火电机组冷端系统建模与节能优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火力发电在我国的电源结构中占据主导地位,传统的火电机组节能降耗潜力巨大。冷端系统是火电机组重要的辅助系统,其运行状况对机组的安全、经济运行有十分重要的影响。因此,对冷端系统的各子系统进行研究,提高其运行性能,保证凝汽器在最佳真空下工作,实现冷端系统的优化运行,是电厂节能降耗、提高机组热经济性的重要手段。本文主要围绕冷端系统的建模与节能优化两个方面展开研究工作,力求在深入的理论分析的基础上,建立冷端系统各子系统的精确模型,并对冷端系统的节能优化提出有效解决方案。
     冷端系统的建模主要围绕其四个子系统展开,即凝汽器、冷却塔、汽轮机低压缸末端以及循环水泵。对于凝汽器,提出了一种新的基于换热器效能基本理论的凝汽器热力特性计算方法,该方法引入了设计工况数据作为凝汽器固有属性的体现,解决了传统的凝汽器热力特性计算方法中总体传热系数的复杂计算以及焓差不变的假设带来的问题,提高了凝汽器压力变工况计算的精度。在冷却塔部分,本文提出了一种冷却塔的变工况计算方法,有效解决了焓差法在非线性方程求解过程中存在的初值、解析解位置以及迭代退出条件等难以确定的问题。出塔水温、进塔风速是冷却塔热力计算中至关重要的参数,本文通过对迭代过程中各参数变化特征的分析,基于焓差动力的原则,获得了解析解的特征,给出了二者的计算方法。针对汽轮机低压缸末端,本文基于汽轮机的功率背压特性建立了循环水变速调节系统的多目标节能优化体系结构。该体系结构设置了真空保护系统、最佳真空系统以及负荷响应系统三个子系统,分别用来保证机组的安全、经济运行以及在需要机组做出负荷响应时快速实现升降负荷的目的。在循环水泵运行特性的研究中,本文建立了变频循环水泵的扬程-流量特性模型,给出了其数学描述与求解方法,并在此基础上建立了变频循环水泵在不同运行方式下的流量-功耗模型,并给出了其数学描述与求解方法。
     冷端系统的节能优化主要围绕三条主线展开,一是冷端系统子系统运行方式的优化,二是定速循环水泵的优化运行,三是基于变频调速的最佳真空定值优化。首先,本文提出了参数应达值的概念,并建立了冷端系统性能参数的三级指标体系,进而在冷端系统建模的基础上,确定了各指标参数的应达值并将其与实际运行值比较,以监测冷端系统各设备是否正常运行,从而优化各子系统的运行方式。第二,由于闭式循环水系统在循环水泵运行方式不同的情况下,其循环水入口温度差异较大,因此,本文提出在环境温度相等的前提下获取凝汽器的最佳真空,以确定循环水泵的最优运行方式。第三,将变频泵的优化运行归为一类带约束的连续非线性函数的优化问题,以确定其最佳真空定值。
Thermal power generation is predominant in the power supply structure of our country. Traditional thermal power units have great potentiality in saving energy and reducing consumption. Cold end system is an important auxiliary system, and its working condition has great effects on safety and economic operation. As a result, to do research on subsystems of cold end system, improve their operating characteristics, make sure condenser in the optimum vacuum, and optimize operation of cold end system, is an important way for thermal power units to reduce consumption, save energy, and improve thermal economy. Centered in the modeling, energy conservation, and optimization of cold end system, the thesis strived to build accurate models for subsystems of cold end system, and determine useful plans for energy saving and optimization of cold end systemon the basis of intensive theory analysis.
     The modeling of cold end system was carried out surrounded by its four subsystems, which are condenser, cooling tower, the end of lower pressure cylinder, and circulating water pump. As for condenser, a novel method for thermal performance calculation on condenser based on the theory of effectiveness of heat exchanger was proposed. The method solves prolems caused by complicated calculation on overall heat transfer coefficient and constant enthalpy difference asuumption in traditional method, and improves the precision of varying condition calculation on condenser pressure through introducing data in design condition as the reflection of condenser's nature property. As far as cooling tower, the thesis proposed an algorithm for variable calculation on cooling tower, and solves some troublesome problems when solving the nonlinear equation, such as the determination of initial value, position of real value and end condition for iteration, and so on. Both outlet water temperature and inlet air speed of cooling tower are with great importance to the thermal calculation of cooling tower. The thesis got the characteristics of real value, and supplied methods for their calculation based on the principle of enthalpy difference motive force. To the end of lower pressure cylinder, the thesis set up architecture of multi-objective energy saving for thermal power units on the basis of power characteristic to back pressure of steam turbine. It has three subsystems, vacuum protection system, optimum vacuum system, and load demand response system. They take separately charge of safe operation, economic operation and load response of power units. During the research on operation characteristic of circulating water pumps, the thesis established the model of lift and flow for variable speed pump, and gave rise to its mathematical description and solution method. And then models in different pumps' connection modes between consumed power and flow rate was established. Their mathematical description and solution method were also given
     There were three main lines in the energy saving and optimization of cold end system, one is to establish target value evaluation system for performance parameters of cold end system, the second is to determine the optimum operating mode of circulating water pumps based on the optimum vacuum of condenser, and the last one is constant vacuum optimization. First of all, the thesis proposed a conception called target value of parameters, and then set up a three-level index system for cold end system. Afterwards, target values of all index parameters are determined to be compared with their actual values so as to monitor whether equipments of cold end system are in normal operation, and finally optimize operating modes of subsystems. Secondly, inlet cooling water temperature are different when circulating water pumps are in different operating modes, so the thesis came up an idea to determine optimum vacuum on the assumption of equal environmental condition. In this process, a conception called net income power of cold end system was proposed. And then the thesis succeeded in determining inlet cooling water temperature in different operating modes of circulating water pumps, introduced the method to optimize the operation of circulating water pumps based on optimum vacuum, analyzed the process of operation optimization of constant speed pump and its energy saving effect. And finally the thesis concluded that the operation optimization of variable speed pump is a constrained, continuous, and nonlinear optimization propostion, the solution of which could result in its constant optimized vacuum.
引文
[1]中电联.2010年全国电力工业统计快报[EB/OL]. http://www.cec.org.cn.
    [2]崔民选.中国能源发展报告(2008)[M].北京:社会科学文献出版社,2008:237-248.
    [3]国务院,关于加快关停小火电机组的若干意见[EB/OL]. http://http://www.gov.cn.
    [4]中电联.2009年全国电力工业统计快报[EB/OL]. http://www.cec.org.cn.
    [5]崔民选.中国能源发展报告(2009)[M].北京:社会科学文献出版社,2009:153-155.
    [6]刘敬桢.火力电站发展的环境保护与循环经济[J].中外企业家,2008,(5):84-86.
    [7]中电联.全国电力供需与经济运行形势分析预测报告(2010-2011年度)[EB/OL]. http://www.cec.org.cn.
    [8]国家电力监管委员会.电力监管年度报告(2006)[EB/OL]. http://www.serc.gov.cn.
    [9]李素芬,何冬辉,陈贵军,等.火电厂冷端系统性能分析与优化研究[J].热科学与技术,2010,9(1):36-42.
    [10]李秀云,严俊杰,林万超.火电厂冷端系统评价指标及诊断方法的研究[J].中国电机工程学报,2001,21(9):94-98.
    [11]李宝亮,张光,武东战.火电厂冷端系统全面数学模型研究及其优化软件开发[J].沈阳工程学院学报(自然科学版),2006,2(1):15-18.
    [12]Anson D. Availability of Fossil-Fired Steam Power Plants[R]. California:Electric Power Research Institute Report, EPRI FP-422-SR,1977, Table 1-5.
    [13]Katsumoto Otake, Masahiko Miyai, Yasuteru Mukai, et al. Method of monitoring condenser performance and system therefor[P]. US Patent:4390058,1983:1-8.
    [14]Keiichi Toyoda, Tsugutomo Teranishi. Method of and Apparatus for Monitoring Performance of Steam Power Plant[P]. US Patent:4410950,1983:1-25.
    [15]Piskkovsky J, et al. Condenser Performance Test and Back-Pressure Improvement[R]. California:Electric Power Research Institute Report, EPRI CS-5729,1988.
    [16]Scott N. Peterson. On-line Condenser Performance Monitoring SystemfJ]. Power Conference,1995,57(2):560-565.
    [17]N.Rhodes, K. Else. Predicting the performance of water and air cooled condensers[J]. International Journal of Pressure Vessels and Piping,1996,66, (1-3):99-112.
    [18]William T.Sha. Pressure control system to improve power plant efficiency[P]. US Patent:6128901,2000:1-9.
    [19]R.P.Roy and M.Ratisher. A Computational Model of a Power Plant Steam Condenser[J]. Journalof Energy Resources Technology,2001,123(1):81-91.
    [20]M.M.Prieto, E.Montannes, O.Menendez. Power plant condenser performance forecasting using a non-folly connected artificial neural network[J]. Energy,2001, 26(1):65-79.
    [21]赵振国.冷却塔[M].北京:中国水利水电出版社,1997.137-222.
    [22]史佑吉.冷却塔运行与试验[M].北京:水利电力出版社,1990:52-115.
    [23]J.L.Threlkeld. Thermal Environmental Engineering (second ed.)[M]. New York: Prentice-Hall,1970.
    [24]J.W.Sutherland. Analysis of mechanical draught counterflow air/water cooling towers[J]. Journal of Heat Transfer,1983,105(3):576-583.
    [25]别尔曼(胡贤章,译).循环水的蒸发冷却[M].北京:中国工业出版社,1965:11-300.
    [26]毛献忠,陈允文,黄东涛.逆流式自然通风冷却塔流场及热质交换的数值模拟[J].计算物理,1994,11(4):385-392.
    [27]刘保民.自然通风湿式冷却塔热力性能的数值计算及其与试验结果对比[J].热力发电,1998,(2):17-23.
    [28]徐跃芹,屠珊,黄文江,李慧君.火电厂自然通风冷却塔性能研究[J].汽轮机技术,2005,47(5):357-359.
    [29]王冬.自然通风冷却塔冷却性能计算模型及影响因素[D].北京:华北电力大学,2007:5-41.
    [30]程艳花.自然通风逆流湿式冷却塔性能评价及环境侧风影响的试验研究[D].济南:山东大学,2007:9-61.
    [31]Jameel-Ur-Rehman Khan, Bilal Ahmed Qureshi, Syed M. Zubair. A comprehensive design and performance evaluation study of counter flow wet cooling towers[J]. International Journal of Refrigeration,2004,27(8):914-923.
    [32]程翠萍.凝汽式汽轮机末级的变工况分析[J].汽轮机技术,2005,47(3):219-222.
    [33]程通锐,李永玲,邵峰,等.汽轮机末级变工况顺序计算方法的研究[J].汽轮机技术,2008,50(6):425-427.
    [34]邵峰.汽轮机末级变工况特性研究[D].保定:华北电力大学,2009:42-52.
    [35]李如翔,李维特.凝汽式汽轮机末级的变工况特性[J].汽轮机技术,1995,37(5):306-309.
    [36]竺晓程,王红涛,周代伟,等.汽轮机低压缸变工况特性的数值研究[J].热力透平,2008,37(1):51-54.
    [37]李树梅,赵耀,直接空冷系统变工况计算与热力特性曲线[J].内蒙古电力技术,2003,21(2):3-4.
    [38]魏豪,田志壮,简英俊.200MW汽轮机真空对功率影响特性的试验研究[J].热能动力工程,2000,15(88):382-385.
    [39]董丽娟,张润盘,张春发.凝汽器压力变化影响机组功率增量计算的研究[J].华北电力大学学报,2007,34(1):70-74.
    [40]董丽娟,张春发,张燕,等.汽轮机背压变化对机组功率增量的影响[J].电力科学与工程,2006,(1):37-40.
    [41]林湖,周兰欣,胡学武,等.背压变化对汽轮机功率影响的计算修正[J].汽轮机技术,2004,46(1):18-20.
    [42]徐大懋,柯严,王世勇.汽轮机功率背压特性的通用计算方法及其应用[J].热能动力工程,2010,25(6):605-609.
    [43]任浩仁,盛德仁.汽轮机在线性能计算中排汽焓的确定[J].动力工程,1998,18(6):1-4.
    [44]韩中合,杨昆.凝汽式汽轮机排汽焓的简便算法与误差分析[J].汽轮机技术,2006,48(3):167-170.
    [45]郭江龙,张树芳,陈海平.火电机组排汽焓在线计算方法的研究[J].发电设备,2001,(6):11-14.
    [46]林万超.火电厂热系统节能理论[M].西安:西安交通大学出版社,1994:22-43.
    [47]盛德仁,陈坚红,李蔚,等.等效焓降法理论剖析与扩展[J].浙江大学学报,2004,38(3):347-350.
    [48]曹丽华,李勇,赵会刚.汽轮机相对内效率两种定义方法物理意义上的等价性分析[J].汽轮机技术,2004,46(4):278-281.
    [49]闫顺林,王俊有,李太兴,等.汽轮机低压缸排汽焓在线计算新模型的研究及应用[J].华东电力,2007,35(4):84-86.
    [50]崔映红,张春发,丁千玲.汽轮机排汽焓的在线计算及末级的变工况特性[J].汽轮机技术,2002,44(3):171-173.
    [51]许立敏.弗留格尔公式的修正应用[J].浙江电力,1994,(6):1-4.
    [52]张春发,崔映红,杨文滨,等.汽轮机组临界状态判别定理及改进型Flugel公式[J].中国科学E辑,2003,33(3):264-272.
    [53]盛焕程,刘文.循环水泵采用双速电机可行性探讨[J].江苏电机工程,2003,22(5):42-44.
    [54]朱乃刚,王丽华.热电厂循环水泵节能优化改造[J].山东理工大学学报(自然科学版),2008,22(3):108-110.
    [55]王利明,潘霞.循环泵电机改双速后节能效果分析[J].新疆电力技术,2009,(100):48-49.
    [56]王利国,吴小洪,齐延韦,等.一种实现火电厂循环水泵变频调速的方法[J].变频器世界,2005,(8):62-65.
    [57]张承慧,程金,夏东伟.汽轮机最有利真空循环水泵变频驱动控制系统[J].热能动力工程,2004,19,(1):81-85.
    [58]张承慧,程兆林.发电厂循环水泵变频调速自整定PID模糊控制[J].电力系统自动化,2002,26(14):59-62.
    [59]李维特.循环水供水系统最佳运行方式的一些发展概况[J].电力学报,1995,10(1):1-6.
    [60]叶荣学,王锦桥.循环水系统最佳运行条件的确定[J].中国电机工程学报,1988,8(1):62-67.
    [61]叶荣学.利用计算机确定循环水最佳运行方式[J].中国电力,1985,(8):10-15.
    [62]韦红旗,雎刚.母管制循环水系统优化运行的数学模型[J].东南大学学报,1998,28(S印):79-85.
    [63]李勇,孙海波,曹祖庆.背压变化对200MW汽轮机综合运行性能影响的计算分析[J].汽轮机技术,1999,41(5):272-276.
    [64]王秋颖.火电厂循环水系统经济运行方式的探讨[J].节能,1999,(8):3-7.
    [65]闫桂焕,顾昌,郑李坤.300MW机组循环水系统优化运行的研究[J].汽轮机技术,2002,44(6):345-348.
    [66]闫桂焕,顾昌.变频调速技术在电厂循环水系统优化运行中的研究与节能分析[J].节能,2003,(10):12-15.
    [67]夏东伟,张承慧,石庆升.电厂循环水系统优化控制及其遗传算法求解[J].山东大学学报(工学版),2005,35(2):50-56.
    [68]乐俊,菅从光.火电厂循环水系统优化运行研究[J].热力发电,2008,37(6):9-12.
    [69]吴骅鸣.电厂负荷优化分配和循环水系统优化运行的研究[D].杭州:浙江大学,2004:59-67.
    [70]毛晓宇.电厂循环水系统的建模与优化[D].杭州:浙江大学,2008:46-56.
    [71]吴小洪.基于神经网络智能控制的火电厂循环水控制系统[D].北京:华北电力大学,2006:34-41.
    [72]段婷婷.大型燃煤电站循环水系统运行优化研究[D].北京:华北电力大学,2009:35-53.
    [73]张学学,李桂馥.热工基础[M].北京:高等教育出版社,2000:131-154.
    [74]周麾.调节汽轮机凝汽器真空提高机组运行效率[J].能源研究与利用,2007,(5):36-39.
    [75]周兰欣,杨靖,杨祥良.300MW直接空冷机组变工况特性[J].中国电机工程学报,2007,27(17):78-82.
    [76]李勇,曹丽华,张欣刚.汽轮机凝汽器真空应达值的确定方法及应用[J].汽轮机技术,2002,44(4):207-209.
    [77]周兰欣,张学镭,陈素敏,等.凝汽器压力应达值的确定方法[J].汽轮机技术,2002,44(3):149-151.
    [78]李勇,孟芳群,曹丽华,等.凝汽器最佳真空确定方法的改进[J].汽轮机技术,2005,47(2):84-86.
    [79]种道彤,刘继平,严俊杰,等.漏空气对凝汽器传热性能影响的实验研究[J].中国电机工程学报,2005,25(4):152-157.
    [80]齐复东,贾树本,马义伟.电站凝汽设备和冷却系统[M].北京:水利电力出版社,1990:5-53.
    [81]葛晓霞,缪国钧,钟澎,等.双压凝汽器循环水系统的优化运行[J].动力工程,2009,29(4):389-393.
    [82]董丽娟,张润盘,张春发.循环水泵的优化调度[J].电力科学与工程,2007,23(1):73-78.
    [83]赵晓彤,徐志明,郭东霞.汽轮机低压缸效率的在线计算[J].东北电力学院学报,2001,21(4):1-3.
    [84]黄树红.汽轮机原理[M].北京:中国电力出版社,2008:86-98.
    [85]韩中合,吕宏,李志刚.凝汽器换热系数计算及空气含量和污垢厚度对真空的影响分析[J].华北电力大学学报,2009,36(1):59-63.
    [86]杜祖成,郭玉双,王玲.凝汽器传热端差的研究[J].沈阳电力高等专科学校学报,2001,3(3):28-29.
    [87]杨世铭,陶文铨.传热学(第4版)[M].北京:高等教育出版社,2006:357-414.
    [88]卢国栋,张春发,孙燕,等.带蒸汽冷却段的加热器端差基准值变工况特性研究[J].汽轮机技术,2008,50(2):126-128.
    [89]闫水保,徐治皋,周振华.回热加热器正常状态的确定[J].电站系统工程,2001,17(5):283-284.
    [90]史月涛,丁兴武,盖永光,等.汽轮机设备与运行[M].北京:中国电力出版社,2008:270-273.
    [91]赵元宾,孙奉仲,王凯,等.十字隔墙湿式冷却塔冷却特性的数值研究[J].中国电机工程学报,2009,29(8):6-13.
    [92]王爱军,李艳华,张小桃,等.循环水泵优化运行方式的在线分析与研究[J].汽轮机技术,2005,47(2):130-132.
    [93]赵斌,张晓亮,刘玲.汽轮机凝汽器最佳真空的影响因素及确定方法[J].河北理工大学学报,2007,29(4):85-90.
    [94]中国电力企业联合会科技服务中心,华中科技大学能源与动力工程学院.汽轮机设备及系统节能[M].北京:中国电力出版社,2008:51-79.
    [95]李海涛,宁国睿.背压变化对国产600MW汽轮机组经济性与安全性的影响[J].中国电力,2007,40(9):73-75.
    [96]高增宝.关于空冷机组背压选择的问题[J].电力建设,2002,23(4):4-9.
    [97]黄新元,赵丽,安越里,等.火电厂单元制循环水系统离散优化模型及其应用[J].热能动力工程,2004,19(3):302-306.
    [98]代云修,张灿勇.汽轮机设备及系统[M].北京:中国电力出版社,2006:274-277.
    [99]张文钢,黄刘琦.水泵的节能技术[M].上海:上海交通大学出版社,2010:115-130.
    [100]关醒凡.泵的理论与设计[M].北京:机械工业出版社,1986:29-42.
    [101]王雷,王洪跃,徐治皋,等.基于支持向量机回归的凝汽器真空应达值确定方法的研究[J].汽轮机技术,2007,49(1):43-46.
    [102]刘定平,肖蔚然.基于神经网络和混合遗传算法的凝汽器真空优化控制[J].汽轮机技术,2006,48(1):52-54.
    [103]王秋东,徐治皋,周建新.基于数据融合的凝汽器真空应达值软测量研究[J].汽轮机技术,2008,50(4):285-288.
    [104]钱瑾,王培红,李琳.聚类算法在锅炉运行参数基准值分析中的应用[J].中国电机工程学报,2007,27(23):71-74.
    [105]杨立军,杜小泽,杨勇平,等.火电站直接空冷凝汽器性能考核评价方法[J].中国电机工程学报,2007,27(2):59-63.
    [106]盛德仁,任浩仁,李蔚,等.运行工况下汽轮机组主要参数应达值的数值分析[J].热力发电,2000,(3):28-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700