新型内圆磨床砂轮架系统的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内圆磨床是金属切削机床中的一种,主要用于磨削圆柱形和圆锥形内表面。并且目前国内现有的内圆磨床系列中具有最大加工能力的为M250A,其加工能力为:磨削最大孔径中500mm,最大深度450mm。而泰安力博机电科技有限公司基于产品的生产加工要求,需要一台大型的内圆磨床,其最大加工能力应为:磨削最大孔径Φ850mm,最大深度500mm; M250A的加工能力无法满足其生产加工要求。基于经济、实用、高性价比等原则的考虑,且通过市场调查,决定自行研制一台高性能的内圆磨床。此内圆磨床的研制不仅可以满足公司生产加工的需要,还填补了内圆磨床系列的空白,而且也为今后大型机床的研究设计起到了一定的借鉴作用。
     在设计过程中,参考了现有内圆磨床设计的传统方法及经验,并且在经济实用的基础上,为了实现高性能、高自动化等优点,本课题还在内圆磨床的研究与设计中采用了一些新型技术。磨床床身采用卧式结构,床头箱带动工件做回转运动,工作台带动砂轮架实现纵向往复运动,砂轮架在工作台上实现横向进给运动。砂轮架处导轨采用燕尾形滚动导轨,降低了砂轮架的整体高度,提高了砂轮架系统的稳定性;采用双速电机作为砂轮的动力源,使得在磨削不同工件采用不同的砂轮时,安装调试更加方便快捷,提高了磨床的生产效率;砂轮架主轴带传动采用带轮卸荷结构,可以将皮带传动的压轴力卸荷到砂轮架的箱体上,提高了主轴的刚度和回转精度;在砂轮架主轴轴承支承系统中设计一种新型的柱销式内反馈动静压轴承,大大提高了轴承的刚度和主轴的回转精度,保证了产品加工的质量;为提高内圆磨床生产效率及保证加工面的加工质量,砂轮采用立方氮化硼砂轮;同时冷却系统采用强制冷却的方法,提高冷却质量,延长砂轮的使用寿命以及工件的加工质量。
Internal grinder is a kind of Metal-cutting machine tools, mainly used for grinding the inner surface of cylindrical and conical. And the M250A is the largest machining ability in the current domestic existing series of grinder, its processing capacity:the maximum grinding diameter isφ500mm, the maximum depth is 450mm. Taian Libo Mechantronic Technology Co.LTD., in order to content the production process, needs a large internal grinder, the maximum processing capacity should be:the maximum grinding diameter isφ850mm, the maximum depth is 500mm. The processing capacity of M250A can not meet the requirements. In the economic, practical, cost-effective principles of consideration, and get through the market research, so decide to develop a high-performance internal grinder. This internal grinder not only meets the needs of the company's production and processing, but also fill up the gaps in internal grinder series, and have played a certain reference for the study of larger machine tools in the future.
     In the design process, reference to the traditional methods and experience which design of internal grinder, and on the basis of economy and practicaliyt, in order to achieve the high-performance, high-automation, etc., this project adopt some new technologies in the design. The internal grinder adopt he horizontal bed, the headstock only driven workpiece to do rotary movement, the workbench drives the grinding carriage to realize the vertical reciprocating motion, the grinding carriage achieves horizontal reciprocating on the workbench. The guide rail of grinding carriage is the dovetail rolling guide, reduce the integral height of the grinding carriage, enhance the stability of the grinding carriage; adopt the Double-speed motor as power source for the grinding carriage, so as to, it will be more convenient and Speedily on the installation and debugging, while using the different grinding wheel to grind different workpiece, so improve the production efficiency of Internal grinder; The Belt transmission of the principal axis of grinding carriage adopts unloading structure, the power causeed by belt drive can transmit into the grinding carriage's box, Increase the stiffness and ratation accuracy of the principal axis; We design the Turbulent Hybrid Bearing with a new pin feedback restrictor for the principal axis of grinding carriage, greatly improving the stiffness and ratation accuracy of the bearing, and ensure the quality of the product processing; In order to improve the production efficiency and ensure the quality of the product, the Grinding Wheel use the CBN as abrasive; Meanwhile Cooling System adopt the method of compulsory cooling, to enhance cooling quality, and prolong the service life of the grinding wheel, and improve the workpiece machining quality.
引文
1. Chen Shu-han et al. Analysis and modeling of error of spiral bevel gearing grinder based on multi-body system theory[J]. Springer,2008, (15):50-55.
    2. Hundt W,Leuenberger D,Rehsteiner F. An approach to monitoring of the grinding process using acoustic emission(AE)technique.Annals of the CIRP,1994,43,43 (1):295-298.
    3. HUANG H,LING Y. Grinding characteristics of engineering ce-ramics in high speed regime[J].International Journal of AbrasiveTechnology,2007,1,1 (1):78-93.
    4. Zhao Jian, Wang Tai-yong et al. Study on the Dynamic Characteristic of Lathe Headstock[J]. Journal of Wuhan University of Technology,2006, (S3):946-950.
    5. Nie Song-lin, Li Zhuang-yun. Work Principle and Characteristic Analyses of Hydrostatic Bearing[J]. Chinese Journal of Mechanical Engineering,2002, (2):162-166.
    6. Dornfeld A D. Neural network sensor fusion for tool condition monitoring[J].Annals of the CIRP,1990,(9):101-105.
    7. Jiang Guo-he et al. The Displacement Restricror parameter Optimizing based on the Pseudo-Parallel Improved Genetic Algorithm[C]. Bei Jing:CSNAME,2006.
    8. Chen Zhuo-ru, Pan She-wei et al. A Study on the Dynamic Characteristics of the Damping Capillary Type Spherical Hydrostatic Bearing[J]. Journal of Harbin Institute of Technology,1995, (2):24-26.
    9. Pang Zhi-cheng et al. The Effeces of the Structure of Feedback Restrictor on the Dynamic Vharacteristics of Hydrostatic Bearings[J]. Journal of Harbin Institute of Technology,1998, (3):71-74.
    10. Guo Jun-kang et al. Optimization Design for the Bed Structure of Broach Grinder Based on FEM Analysis [J]. Modular Machine Tool & Automatic Manufacturing Technique,2011,(1):9-12.
    11. Yan Zhan-hui, Cao Yi, Yu Jun-yi. New Method of Reducing Heat Deformation of Slideway Grinders[J]. Chinese Journal of Mechanical Engineering,2007, (3):9-12.
    12. Yang Jian-xi, Meng Xin-zhai, Qian Jin-wu. Analysis and Application on the Optimum Restrictive Parameters of Open Hydrostatic Slideway[J]. Engineering Sciences,2004, (3):92-94.
    13.林祥霖.国内外内圆磨床技术水平及发展动向[J].工艺与装备,2005,(3):30-35.
    14.罗亚军.浅谈磨削工艺研究与应用[J].黑龙江科技信息,2008,(1):20-21.
    15.孙恭寿等.磨床精化与改造[M].北京:机械工业出版社,1986:3-26.
    16.戴曙.金属切削机床设计[M].北京:机械工业出版社,1981:1-394.
    17.上海机床厂.磨床设计制造(上册)[M].上海:上海人民出版社,1972:35-115.
    18.龚朴.磨床床头箱的结构分析及优化设计[J].武汉:武汉理工大学学报,2007,(10):43-44.
    19.上海机床厂.磨床设计制造(下册)[M].上海:上海人民出版社,1972:70-105.
    20.陈心昭等.现代实用机床设计手册(上册)[M].北京:机械工业出版社,2006:1526-1582.
    21.李伯民等.现代磨削技术[M].北京:机械工业出版社,2003:195-201.
    22.闫秀芳.磨床磨削工件表面烧伤的产生与预防[J],宁夏机械,2005,(2):55-56.
    23.于骏一,邹青.机械制造技术基础[M].北京:机械工业出版社,2004:50-56.
    24.邓星钟.机电传动控制[M].武汉:华中科技大学出版社,2006:5-12.
    25.赵世华.金属切削机床[M].北京:航空工业出版社,1996:1-3.
    26.王敏,于爱兵,张义.机床造型设计方法[J],设备设计与维修,2005,(9):100-102.
    27.林祥霖.国内外内圆磨床技术水平及发展动向[J].工艺与装备,2005,(3):30-35.
    28.濮良贵.机械设计[M].北京:高等教育出版社,2006:143-150.
    29.叶瑞文.机床大件焊接结构设计[M].北京:机械工业出版社,1986:95-125.
    30.辛一行.现代机械设备设计手册[M].北京:机械工业出版社,1996:126-150.
    31.吴宗泽等.机械设计课程设计手册[M].北京:高等教育出版社,2004:2-5.
    32.吴宗泽.机械零部件设计[M],北京:机械工业出版社,2004:200-210.
    33.陆琴新,刘红.磨床主轴性能分析仿真[J],机械工程师,2003,(8)40-41.
    34.刘鸿文.材料力学[M].北京:高等教育出版社,2005:176-197.
    35.余最康.液体静压轴承[M].江苏:江苏科学技术出版社,1981:45-56.
    36.钟洪等.液体静压动静压轴承设计使用手册[M].北京:电子工业出版社,2006:23-67.
    37.上海机床厂“七·二一”工人大学.磨床液压[M].上海:上海人民出版社,307-403.
    38.广州机床研究所编.液体静压技术原理及应用[M].北京:机械工业出版社,1978:1-125.
    39.郭红等.新型阶梯圆柱柱销节流向心静压轴承特性研究[J].机械设计,2009, 26(9):18-20.
    40.盛晓敏等.汽车凸轮轴的高速精密磨削加工关键技术[J].新技术新工艺,2006(8):61-64.
    41.丁振乾.流体静压支撑设计[M].上海:上海科学技术出版社出版,1989:14-172.
    42.郭桂梅等.机床导轨爬行现象的产生机理研究[J].机床与液压,2008,36(3):21-22.
    43.杨延水等.数控磨床工作台爬行现象浅析[J].金属加工冷加工,2009,(5):67-68.
    44.王万新.机床爬行现象的机理研究[J].机械工程与自动化,2007,(4):171-173.
    45.卫继键.卸荷装置在数控机床中的应用[J].机械工人,2008,(3):42-43.
    46.周仁淦,袁人炜,冯能莲.用静压技术解决导轨磨床的“爬行”问题[J],安徽工学院学报,1995,14(2):65-70.
    47.彭荣济等.现代综合机械设计手册(上册)[M].北京:北京出版社,1999:242-245.
    48.王承鹤.聚四氟乙烯导轨软带[M].北京:轻工业出版社,1987:101-105.
    49.王士军等.在万能外圆磨床径向进给导轨上镶装塑料软带[J].机床与液压,1998,(5):20-23.
    50.宗西成等.浅谈机床导轨贴塑[J],制造技术与机床,2000,(9):43-44.
    51.田炳峰,邱立明.车床床身导轨副的手工磨削及贴塑工艺[J],金属加工,2008,(3):61.
    52.郭增林,卜炎.一种新型结构的动静压混合径向滑动轴承[J],机械设计1996,(08):25-28.
    53.孙恭寿,冯明.液体动静压混合轴承设计[M].北京:世界图书出版公司,1993:96-104.
    54.周志雄等.磨削技术的发展及关键技术[M].北京:中国工程机械,2000,11(1-2):186-189.
    55.韩荣等,王杨,张文生.现代机械加工新技术[M].北京:电子工业出版社,2003:50-78.
    56.杨俊海.磨削加工与先进工艺[M].北京:北京航空航天大学,2004:20-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700