and the load rate on the two-speed motor efficiency law.
     4. For the cold side of condenser vacuum on the unit performance, and the features by adjusting the number of circulating water pump, the new concept of minimal matching water quantity has been put forward. It can serve as a guide for optimal regulation. During the research of control the deviation level by circulating water pump actual water quantity to minimal matching water quantity, multiple-speed chiasma and parallel connection theory has been proposed. The optimization alteration project was developed by it.
     5. Considering the impact by various reform programs to circulating pump circulating water flow, a slight increase of turbine power, power consumption of circulating pump, alteration will be based on the best vacuum equipment optimization as the optimization target, and objective function has been established to a circulating water system. Finally, as a cold end optimization of transformation shown, verifying the theory of multi-speed cross-parallel scientific and effective.
引文
[1]Moore M J, Sieveding C H等著,翁泽民,俞茂铮等译.低压汽轮机和凝汽器的气动热力学[M].西安:西安交通大学出版社,1992
    [2]郑李坤,顾昌,闫桂焕.运行参数变化对凝汽器真空影响的探讨[J].汽轮机技术,2002,44(6):362-364
    [3]张贵安.影响凝汽器传热端差的因素及对应措施[J].能源与环境,2004,(1):29-31
    [4]Scott N. Peterson. On-line Condenser Performance Monitoring System[C].Power Conference,1995,Vol.57(2),560-565
    [5]Piskorowski J,Beckett G,Bell R. Condenser Performance Test and Back-Pressure Improvement, EPRI.CS.5729,1988,April
    [6]靳李平.离心泵的CFD分析及改型设计[D].西安:西安理工大学工程硕士学位论文,2003
    [7]Lin K, Cao S, Zhu B, Lu L. Flow computations for the design of high specific speed mixed-flow pumps [J]. Qinghua Daxue Xuebao/Journal of Tsinghua University, 2008,48:219-223
    [8]Carrier M, Farinas M-I, Garon A. Hemodynamic characteristics of a mixed flow pump prototype:Progress report of in vitro and acute animal experiments [J]. ASAIO Journal,2006,52:373-377
    [9]Kato C, Shimizu H, Okamura T. Large eddy simulation of unsteady flow in a mixed-flow pump (1st Report, numerical method) [J]. Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B,2002,68:1729-1736
    [10]Sedlar M. Numerical investigation of flow in mixed-flow pump with volute[J]. TASK Quarterly,2001,5:595-602
    [11]Srilatha C, Savant AR, Patwardhan AW, Ghosh SK. Head-flow characteristics of pump-mix mixers [J]. Chemical Engineering and Processing:Process Intensification,2008,47:1678-1692
    [12]Miyabe M, Maeda H, Umeki I, Jittani Y. Unstable head-flow characteristic generation mechanism of a low specific speed mixed flow pump [J]. Journal of Thermal Science,2006,15:115-120,144
    [13]Muggli FA, Holbein P, Dupont P. CFD calculation of a mixed flow pump characteristic from shutoff to maximum flow [J]. Journal of Fluids Engineering, Transactions of the ASME,2002,124:798-802
    [14]Anon. Mixed-flow impeller pumps up efficiency [J]. Design News (Boston), 2001,56:116-121
    [15]Yoon ES, Oh HW, Chung MK, Ha JS. Performance prediction of mixed-flow pumps [J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,1998,212:109-15
    [16]Engeda A, Elkacimi Y. A regenerative flow compressor as a secondary air pump for engine emission control [J]. Proceedings of the Institution of Mechanical Engineers, Part C (Journal of Mechanical Engineering Science),2008,222:1707-15
    [17]Flack R, Brun K. Fundamental analysis of the secondary flows and jet-wake in a torque converter Pump-Part I:model and flow in a rotating passage [J]. Transactions of the ASME, Journal of Fluids Engineering,2005,127:66-74
    [18]Baskharone EA, Hensel SJ. Flow field in the secondary, seal-containing passages of centrifugal pumps [J]. Journal of Fluids Engineering, Transactions of the ASME,1993,115:702-9
    [19]Spunda J, Vlach M. Research on variable-output mixed-flow pumps for secondary circuits of nuclear power stations [J]. Czechoslovak Heavy Industry, 1975,4-15
    [20]Tsujita H, Mizuki S. Investigation for secondary flow and loss generation mechanisms within centrifugal impeller by using rotating curved duct (1st report, influence of rossby number) [J]. Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B,2008,74: 111-20
    [21]Kang S, Chen D-H. Application of CFD in the investigation of the secondary flow in a high speed centrifugal impeller [J]. Hangkong Dongli Xuebao/Journal of Aerospace Power,2005,20:1054-60
    [22]Brun K, Kurz R. Analysis of secondary flows in centrifugal impellers [J]. International Journal of Rotating Machinery,2005,45-52
    [23]Yalovoj NS, Kats AM. Optimization search for relationships between parameters of impellers of centrifugal pumps, using the energy criterion [J]. Khimicheskoe I Neftegazovoe Mashinostroenie,1995,8-10
    [24]张克危,孙建平,袁卫星,贾宗谟.混流泵三维势流与边界层迭代计算[J]. 华中理工大学学报,1995,(07):19-21
    [25]曹树良,梁莉,祝宝山.高比转速混流泵叶轮设计方法[J].江苏大学学报,自然科学版,2005,26(03):185-188
    [26]袁春元.混流泵叶轮流场计算与性能试验[J].农业机械学报,2008,(03):52-55
    [27]刘琦.高比转速混流泵内部流场数值模拟与性能预测[D].镇江:江苏大学,2006
    [28]Oh HW, Kim KY. Conceptual design optimizing of mixed-flow pump impellers using mean streamline analysis [J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,2001,215:133-138
    [29]Soundranayagam S, Saha TK. Performance of a mixed flow pump with varying tip clearance:part 2 [J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,1996,210:319-27
    [30]Saha TK, Soundranayagam S. Performance of a mixed flow pump with varying tip clearance:part 1 [J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,1996,210:305-18
    [31]Goto A. Suppression of mixed-flow pump instability and surge by the active alteration of impeller secondary flows [J]. Journal of Turbomachinery,1994,116: 621-8
    [32]Zangeneh M, Goto A, Harada H. On the design criteria for suppression of secondary flows in centrifugal and mixed flow impellers [J]. Journal of Turbomachinery,1998,120:723-35
    [33]Hah C, Krain H. Secondary flows and vortex motion in a high-efficiency backswept impeller at design and off-design conditions [J]. Journal of Turbomachinery,1990,112:7-13
    [34]Nataraj M, Arunachalam VP. Optimizing impeller geometry for performance enhancement of a centrifugal pump using the Taguchi quality concept [J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,2006,220:765-82
    [35]Antonakis N, Dijkers R, Westra R. Hybrid optimization method for centrifugal pump impellers [J]. WSEAS Transactions on Fluid Mechanics,2006,1:698-706
    [36]Kim J-S, Park W-G. Optimized inverse design method for pump impeller [J]. Mechanics Research Communications,2000,27:465-73
    [37]Borges J E. A proposed through-flow inverse method for the design of mixed-flow pump[J]. International Journal for Numerical Method in Fluid, 1993,17(12):1097-1114
    [38]卢金铃,席光,祁大同.反问题与神经网络相结合的混流泵叶片优化设计[J].西安交通大学学报,2004,38(03):308-312
    [39]林恺,曹树良,祝宝山,陆力.用于高比转速混流泵设计的流场计算[J].清华大学学报(自然科学版),2008,(02):219-223
    [40]吴大转,王乐勤.高速混流泵汽蚀特性与汽蚀性能改善方法[J].农业机械学报,2006,(09):93-96
    [41]阮劲松,王春林,袁春元,胡彬彬,邢岩.基于Bezier函数的混流泵叶片造型研究[J].农机化研究,2005,(06):104-105+108
    [42]李文广.第三届泵与风机国际学术会议泵论文综述[J].水泵技术,1999,(01):28-35
    [43]李文广.流体机械及工程国际学术会泵论文述评[J].水泵技术,2001,(01):3-8
    [44]李文广.第21届IAHR水力机械及系统学术讨论会泵论文述评[J].水泵技术,2003,(04):24-32+38
    [45]Neumann B. The interaction between geometry and performance of a centrifugal pump[M]. London:Mechanical engineering publications limited,1991
    [46]曾鸣,杜作敏.20万千瓦汽轮机循环水系统的优化运行[J].节能,1989,(1):30-33
    [47]葛晓霞,廖国钧.淮南电厂三号机循环水泵的优化调整[J].电站辅机,1993,(3):14-18
    [48]韦红旗等.母管制循环水系统优化运行的数学模型.东南大学学报[J],1998,28(11)
    [49]CASTRO M M, SONG T W and PINTO J M. Minimization of operational costs in cooling water systems[J]. Trans IchemE:Part A,2000,178,192-201
    [50]胡洪华,于新颖等.上海外高桥电厂2号机组汽轮机冷端参数优化试验研究[J].电站辅机,1999,9(3):16-24
    [51]Shengwei Wang, John Burnett. Online adaptive control for optimizing variable-speed pumps of indirect water-cooled chilling systems[J]. Applied Thermal Engineering,2001,21:1083-1103
    [52]Kim J-K, Smith R. Cooling water system design[J]. Chemical Engineering Science,2001,56:3641-3658
    [53]闫杜焕,顾昌.300MW机组循环水系统优化运行的研究[J].汽轮机技术, 2002,44(6):345-347+368
    [54]吴骅鸣.电厂负荷优化分配和循环水系统优化运行的研究[D].杭州:浙江大学,2004
    [55]李保亮.火电机组冷端系统运行经济性分析及性能优化[D].北京:华北电力大学,2006
    [56]Panjeshahi M H,Ataei A, Gharaie M et al. Optimum design of cooling water systems for energy and water conservation[J]. Chemical Engineering Research and Design,2008,doi:10.1016/j.cherd.2008.08.004
    [57]Jose Maria Ponce-Ortega, Medardo Serna-Gonzalez, Arturo Jimenez-Gutierrez. Optimization model for re-circulating cooling water systems[J]. Computer and Chemical Engineering,2010,34:177-195
    [58]Giorgia F, Cortinovis, Marcelo T et al. Intergrated analysis of cooling water systems:Modeling and experimental validation[J]. Applied Thermal Engineering, 2009,29:3124-3131
    [59]江宁,曹祖庆.用标准传热系数分析水侧赃污、汽侧空气量对真空的影响[C].大功率汽轮机组辅机学术年会论文集,1999:
    [60]石书雨.火力发电厂冷端系统分析[D].北京:华北电力大学,2008
    [61]徐大懋.先进控制流透平设计的展望[C]//中国工程热物理学会.热机气动热力学学术会议论文集,1999
    [62]孙建平,张克危,袁卫,贾宗谟.混流泵内三维边界层计算[J].水泵技术,1994,(4):14-16,19
    [63]章光华,赵平华.三维边界层的湍流特性及其二阶矩模拟[J].空气动力学报,1992,10(3):347-355
    [64]吴玉林,阎超,梅租彦.水泵叶片表面三维边界层计算[J].应用力学学报,1990,7(3):26-35
    [65]祖国君,陈矛章.旋转对三维边界层的影响研究[J].航空动力学报,1992,7(3):210-214,289
    [66]祖国君,陈矛章.旋转叶片上的三维附面层[J].航空动力学报,1988,3(2):181-182,192
    [67]张国庆,华耀南,吴仲华.叶轮机械三维边界层微分方程及求解[J].工程热物理学报,1991,12(3):246-253
    [68]沈士一,庄贺庆,康松,庞立云.汽轮机原理[M].北京:水利电力出版社,1991:43,216
    [69]Greenspan H P. The theory of rotating fluids[M]. Cambridge university press, Cambridge, Mass, USA,1968
    [70]Lakshminarayan B, Horlock J H. Generalized expression for secondary vorticity using intrinsic co-ordinates[J]. Journal of fluid mechanics,1973,59:97-115
    [71]Klaus Brun, Rainer Kurz. Analysis of secondary flow in centrifugal impeller[J]. International Journal of Rotating Machinery,2005,1:45-52
    [72]杨科.基于CFD方法的叶轮机械优化设计理论及实例[D].北京:中国科学院工程热物理研究所博士后出站报告,2007,11-12
    [73]Myers T G, Lombe M. The importance of the coriolis force on axisymmetric horizontal rotating thin film flows[J]. Chemical Engineer and Processing,2006,45:90-98
    [74]Ramon Codina. Numerical Solution of the Incompressible Navier-Stokes Equations with Coriolis Forces Based on the Discretization[J]. Journal of Computational Physics,1999,148:467-496
    [75]Dunham J, Came P M. Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction [J]. ASME Journal of Engineering for Power, 1970,92 (3):252-256
    [76]Brun K. Torque converter flow analysis[D]. University of Virginia, Charlotesville, Virginia,USA,1996
    [77]安连锁,吕玉坤,贾瑞宣.泵与风机[M].北京:中国电力出版社,2008:40
    [78]Golc u M. Artificial neural network based modeling of performance characteristics of deep well pumps with splitter blade[J]. Energy Conversion and Management,2006,47,3333-3343
    [79]Jen-Ya Wang, Tsui-Ping Chang, Jr-Shian Chen. An enhanced genetic algorithm for bi-objective pump scheduling in water supply[J]. Expert Systems with Applications,2009,36,10249-10258
    [80]Singh K K, Shenoy K T, Mahendra A K, Ghosh S K. Artificial neural network based modelling of head and power characteristics of pump-mixer[J]. Chemical Engineering Science,2004,59,2937-2945
    [81]Wasserman. Neural Computing:Theory and Practice[D]. Van Nastrand Reinhold, New York,1989
    [82]Haykin, S. Neural Networks:a Comprehensive Foundation. Pearson Education Asia, Singapore,2001
    [83]徐旭.透平机械内若干复杂三维流动问题的数值分析[D].北京:中科院工程 热物理所博士后出站报告,2001
    [84]李春编著.水泵现代设计方法[M].上海:上海科学技术出版社,2010:27-29
    [85]周雪漪.计算流体力学[M].北京:清华大学出版社,1995
    [86]陈池,袁寿其等.离心泵叶轮内流计算方法综述[J].流体机械,1999,27(2)
    [87]赵斌娟,王泽.离心泵叶轮内流数值模拟的现状和展望[J].农机化研究,2002,(3)
    [88]李青,公维平.火力厂节能技术及其应用[M].北京:中国电力出版社.2007,413-489
    [89]肖登文.影响凝汽器性能的因素分析.广东电力,2008,4(4)
    [90]王娟.电价、煤价、凝汽器真空对发电厂经济效益的影响及其分析[J].青海电力,2008,27(1)
    [91]董丽娟,张润盘,张春发等.凝汽器压力变化影响机组功率增量计算的研究[J].华北电力大学学报,2007,34(1):70-73+81
    [92]吴民强.泵与风机节能技术[M].北京:水利电力出版社,1994
    [93]乐俊,菅从光,张辉.火电厂循环水系统优化运行研究.热力发电,2008,37(6)
    [94]邢希东.600MW火电机组降低厂用电率措施.中国电力,2007,9(9)
    [95]朱乃刚,王丽华.热电厂循环水泵节能优化改造[J].山东理工大学学报(自然科学版),2008,22(3)
    [96]靖长财.600MW机组循环水系统经济运行分析及对策[J].电站辅机,2007,4(12)
    [97]王小平,曹立明.遗传算法理论应用与软件实现[M].西安:西安交通大学出版社,2002
    [98]陈国年.发电厂能量价值分析原理及应用[J].江苏电机工程,2002,21(6)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700