大型风力发电机组的智能控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源、环境是当今人类生存和发展所要解决的紧迫问题。风力发电清洁无污染,施工周期短,投资灵活,占地少,具有较好的经济效益和社会效益。由于在目前技术条件下风电与火电、水电相比从造价、电能质量、设备制造和控制技术等领域存在劣势,使得我国风电领域的理论和应用研究与发达国家存在很大差距。国内对风电技术的研究十分薄弱,风力机的大型化、变桨距控制、变速恒频等先进风电技术还远未解决,致使我国大型风力机几乎全部为进口产品。因此,深入研究风力发电的各项技术对于持久开发风能和实现风力机国产化具有重要意义。
    风力发电技术是涉及空气动力学、自动控制、机械传动、电机学等多学科的综合性高技术系统工程。目前,风电领域的研究难点和热点集中在风机大型化、先进控制策略和优化技术等方面。由于风能具有能量密度低、随机性和不稳定性等特点,风力发电机组是复杂多变量非线性不确定系统,因此,控制技术是机组安全高效运行的关键。本文针对风电机组控制的相关问题展开研究,主要内容归纳如下:
    (1)采用分析建模和实验数据验证相结合的方法建立大型风力发电机组的非线性数学模型,以描述整台风力机的动态行为。此模型对不同控制概念的风轮具有通用性,不但能描述机组的基本动力学特性,还适合于控制目的。模型的有效性通过现场测得的风力机数据验证,并且分析了模型失配的主要原因。此模型可以用于检验控制策略的有效性。
    (2)针对风速仪测量风速的不准确性,本文将大型变速变桨距风力机的有效风速估计看作一个标准的软测量问题,提出基于支持向量机的有效风速软测量。软测量技术的核心问题是建立软测量的数学模型,以实现辅助变量对主导变量的最优估计。文中推导了回归型支持向量机和最小二乘支持向量机的算法,给出基于支持向量机软测量建模的具体步骤。
    (3)首次提出基于支持向量机的非线性预测函数控制算法和双馈发电机的预测函数控制。利用基于线性核函数的支持向量机进行非线性系统辨识,建立预测模型。通过预测函数控制的机理推导出采用一个基函数(阶跃函数)和两个基函数(阶跃函数和斜坡函数)两种情况下的控制律解析表达式。该算法具有在线计算量少,跟踪性能好,抗干扰能力强的特点。针对双馈发电机快速响应对象的特点,综合考虑发电机对控制系统在设定值跟踪能力、抗扰动能力和鲁棒性等方面的设计要求,基于定子磁场定向矢量控制系统模型,结合动态线性化和反馈稳态解耦技术,提出了双馈发电机有功、无功功率的预测函数控制。
    (4)在分析风力机能量流动基础上,本文提出利用模糊逻辑系统得到低风速时风力机的参考转速,实现最大风能捕获。该方法不需要测量风速,避免了风速测量
    
    华北电力大学博士论文
     ii
    的不精确性,不需要了解风力机的气动特性。
    (5)根据风力发电机组的运动方程,提出了风力机转速自适应最优模糊控制。
    算法综合考虑机组的机械特性和电气特性,系统辨识作为控制算法的一部分自动执
    行。在介绍自适应最优模糊控制原理的基础上,提出了一种自适应模糊逻辑系统的
    改进最近邻聚类学习算法,该算法在确定聚类时同时考虑输入输出信息的影响,并
    根据聚类样本数目的多少自适应调整衰减因子。改进算法克服了原算法中敏感参数
    多,不易调整的缺点。
    (6)提出支持向量机变桨距智能控制算法。功率系数是桨距角和叶尖速比的
    非线性函数,本文提出基于支持向量机的功率系数智能模型,该模型具有很好的功
    率系数拟合特性和较强的泛化能力,该方法对不同制造厂商的风轮具有较好的适应
    性和通用性。在功率系数智能模型基础上,提出变速变桨距风力机的智能控制方案。
    该方案包括两个协调工作的控制回路,低于额定风速时,采用自适应最优模糊控制
    调节发电机电磁转矩设定值,跟踪最优参考转速,实现最大风能捕获;高于额定风
    速时,采用支持向量机变桨距控制算法,控制机组的额定输出功率。仿真结果表明,
    风轮可以在变化的风速中获取最大能量并能有效改善控制器切换时引起的功率暂
    态响应,具有较好的实时性和鲁棒性。支持向量机首次引入风电控制领域,体现了
    很好的性能。
    关键词:风力发电机组,双馈发电机,变速恒频,变桨距控制,支持向量机,自适
    应模糊控制,预测函数控制
Energy and environment are pressing problems that must be settled by human beings for future survival and development. Wind power has preferable economic and social benefits because of its cleanliness and free pollution, short construction period, flexible investment and few occupation of land. At present, there are big gaps between china and developed countries in wind turbine’s theory and application research, because wind power has disadvantage with thermal power and hydropower in cost, power quality, equipment manufacture and control technology. Research of wind turbine in china is very weak and many advanced wind turbine technologies are not solved such as high power capacity, pitch control and variable speed constant frequency etc. Thus, almost all advanced large-scale wind turbines are imported from overseas. In all, indepth research of wind turbine technology has very important meaning for persistent wind turbine development and home production. Wind turbine is a comprehensive system engineering of high technology which deals with aerodynamics, automatic control, mechanical drive and generator etc. The research difficulties and hot pots of wind power are focused on high power capacity, advanced control and optimization etc. Control is crucial to the efficiency and reliability of wind turbines. Wind energy has lower density, instability and randomicity, wind turbines have strong nonlinear multivariable with many uncertain factors and disturbances. The thesis expands its investigation on relevant control problems of wind turbines, main contents can be concluded the following:
    (1) Nonlinear mathematical model of large-scale wind turbine is established by combining analysis modeling with experimental data verification to reveal the dynamic behavior of complete wind turbine. The model has generality to different wind turbine control concepts. It reflects the basic dynamics and is suitable for control purpose. Model validity is tested by measuring field data of wind turbine. Main reasons of model mismatch are analyzed. The model can be used for the validity of control strategy.
    (2) The estimation of effective wind speed of large-scale variable speed variable pitch wind turbine is regarded as a standard soft sensor problem to aim at measuring inaccuracy of an anemometer. Soft sensor of effective wind speed is proposed based on support vector machine (SVM). The core of soft sensor is mathematical model to realize optimal estimation of dominant variable by assistant variables. The algorithms of SVM and least square SVM for regression are derived in the paper. The detailed steps of SVM soft sensor model are presented.
    (3) Nonlinear predictive functional control (NPFC) based on SVM and PFC for doubly-fed induction generator are proposed for the first time. A predictive model is established by nonlinear system identification with SVM based on linear kernel function. An explicit control law is obtained through the predictive functional control mechanism with both one base function (step function) and two base functions (step and ramp functions). The algorithm for nonlinear system has light online computational burden, good reference tracking and efficient disturbance rejection. Doubly-fed induction generator has fast dynamics. Control system design for generator must be comprehensively considered on the requirements of reference tracking, sensibility to perturbations and robustness. PFC is proposed for active power and reactive power of doubly-fed induction generator based on
    
    the stator flux-oriented vector control model combining with the dynamic linearization and decoupling state feedback.
    (4) On the basis of power flow analysis of wind turbine, a new method for estimating the optimal rotating speed at low wind speed is proposed by an application of fuzzy inference system. The method can realize maximum wind energy capture and avoids the inaccuracy by measuring the wind speed. It need not know the aerodynamic characteristics of wind turbine.
    (5) Adaptive optimal fuzzy system for speed control is proposed base
引文
[1] Bimal K. Bose. Energy, environment, and advances in power electronics. IEEE Trans. Power Electronics, 2000,15(4):688-701.
    [2] 能源领域组, 能源领域, 科技发展“十五规划”和 2015 年远景研究. 1999.
    [3] 王承煦, 张源. 风力发电. 北京:中国电力出版社. 2002.
    [4] 叶杭冶. 风力发电机组的控制技术. 北京:机械工业出版社. 2002.
    [5] 施鹏飞. 从世界发展趋势展望我国风力发电前景. 中国电力,2003,36(9): 54-62.
    [6] Grainger B. Thorogood T. Beyond the harbour wall [offshore wind farm] IEE Review, 2001, 47(2):13-17.
    [7] 张新房,徐大平,吕跃刚,柳亦兵. 风力发电技术的发展及若干问题. 现代电力,2003,20(5):29-34.
    [8] Muller, S, Deicke, M., De Doncker R.W. Doubly Fed Induction Generator Systems for Wind Turbines. Industry Applications Magazine. IEEE, 2002, 8(3):26 –33.
    [9] J.Jaydev. Harnessing the wind. IEEE Spectrum, 1995:78-83.
    [10] 《火电结构优化和技术升级研究》课题编写组. 火电结构优化和技术升级研究. 中国电力工程顾问(集团)有限公司. 2002.5.
    [11] Rolf Hoffmann. A comparison of control concepts for wind turbines in terms of energy capture. Doctor thesis. Technology University Darmstadt, 2002.
    [12] Mutschler P., Hoffmann R. Comparison of Wind Turbines Regarding Their Energy Generation. Power Electronics Specialists Conference, 2002. pp6 –11.
    [13] 郑照宁,刘德顺. 中国风电投资成本变化预测. 中国电力,2004,37(7):77-80.
    [14] Theodore S. Anderson, etc. Multi-speed Electrical Generator Application to Wind Turbines, Pennsylvania, 1980, 155-168.
    [15] 盛双文, 许洪华等. 失速型风力发电机组双速电机切换过程的仿真分析. 太阳能学报. 2002, 23(5): 604-609.
    [16] O. Carlson, J. Hylander, and K. Thorborg. Survey of variable speed operation of wind turbines. European Union Wind Energy Conference, Goeteborg, Sweden, 1996: 406-409.
    [17] A. S. Mercer and E. A. Bossanyi. Stall regulation of variable speed HAWTS. European Union Wind Energy Conference, Goeteborg, Sweden, 1996: 825-828.
    [18] Niels Vilsboell, Andrei L. Pinegin, Thorsten Fischer, et al. Analysis of advantages of the double supply machine with variable rotation speed application in wind energy converters. DEWI Magazin,1997, (11):50-65.
    [19] M. Idan, D. Lior, and G. Shaviv. A robust controller for a novel variable speed wind turbine transmission. Journal of Solar Energy Engineering, 1998, 120 (11):247-252.
    
    [20] Donald S. Zinger and Eduard Muljadi. Annualized wind energy improvement using variable speeds. IEEE Transactions on Industry Applications, 1997, 33(6):1444-1447.
    [21] Henrik Bindner, Anders Rebsdorf, and Walter Byberg. Experimental investigation of combined variable speed/variable pitch controlled wind turbines. European Wind Energy Conference, Dublin, 1997.
    [22] D.勒古里雷斯著. 施鹏飞译. 风力机的理论与设计. 北京:机械工业出版社.1985.
    [23] J-P. Molly. 张世惠译. 风能理论、应用与测试.
    [24] Andrew Miller, Edward Muljadi, Donald S. Zinger. A Variable Speed Wind Turbine Power Control. IEEE Trans on Energy Conversion. 1997. 12(2):1981-1986.
    [25] A.D. Diop, C.Vivhita, et al. Modelling Variable Pitch HAWT Characteristics for a Real Time Wind Turbine Simulator. Wind Eng. 1999, 23(4):225-243.
    [26] Leithead,W.E., Connor,B. Control of Variable Speed Wind Turbines: Design Task. Int. J.Contr., 2000, 73(13): 1189-1212.
    [27]黄科元, 贺益康, 卞松江. 矩阵式变换器交流励磁的变速恒频风力发电系统研究. 中国电机工程学报. 2002, 22(11):100-105.
    [28] ZHANG Xin-fang, XU Da-ping, LIU Yi-bing. Predictive Functional Control of a Doubly Fed Induction Generator for Variable Speed Wind Turbines. The 5th World Congress on Intelligent Control and Automation. Hongzhou, Zhejiang. 2004.6
    [29] M.Machmoum, F. Poitier, et al. Dynamic Performances of a Doubly-fed Induction Machine for a Variable-speed Wind Energy Generation. International Conference on Power System Technology. 2002, Vol(4): 2431 – 2436.
    [30] W. Leithead, S. de la Salle, and D. Readon. Wind turbine control objectives and design. In European Community Wind Energy Conference, Madrid, 1990, 510–515.
    [31] W. Leithead, S. de la Salle, and D. Reardon. Role and objectives for control of wind turbines. IEE Proc-C, 1991, 138(2):pp. 135–148.
    [32]肖劲松, 倪维斗, 姜桐. 大型失速型风力机组的建模与仿真. 太阳能学报, 1997 18(1): 13-21.
    [33] 肖劲松, 倪维斗, 姜桐. 大型风力机组的建模与仿真. 太阳能学报, 1997 18(2): 117-127.
    [34] Leithead, W.E. de la Salle, S.A. et al. Wind turbine modelling and control, International Conference on Control, 1991, vol.1:1 – 6.
    [35] Gregor E. Van Baars and Peter M.M. Bongers. Wind turbine control design and implementation based on experimental models. Proceedings of the 31st conference on Decision and Control, Tucson, Arizona, 1992: 2454-2459.
    [36] Bongers P.M.M., Engelen T. Gvan. Theoretical model and simulation of a wind turbine. Wind Engineering, 1988, 11(2):344-350.
    
    [37]Peter M.M. Bongers. Modeling and Identification of flexible wind turbines and a factorizational approach to robust control design. Doctor thesis. Netherlands: Deft University of Technology, 1994.
    [38] 包能胜,陈庆新,姜桐.柔性风力机系统模型参数辨识.太阳能学报,1997,18(4): 390-394.
    [39] 金增,包能胜,陈庆新等.风力机系统的神经网络模型辨识.太阳能学报,1998,19(2): 206-211.
    [40] Bian Songjiang, He Yikang, Zhang Hui. Modeling and operation analysis of the cascade brushless doubly-fed machine.Proceedings of the Fifth International Conference on Electrical Machines and Systems, 2001, vol(2) :942 – 945.
    [41] Ekanayake, J.B. Holdsworth, L. etc. Dynamic modeling of doubly fed induction generator wind turbines.IEEE Transactions on Power Systems 2003 18(2):803-809.
    [42] Arantxa Tapia, Gerardo Tapia, etc. Modeling and Control of a Wind Turbine Driven Doubly Fed Induction Generator. IEEE Transactions on Energy Conversion, 2003, 18(2): 194-204.
    [43] Cadirci, I. Ermis, M. Double-output induction generator operating at subsynchronous and supersynchronous speeds: steady-state performance optimisation and wind-energy recovery. IEE Proceedings-Electric Power Applications. 1992, 139 (5): 429 – 442.
    [44] Dominguez Rubira, S. McCulloch, M.D. Control method comparison of doubly fed wind generators connected to the grid by asymmetric transmission lines. IEEE Trans on Industry Applications. 2000, 36(4):986-991.
    [45] Anderson P M. Bose A. Stability simulation of wind turbine system. IEEE Trans on Power Apparatus and systems, 1983,PAS-102(12):3791-3795.
    [46] 吴学光,张学成等. 异步风力发电系统动态稳定性分析的数学模型及其应用. 电网技术, 1998, 22(6):68-72.
    [47] I.Van deHoven, “Power spectrum of horizontal wind speed in frequency range from 0.0007 to 900 cycles per hour,” J. Meteorology, 1957. vol. 14, pp.160–164.
    [48] E. Welfonder, R. Neifer, and M. Spanner, “Development and experimental identification of dynamic models for wind turbines,” Contr. Eng. Practice, 1997. 5(1) pp. 63–73.
    [49] Hansen, A.C., 1998, User’s Guide to the Wind Turbine Dynamics Computer Programs YawDyn and AeroDyn for ADAMS, Version 11.0, Mechanical Engineering Department, University of Utah, Salt Lake City, UT.
    [50] Wilson, R.E., 1999, “Technical and User’s Manual for the FAST_AD Advanced Dynamics Code,” OSU/NREL Report 99-01, Oregon State University, Corvallis, OR.
    
    [51] Mechanical Dynamics, Inc., 1998, Using ADAMS/Solver (v9.1), Mechanical Dynamics, Inc. Ann Arbor, MI.
    [52] D-P. Molenaar, Duwecs versus Flexlast - A comparison of two non-linear wind turbine simulation programs. Mechanical Engineering, Systems and Control group, Delft University of Technology, The Netherlands, August 1996.
    [53] Garrad Hassan Ltd. A Design Tool for Wind Turbine Performance and Loading.
    [54] C. Nichita, A. D. Diop, J. J. Belhache, B. Dakyo, and L. Protin, “Control structures analysis for a real time wind system simulator,” Wind Eng., vol. 22, no. 6, pp. 275–286, 1998.
    [55] A. D. Diop, C. Nichita, J. J. Belhache, B. Dakyo, and E. Ceanga, “Modeling of a variable pitch HAWT characteristics for a real-time wind turbine simulator,” Wind Eng., vol. 23, no. 4, pp. 225–243, 1999.
    [56] Kendall, L., Balas,M.J. et al. Application of proportional integration and disturbance accommodating control to variable speed variable pitch horizontal axis wind turbines. Wind Engineering. 1997,21(1):21-38.
    [57] 须洪华, 倪受元. 独立运行风电机组的最佳叶尖速比控制. 太阳能学报, 1998, 19(1):30-35.
    [58] 杨俊华,吴捷. 风力发电机组的非线性控制—变结构控制与鲁棒控制. 动力工程. 2003, 23(6): 2803-2809.
    [59] De Battisa H, Mantz R J, Christiansen C F. Dynamical sliding mode power control of wind driven induction generators. IEEE Trans on Energy Conversion, 2000,5(4):451-457.
    [60] P Ruben, D S Daniel. Interger variable structure controllers for small wind energy systems. Proceedings of the 1999 IEE Canadian conference on Electrical and Computer Engineering. 1999. 1067-1072.
    [61] D.J.Leith, W.E. Leithead. Performance enhancement of wind turbine power regulation by switched linear control. International Journal of Control,1996, 65(4):555-572.
    [62] Ilya Kraan, Peter M.M. Bongers. Control of a wind turbine using several linear robust controllers 1993, Proceedings of the 32nd Conference on Decision and Control, Texas 1928-1929.
    [63] Ronilson R. and Filho, L.S.M. A Multivariable H∞ Control for Wind Energy Conversion System. Proceedings of 2003 IEEE Conference on Control Applications. Vol(1): 206-211.
    [64] Lima, M.L., Silvino, J.L., de Resend. H ∞ Control for a Variable-Speed Adjustable-Pitch Wind Energy Conversion System. Proceedings of the IEEE International Symposium on Industrial Electronics. 1999, Vol(2):556-561.
    [65] Maezato, S. Long, Y. Yamashita, K. H-inf Control for Windmill Power Systems. 1999 IEEE International Conference on Systems, Man, and Cybernetics. Vol(2):654-659.
    
    [66] Pete M M Bongers, Gregor E, Van Baars. Load reducation in a wind conversion system using an H∞ controller.Second IEEE Conference on Control Application.1993, 965-970.
    [67] E.A.Bossanyi. Adaptive pitch control for a 250kW Wind Turbine, Proc. British Wind Energy Conference.1986,pp.85-92.
    [68] Y.D. Song, B. Dhinakaran. Nonlinear Variable Speed Control of Wind Turbines. IEEE International Conference on Control Applications. 1999, Hawai’I, USA. 814-819.
    [69] Y.D. Song, B.Dhinakaran, X.Bao. Control of Wind Turbines Using Nonlinear Adaptive Field Excitation Algorithms. American Control Conferences, 2000, Chicago, 1551-1555.
    [70] Hilloowala, R.M. Sharaf, A.M. A Rule-Based Fuzzy Logic Controller for a PWM Inverter in a Stand Alone Wind Energy Conversion Scheme. IEEE Trans Industry Applications, 1996, 32(1):57-65.
    [71] Simoes, B K Bose. Fuzzy Logic based intelligent control of a variable speed cage machine wind generation system. IEEE Trans on Power Electronics, 1997, 12(1):234-239.
    [72] Yifan Tang, Longya Xu. Adaptive Fuzzy Control of a Variable Speed Power Generating System with Doubly Excited Reluctance Machine. 1994 IEEE 25th Annual Power Electronics Specialists Conference, vol(1):377 – 384.
    [73] M. Perales, J. Perez, et al. Fuzzy logic control of a variable speed variable pitch wind turbine. The 25th Annual Conference of the IEEE ,1999, Vol( 2):614-618.
    [74] 张新房, 徐大平. 风力发电机组的变论域自适应模糊控制. 控制工程. 2003, (10)4: pp342-345.
    [75] 李洪兴. 变论域自适应模糊控制器. 中国科学 E 辑,1999,29(1):32-42.
    [76] 李洪兴,苗志宏,王加银. 四级倒立摆的变论域自适应模糊控制. 中国科学 E 辑, 2002, 32(1):65-75
    [77] 李洪兴,苗志宏,王加银. 非线性系统的变论域稳定自适应模糊控制. 中国科学 E辑,2002,32(2):65-75.
    [78] ZHANG Xin-fang, XU Da-ping. Adaptive Fuzzy Control for Variable Speed Variable Pitch Wind Turbines. IFAC Symposium on Power Plants & Power Systems Control 2003 Pre-prints. September 15-19. Korea.pp545-550.
    [79] M.A.M. Prats, J.M.Carrasco, et al. Improving transition between power optimization and power limitation of variable speed, variable pitch wind turbines using Fuzzy control. 26th Annual Conference of the IEEE , 2000. vol.3: 1497 –1502.
    [80] M.A.M. Prats, J.M.Carrasco, et al. A new fuzzy logic controller to improve the captured wind energy in a real 800 kW variable speed-variable pitch wind turbine. IEEE 33rd Annual Power Electronics Specialists Conference, 2002, Vol(1):101 – 105.
    
    [81] Z Chen, S Arnalte Gomez, M Mccormick. A fuzzy logic controlled power electronic system for variable speed wind energy conversion systems. IEEE Power Electronics and Variable Speed Dives Conference, 2000, 114-119.
    [82] R Chedid, F Mrad, M Basma. Intelligent control of a class of wind energy conversion systems. IEEE Trans on Energy Conversion. 1999, 14(4): 1597-1604.
    [83] R Chedid, F Mrad, M Basma. Intelligent control for Wind Energy Conversion Systems. Wind Eng. 1998, 22(1): 1-16.
    [84] F.D.Kanellos, N.D. Hatziargyriou. A new Control Scheme for Variable Speed Wind Turbines using Neural Networks. Power Engineering Society Winter Meeting, 2002. IEEE , vol.1: 360 –365.
    [85] 张学工. 关于统计学习理论与支持向量机. 自动化学报. 2000, 26(1):32-42.
    [86] Rui Feng, Wei Shen, Huihe Shao. A soft sensor modeling approach using support vector machines. Proceedings of the American Control Conference, Denver, Colorado, 2003, 3702-3707.
    [87]Vapnik.V.N. Estimation of Dependencies Based on Empirical Data. Berlin: springer-Verlag, 1982.
    [88] Vapnik. V. N. The Nature of Statistical Learning Theory, NY: Springer-Verlag, 1995.
    [89] Cherkassky V, Mulier F. Learning from Data: Concepts, Theory and Methods. NY: John Viley&Sons, 1997.
    [90] 王树青. 先进控制技术及应用. 北京: 化学工业出版社. 2001.
    [91] Knudsen, T. Start/Stop Strategy for Wind-Diesel system, PhD thesis, IMSOR, DTH.
    [92] Hjstrup, J. Velocity spectra in the unstable planetary boundary layer. Journal of the atmospheric sciences, 39(10).
    [93] Petersen, E.L., Troen, I., and Frandsen, S. Wind atlas for Denmark. Technical report, Risφ National Laboratory, Denmark.
    [94] φstergaared, P. Ekelund, T., Jovik, I., et al. Modeling, identification and control of a variable-speed HAWT. In 5th European Wind Energy Association Conference and Exhibition, Greece.
    [95] Karl A. Stol, Gunjit S. Bir. User’s Guide for SymDyn Version1.2 National Wind Technology Center (USA), National Renewable Energy Laboratory, 2003.
    [96] 陈严,欧阳高飞,叶枝全. 大型水平轴风力机传动系统的动力学研究. 太阳能学报. 2003, 24(5): 729-734.
    [97] 王介龙,陈彦, 薛克宗. 风力发电机偶合转子/机舱/塔架的气弹响应. 清华大学学报(自然科学版),2002,42(2):211-215.
    [98] Bossayi E. A. Bladed for windows theory manual. England: Grarad Hassan and Partners Ltd, 1999,19-35.
    
    [99] Iqbal,M.T. Coonick,A. and Ereris,L.L. Dynamic control options for variable speed wind turbines. Wind Engineering. 1994, 18 (1), pp.1-12.
    [100] D.J. Leith, W.E.Leithead. Application of nonlinear control to a HAWT. 3rd IEEE Conference on Control Applications, August 1994, Glasgow UK,pp245-250.
    [101] Xin Ma. Adaptive extremum control and wind turbine control. PhD thesis. 1997. Technical University of Denmark.
    [102] Gonzalez G D, Redard J P, Barrera R, Fernandez M. Issues in soft-sensor applications in industrial plants. Proceeding of IEEE International Symposium on Industrial Electronics,1994, 380 –385.
    [103] Vapnik V N. The nature of statistical learning theory. New York: Springer-Verlag, 1999. Second Edition.
    [104] Suykens J.A.K, Vandewalle J. Least squares support vector machines classifiers. Neural Network Letters, 1999, 19(3):293-300.
    [105] Kuntze H B, et al. On the predictive functional control of an elastic industrial robot. Proc. 25th CDC. Athens, Greece: 1986,1877-1881.
    [106] Cuadrado D, Nicodeme P, et al. Application of global identification and predictive functional control to a tracking turret, European control conference, Grenoble, France, 1991,(7):2-5.
    [107] Compas, J M. Decarreau P. et al. Indstrial applications of predictive functional control to rolling mill, fast robot, river dam. Proc 3th IEEEE conference on control applications , Glasgow, UK, 1994, 3: 1643-1655.
    [108] 金晓明, 王树青, 荣冈. 先进控制技术及其应用第五讲,预测函数控制(PFC)—一种新型预测控制策略. 化工自动化及仪表. 1999, 26(6):74-79.
    [109] 刘峙飞,金晓明,王树青等 . 双值预测函数控制 . 控制与决策 , 1999, 14(Suppl.):553-556.
    [110] H.H.Pan, H.Y.Su and J.Chu. The predictive functional control algorithm of bilinear system. In Proceedings of the 3rd World Congress on Intelligent Control and Automation. Hefei, China:2000, pp.2779-2782.
    [111] 张泉灵, 王树青. 基于神经网络的非线性预测函数控制. 浙江大学学报(工学版).2001, 35(5): 497-501.
    [112] S.C.Shin, S.B.Park. GA-based predictive control for nonlinear process. Electronics Letters, 1998, 34(20):1980-1981.
    [113] 张泉灵, 王树青. 基于 Hammerstein 模型的非线性预测函数控制. 浙江大学学报(工学版).2002, 36(2): 119-122.
    
    [114] 张智焕,王树青,荣冈. 基于非线性 Wiener 模型自适应预测函数控制. 计算技术与自动化,2003,22(2):15-17.
    [115] 席裕庚. 预测控制. 北京: 国防出版社, 1993.
    [116] 张浩然, 韩正之, 李昌刚. 基于支持向量机的未知非线性系统辨识与控制. 上海交通大学学报, 2003, 37(6) :927-930.
    [117] 张浩然, 韩正之, 李昌刚. 基于支持向量机的非线性模型预测控制. 系统工程与电子技术, 2003, 25(3): 330-334.
    [118] 高景德、王祥衍、李发海. 交流电机及其系统分析. 北京:清华大学出版社.1993.
    [119] 张新房,徐大平,吕跃刚,柳亦兵. 大型变速风力发电机组的自适应模糊控制. 系统仿真学报. 2004,16(3),PP: 573-577.
    [120] LX. Wang. Adaptive Fuzzy Systems and Control: design and stability analysis. Prentice-Hall, New Jersey, 1994
    [121] 张颖 邵惠鹤. 模糊聚类学习算法在连续搅拌反应釜(CSTR)系统动态建模中的应用. 上海交通大学学报. 1999, 33(5): 588-591.
    [122] 吴捷, 严华. 基于自适应最优模糊逻辑系统的短期负荷预测方法. 电力系统自动化. 1999, 23(17): 35-37.
    [123] 张颖 邵惠鹤. 自适应模糊辨识中关于模糊最近邻聚类学习算法的一种改进. 控制与决策. 1999, 14(4): 329-333.
    [124] 王士同 神经模糊系统及其应用. 北京:北京航空航天大学出版社. 1998
    [125] 叶杭冶,刘琦. 风力发电机组的变距控制系统. 机电工程. 1999,(5): 140-143.
    [126] J.G. Slootweg, H.Polinder, W.L.Kling. Dynamic Modelling of a Wind Turbine with Doubly Fed Induction Generator. Power Engineering Society Summer Meeting, 2001. IEEE, vol.1: 644 –649.
    [127] J.R.Winkelmann and S.H.Javid, Control design and performance analysis of a 6 MW wind turbine generator, IEEE Trans on PAS, 1983, 102(5):1340-1347.
    [128] Z.Chen and E.Spooner, “Grid power quality with variable speed wind turbines,” IEEE Transactions on energy conversion, 2001,16(2): pp. 148-154.
    [129] Novak P, Ekelund T. Modeling and control of variable-speed wind turbine drive-system dynamics. IEEE control systems, 1995, 8:28-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700