高瓦斯易自燃采空区双层遗煤均压通风系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,瓦斯抽放是治理工作面瓦斯超限的主要方法,但由于我国大部分煤层的渗透率较低,单靠瓦斯抽放不足以解决高瓦斯综放工作面上隅角的瓦斯超限问题。对此,有学者提出利用增加漏风汇的方法予以解决,其中尾巷就是比较经济有效的治理上隅角瓦斯超限的方法。但我国《煤矿安全规程》规定,尾巷只能在不易自燃的煤层中使用,这就增加了高瓦斯易自燃工作面的瓦斯治理难度。因此有必要对高瓦斯易自燃工作面的瓦斯治理和煤自燃预防方法进行研究,力求找到一种不会增加煤矿自燃危险性的瓦斯治理方法,从而降低煤矿的瓦斯治理难度和开采成本,促进煤矿的安全高效开采。
     采空区煤自燃是一个复杂的物理、化学变化过程,其低温阶段的宏观表现为热量的产生和气体产物的生成。本文建立了能够反映采空区CH4、CO2的动态生成及采空区多孔介质固气间能量交换的三维动态采空区煤自燃数学模型,并对其关键参数进行了研究。利用动网格技术建立了反应工作面回采过程的三维动态几何模型,并用UDF自定义函数定义了采空区区域运行方式,结合煤自燃动态数学模型,实现了对三维采空区煤自燃的动态仿真模拟。
     U型通风系统为一源一汇的通风系统,U+L型通风系统为一源两汇的通风系统。U型通风系统不利于上隅角瓦斯防治,但可以最大限度的减少向采空区的漏风,对采空区煤自燃防治有利,而U+L型通风系统恰恰相反。为了对比研究U型通风系统和U+L型通风系统对采空区煤自燃的影响规律,分别研究了两种通风系统对采空区漏风流场、瓦斯浓度场分布规律以及采空区底板遗煤和冒落带中不可采的临近层遗煤的自燃耦合规律及高温点的空间分布规律,结果表明:(1)采空区双层遗煤的温度场分布状态是工作面通风系统、采空区遗煤位置、厚度、采空区瓦斯浓度、煤层倾角等因素综合作用的结果;(2)U+L型通风系统的回风巷和尾巷压差、煤层倾角对采空区煤自燃有重要的影响。
     围岩温度影响着矿井大气的温度、煤低温氧化热生成速率和向周围环境的散热速率。本文研制了温度控制范围从0~180℃的煤低温氧化绝热实验系统,完成了从起始温度20℃绝热升温到160℃的绝热氧化实验,结果表明,煤在低温阶段(20~40℃)的升温时间占总升温时间的54%。本文还利用煤自燃动态仿真模拟方法,对不同的围岩温度下,采空区温度场的分布规律进行了研究,研究表明围岩温度越高,正常回采时的采空区最高温度越高,停采后达到燃点的时间越短。实验室物理模拟实验和数值模拟实验表明,在相同煤质下,矿井围岩温度越低,采空区遗煤的自然发火期越长。
     基于以上研究,本文得到了一种新型的通风系统——U_U型均压通风系统。相对于U型通风系统,U_U型均压通风系统对采空区风压梯度和漏风流场的影响很小,不会增加采空区底板遗煤进风侧遗煤和冒落带遗煤温度,只会略微增大联络巷口附近的采空区遗煤温度,而联络巷口附近的遗煤自燃氧化过程完全可控。由于U_U型均压通风系统有大的沿空留巷断面,可以保证回风巷和联络巷仅有一个小的压差就能使联络巷中有足够的风量,这样既解决了上隅角瓦斯超限,又可把联络巷瓦斯浓度控制在较低水平。所以U_U型均压通风系统能够有效治理工作面瓦斯超限并且不会增加采空区煤自燃的危险性。U_U型均压通风系统在煤矿现场的成功应用表明,它是高瓦斯易自燃工作面治理瓦斯超限和防止采空区煤自燃的有效方法,具有重大的社会效益和经济效益。
     该论文有图114幅,表11个,参考文献163篇。
Currently, gas emission has already become the main means of controlling gas overrun of working face. However, due to the lower penetrability of most coal seams in China, gas emission can not solve the problem of gas overrun in high gas working face, especially at the upper corner of the fully mechanized top-coal caving face. According to The Coal Mine Safety Rules, tail roadway is only used in coal seams that can not easily self-ignite which increases the difficulty of gas control in the working face of high gas and easily spontaneous combustion. Owing to different temperatures, the coal that has the same tendency of spontaneous combustion has great different periods of spontaneous combustion. Therefore, it is necessary to research on the gas control and prevention coal spontaneous combustion in the working face. This study strives to find a way of gas control which can not increase the risk of mine spontaneous combustion in the coal seams of high gas and easily spontaneous combustion, reduces the difficulty of gas control as well as the mining cost, and promotes safety and high effective mining.
     Coal spontaneous combustion in the gob is a complicated process of chemical and physical change. Macroscopic manifestation in the phase of low temperature is the products of the heat and gas. This dissertation established the dynamic mathematic model which could reflect the dynamic production of CH4 and CO2, and took into consideration that the dynamic mathematic model of the coal spontaneous combustion in three-dimensional gob which could transform the energy between the solid and liquid states of many holes medium. What’s more, its key parameters were also studied. The three-dimensional dynamic geometric model, which reflected the exploitation process of working face, was also established by means of dynamic mesh technique. What’s more, the operation mode for the field of gob was built using the self-defining function. The study realized dynamic analog simulation of the three-dimensional gob coal spontaneous combustion associated with the dynamic mathematical model of the coal spontaneous combustion.
     U-type ventilation system is one air inlet and one air outlet, while U+L-type ventilation system has one air inlet and two air outlets. U-type ventilation system is not conducive to gas prevention at the upper corner, but can decrease the quantity of air to gob by the greatest extent, which is good for preventing coal spontaneous combustion in the gob. The
     U+L-type ventilation system runs counter to U-type ventilation system. This research respectively studied U-type and U+L-type ventilation systems which were influenced on the following laws: the distribution law of gas concentration field and temperature field,the spontaneous combustion coupling law of residual coal in the soleplate and not mining coal seam in the falling zone. This aim is to comparatively study influencing law of U-type and U+L-type ventilation systems which is influencing on coal spontaneous combustion in the gob. The dissertation yielded two important results through comparative study: 1) The distribution of temperature field of double-deck residual coal resulted from the joint effects, such as position and thickness residual coal in the gob, gas concentration in the gob, the obliquity of the coal seam, etc. 2) Pressure difference between return airway and tail roadway of U+L-type ventilation system and the obliquity of the coal seam were the foremost factors that influenced on the cal spontaneous combustion in the gob.
     The temperature of wall rock influenced on the temperature of atmosphere, the speed of heat of oxidation in low-temperature and condition and the speed of heat dissipation.This study developed adiabatic test system of the coal low-temperature oxidation that the controlling range of temperature was from 0℃to 180℃. The adiabatic test finished from the original temperature 20℃to 160℃. The finding show that rising time in the low-temperature phase accounts for 54% of the whole temperature rising time. This research made use of the way of dynamic analog simulation to study the distribution of temperature field of the gob under different wall rock temperatures. The results indicated that the higher the temperature of wall rock was, the higher highest temperature was under the normal mining, the shorter the time reached on critical burning point. The physical and numerical simulation tests in lab showed that the lower the temperature of wall rock was, the longer the stage of spontaneous combustion for the residual coal in the gob was.
     Based on above research, a new ventilation system-U_U-type pressure balancing ventilation system came out. Compared to U-type ventilation system, U_U-type pressure balancing ventilation system has a very small influence on the blast pressure gradient and air leakage flow field in the gob, will not increase the temperature of intake air side in the soleplate and residual coal, and only increase slightly the temperature of residual coal near crossheading. Under this condition, it can control the course of oxidation for the coal spontaneous combustion near the crossheading. U_U-type pressure balancing ventilation system had a large gob-side entry retaining fault surface. This surface can hold the enough air quantity because of the pressure difference of return roadway and crossheading. This not only solved the problem of gas overrun at the upper corner but also controlled the gas concentration in crossheading to be lower level. Thus, U_U-type pressure balancing ventilation system could be capable of controlling gas overrun and not increase the risk of coal spontaneous combustion in the gob. The successful application of U_U-type pressure balancing ventilation system in field showed that this was an economical and effective way for controlling gas overrun in working face and preventing the coal from spontaneous combustion in the gob. It has great significance of social and economic benefits.
     The work contains 114 figures, 11 tables, 163 references.
引文
[1]鲍庆国.煤自燃理论及防治技术[M].北京:煤炭工业出版社,2002.
    [2]《煤矿瓦斯治理与利用总体方案》编制工作组.煤矿瓦斯治理与利用总体方案[M].中华人民共和国国家发展和改革委员会,2005.
    [3]袁亮.瓦斯治理理念和煤与瓦斯共采技术[J].中国煤炭,2010,36(6):5-12.
    [4]周和平.高瓦斯矿井自燃煤层开采设计中应注意的问题[J].矿业安全与环保,2003(S1),161-162.
    [5]赵阳升.矿山岩石流体力学[M].北京:煤炭工业版社,1994.
    [6]程远平,俞启香.煤层群煤与瓦斯安全高效共采体系及应用[J].中国矿业大学学报,2003,32(5):471-475.
    [7]程远平,周德永,俞启香等.我国煤矿瓦斯治理先抽后采的实践与作用[J].采矿与安全工程学报,2006,23(1):12-18.
    [8]程远平,俞启香.中国煤矿区域性瓦斯治理技术的发展[J].采矿与安全工程学报,2007,24(4):383-390.
    [9]袁亮.低透气性煤层群无煤柱煤与瓦斯共采理论与实践[M].北京:煤炭工业出版社,2008.
    [10]程远平,付建华,俞启香.中国煤矿瓦斯抽采技术的发展[J].采矿与安全工程学报,2009,26(2):127-139.
    [11]林柏泉,崔恒信.矿井瓦斯防治理论与技术[M].徐州:中国矿业大学出版社,2010.
    [12]林柏泉,周世宁,张仁贵.U形通风工作面采空区上隅角瓦斯治理技术[J].煤炭学报,1997,22(5):509-513.
    [13]王德明.矿井火灾学[M].徐州:中国矿业大学出版社,2008.
    [14]张国枢.通风安全学[M].徐州:中国矿业大学出版社,2000.
    [15]张褆.对综采高产高效工作面巷道布置的认识[J].煤矿设计,1995(11):5-7.
    [16]申富宏,张志平.采用调压通风系统治理回采工作面瓦斯[J].煤炭科学技术,2000,28(11):7-10,13.
    [17]郝海金,姜铁明,赵俊.高瓦斯工作面合理通风系统探讨[J].矿业安全与环保,2003,30(2):31-33.
    [18]戚良锋.Y型通风方式下采空区瓦斯流场数值模拟研究[D].安徽:安徽理工大学,2009.
    [19] Yang Sheng-qiang, Pang Wei-dong, Wen Hu etc. Theoretical analysis and applications of Y-inversion ventilation system in a mine fire zone[J]. Mining Science and Technology, 2010(20):672-676.
    [20]秦汝祥.高瓦斯高产工作面立体W型空气动力学系统研究[D].安徽:安徽理工大学,2008.
    [21]余海龙,鲜学福.变形Y型通风方式防治瓦斯积聚的试验[J].重庆大学学报,2000,23(6):45-48.
    [22]赵文华.近距离煤层群工作面的偏W型通风方式及其应用[J].矿业安全与环保,2007,34(2):44-45.
    [23]简俊杰,吴增光. J+E型通风方式在王庄煤矿的应用[J].煤矿开采,2008,13(1):75-76.
    [24]吴世跃,郭勇义.Y型通风方式治理高产综采面瓦斯的研究[J].西安科技学院学报,2001,21(3):206-207.
    [25]严志刚.回采工作面H型通风[J].煤炭工程,2004(8):64-65.
    [26]宋俊杰.类Y型通风方式在突出矿井中的应用分析[J].煤炭工程,2005(2):29-30.
    [27]谭允祯.矿井通风系统优化[M].北京:煤炭工业出版社,1992.
    [28]芦倩,李霞,朱耀杰等.两进一回通风系统邻近层瓦斯运移规律研究[J].太原理工大学学报,2010,42(3):231-234.
    [29]王凯,俞启香,缪协兴等.综放采场J型通风系统治理高瓦斯涌出的研究[J].中国矿业大学学报,2004,33(4):365-369.
    [30]王慧堂.处理上隅角瓦斯的J型通风系统[J].矿业安全与环保,2005,32(3):62-63.
    [31]吴伟阳.J型通风综放采场瓦斯涌出与运移规律的研究[D].徐州:中国矿业大学,2005.
    [32]古惠田.浅谈尾巷排放瓦斯[J].江苏煤炭,1987(1):31-33.
    [33]邵长宏,王万臻.利用老塘尾巷排放瓦斯与控制自然发火[J].煤矿安全,1991,(2):35-37.
    [34]王汉民,胡海军,赵传浩.高瓦斯厚煤层有排瓦斯尾巷工作面的发火特点及防治[J].矿业安全与环保,2000,27(2):56-57.
    [35]赵凤清.综放面抽放瓦斯尾巷的自然发火原因与防治[J].煤矿安全,2002,33(7):19-20.
    [36]李学慧.放顶煤综采面处理瓦斯尾巷横川最佳间距初探[J].山西煤炭管理干部学院学报,2002,(1):38-40.
    [37]兰泽全,张国枢,马汉鹏.多漏风采空区三带分布模拟研究[J].矿业安全与环保,2008,35(4):1-4.
    [38]凌志迁,杨胜强,王义江等.双尾巷治理超长综放工作面瓦斯的试验研究[J].煤炭科学技术,2008,36(2):45-49.
    [39]卢平,张士环,朱贵旺等.高瓦斯煤层综放开采瓦斯与煤自燃综合治理研究[J].中国安全科学学报,2004,14(4):68-74.
    [40]黄学满.瓦斯综合治理技术在新集二矿的应用[J].矿业安全与环保,2005,32(S1):3-4.
    [42]王哗,王宁,,康怀宇等.采用工艺巷防止高瓦斯易自燃综放面上隅角瓦斯积聚的探讨[J].2008,5(4):19-24.
    [42]吴同性.易自燃特厚煤层综放面瓦斯涌出规律分析及其治理[J].中州煤炭,2009(12):88-90.
    [43]王伟智,刘沛林,孙斌建.高瓦斯易自燃超长工作面瓦斯治理技术[J].煤矿安全,2009(5):18-21.
    [44]李贵和.大采高综采工作面瓦斯与煤自燃综合治理技术[J].安徽建筑工业学院学报(自然科学版),2010,18(3):38-41.
    [45]李树刚.综放面采空区岩体碎胀特性分析[J].陕西煤炭技术,1996(4):19-22.
    [46]张冬至,邓喀中,周鸣.采动岩体碎胀系数变化规律研究[J].江苏煤炭,1998(1):5-7.
    [47]张永波,靳钟铭,刘秀英.采动岩体裂隙分形相关规律的实验研究[J].岩石力学与工程学报,2004,23(23):3426-3429.
    [48]张俊英.采动破碎岩体的动态碎胀性物理模拟的研究[J].选煤技术,2006(增刊):69-72.
    [49] Mordecai M. An investigation into the effect of stress on the permeability of rock taken from carboniferous strata. PhD thesis, University of Nottingham, 1971.
    [51] Neate CJ. Effects of mining subsidence on the permeability of coal measure rocks. PhD thesis, University of Nottingham, 1980.
    [51] Durucan S. An investigation into the stress permeability relationshipof coals and flow Patterns around working longwall faces. PhD thesis, University of Nottingham, 1981.
    [52] Keen TF. The simulation of methane flow in carboniferous strata. PhD thesis, University of Nottingham, 1977.
    [53] O’Shaughnessy SM. The computer simulation of methane flowthrough strata adjacent to a working longwall face. PhD thesis, University of Nottingham, 1980.
    [54] Watt AW. The movement of gases in longwall Coalface wasteliable to spontaneous Combustion. PhD thesis, University of Nottingham, 1987.
    [55] Ediz IG. An application of numerical methods to the predictionof strata methane flow in mining. PhD thesis, University of Nottingham, 1991.
    [56]叶汝陵.矿井风量变化与瓦斯涌出量的关系[J].煤矿安全,1983(1):9-15.
    [57]章梦涛等.采场空气流动状况的数学模型和数值方法[J].煤炭学报,1983,8(3):46-54.
    [58]章梦涛,王景琰,梁栋等.采场大气中沼气运移规律的数值模拟[J].煤炭学报,1987(3):23-30.
    [59] J. Roszkowski. The influence of ventilation parameters on the effectiveness of the methane drainage system[A]. In: Fifth Intern. Mine Congress[C]. Johannesburg: [s. n.], 1992.
    [60]章梦涛,潘一山,梁冰.煤岩流体力学[M].北京:科学出版社,1995.
    [61]梁栋,黄元平.采动空间瓦斯运动的双重介质模型[J].阜新矿业学院学报,1995,14(2):4-7.
    [62]吴强,梁栋.CFD技术在通风工程中的运用[M].徐州:中国矿业大学出版社,2001.
    [63]何启林.采空区瓦斯弥散流场的研究[J].焦作工学院学报.1997,16(3):74-80.
    [64]李宗翔,王晓冬,王波.采空区场流数值模拟程序(G3)实现与应用[J].湖南科技大学学报,2005,20(3):16-20.
    [65]李宗翔,孙广义,王继波.回采采空区非均质渗流场风流移动规律的数值模拟[J].岩石力学与工程学报,2001,20(增2):1578-1581.
    [66]李宗翔.综放工作面采空区瓦斯涌出规律的数值模拟研究[J].煤炭学报,2002(2):173-178.
    [67]李宗翔,王继仁,周西华.采空区开区移动瓦斯抽采的数值模拟[J].中国矿业大学学报,2004,33(1):74-78.
    [68]李宗翔,纪书丽,题正义.采空区瓦斯与大气两相混溶扩散模型及其求解[J].岩石力学与工程学报,2005,24(16):2971-2976.
    [69]李宗翔,孙学强,贾进章.Y形通风采空区自燃与有害气体排放的数值模拟[J].安全与环境学报,2005,5(6):107-112.
    [70]李宗翔,题正义,赵国忱.回采工作面采空区瓦斯涌出规律的数值模拟研究[J].中国地质灾害与防治学报,2005,16(4):42-46.
    [71]李宗翔.回采采空区上隅角瓦斯抽放的数值模拟与参数确定[J].矿业安全与环保,2009,29(1):15-16.
    [72]崔凯,张东海,杨胜强.采空区遗煤自燃带确定及风流场数值模拟[J].山动科技大学学报(自然科学版),2002,21(4):88-92.
    [73]王凯,吴伟阳.J型通风综放采空区流场与瓦斯运移数值模拟[J].中国矿业大学学报,2007,(03):277-282.
    [74]丁广骧,杨胜强,张吉禄.采场复杂场流的流体动力相似与模化问题[J].中国矿业大学学报,1995,24(1):47-51.
    [75]丁广骧,柏发松.采空区混合气运动基本方程及其有限元解法[J].中国矿业大学学报,1996,25(3):21-26.
    [76]丁广骧.矿井大气与瓦斯三维流动[M].徐州:中国矿业大学出版社,1996.
    [77]丁广骧.三维采空区内瓦斯、氮气的扩散运动及有限元解法[J].煤炭学报,1996,21(4):411-414.
    [78]蒋曙光,张人伟.综放采场流场数学模型及数值计算[J].煤炭学报,1998,23(3):258-261.
    [79]张辛亥,刘灿,周金生,张健.综放面采空区流场模拟及自燃危险区域划分[J].西安科技大学学报,2006,26(1):6-9.
    [80]胡千庭,梁运培,刘见中.采空区瓦斯流动规律的CFD模拟[J].煤炭学报,2007,32(7):719-723.
    [81]梁运培,胡千庭,张军.谢桥矿采空区瓦斯流动规律的研究[J].矿业安全与环保,2006,33(6):1-6.
    [82]李树刚,张伟,邹银先,林海飞,徐红.综放采空区瓦斯渗流规律数值模拟研究[J].矿业安全与环保,2008,35(2)1-7.
    [83]魏引尚,邓敢博,吴晓凡,曹建涛.急倾斜工作面采空区瓦斯分布规律的相似模拟研究[J].湖南科技大学学报(自然科学版),2009,24(1)13-17.
    [84]陈立文.煤层自燃危险程度识别的研究[J].谋炭工程师,1992(5):48-57.
    [85]许波云.运用模糊距类分析法综合预测煤层自燃危险性[J].煤炭学报,1990(4):9-14.
    [86]蒋军成,王省身.开采煤层自燃危险性预测的人工神经网络方法[J].中国矿业大学学报,1997,26(1):19-22.
    [87]施式亮,刘宝琛.基于人工神经网络的矿井自然发火预测模型及应用[J].西安矿业学院学报,1999,19(2):121-124.
    [88]田水承,李红霞.煤层开采自燃危险性预先分析研究[J].西安科技学院学报,1998,18(1):17-22.
    [89]余明高,王清安,范维澄等.煤层自然发火期预测的研究[J].中国矿业大学学报,2001,30(4):384-387.
    [90]余明高,黄之聪,邱超平.煤最短自然发火期解算数学模型[J].煤炭学报,2001,26(5):516-519.
    [91]邓军,徐精彩,张辛亥等.综放面采空区温度场动态数学模型及应用[J].中国矿业大学学报,1999(2):179-181.
    [92]邓军,徐精彩,阮国强等.国内外煤炭自然发火预测预报技术综述[J].西安矿业学院学报,1999,19(4):293-297.
    [93]梁运涛.煤自燃过程热物理场效特性实验研究[D].北京:煤炭科学研究总院,2004.
    [94]邬剑明,翟建山等.煤矿自燃火灾治理关键技术的研究与应用[J].中国安全科学学报,1998,8(4):47-50.
    [95] Wiwik Sujanti, Dong-Ke Zhang, Chen Xiao-dong. Low-temperature oxidation of coal studied using wire-mesh reaction with both steady-state and transient methods[M]. Combustion and Flame. 1999,117(3):646-651.
    [96]齐庆杰,黄伯轩.用流场理论确定采空区火源点位置[J].阜新矿业学院,工业安全与防尘,1997(9):29-32.
    [97]徐精彩,文虎,张辛亥,邓军.综放面巷道煤层自燃危险区域判定方法[J].北京科技大学学报,2003(1):9-11.
    [98] Dick Schmal, Jan.H. Duyzer, Jan Willem van Heuven. A model for the spontaneous heating of Coal[J]. Fuel, 1985, 64(7):963-972.
    [99] Zhu Mingshan, Xu Yingqin, Wu Jiang. Computer simulation of spontaneous in goaf[A]. Proceedings of the US Mine Ventilation Symposium[C]. Publ by SME, Littleton, CO, USA, 1991:83-93.
    [100] Saghafi, A., Bainbridge, N.B., Carras, J.N.. Modeling of spontaneous heating in a longwall goaf[C]. Proceedings of the 7th US Mine Ventilation Symposium, 1995:167-172.
    [101] N.Emre Altun, Cahit Hityilmaz, A.Suat Bagci. Combustion characteristics of Coal briquettes. Thermal features[J].Enerty & Fuels, 2003(17):1266-1276.
    [102] Yuan, L, Smith, A.C., Brune, J.F. Computational fluid dynamics study on the ventilation flow paths in olongwall gobs[C]. Proceedings of the 11th U.S./North American Mine Ventilation Symposium,University Park, PA, 2006.
    [103] Smith, A. C. Yuan, L Simulation of spontaneous heating in longwall gob area with a bleederless ventilation system[C]. 2008 SME Annual Meeting, Feb. 24-27, Salt Lake City, UT, Preprint 08-043, 2008.
    [104] Yuan, L. Smith, A. C. Computational fluid dynamics modeling of spontaneous heating in longwall gob areas[C]. 2007 SME Annual Meeting, Feb. 25-28, 2007, Denver, Colorado, Preprint 07-101, 2007.
    [105] Yuan, L. Smith, A. C. (2008a). Effects of ventilation and gob characteristics on spontaneous heating in longwall gob areas[C]. Proceedings of the 12th U.S./North American Mine Ventilation Symposium, pp. 141-147, Reno, NV, June 9-11, 2008.
    [106] Yuan, L. Smith, A. C. (2008b). Numerical study on effects of Coal properties on spontaneous heating in longwall gob areas[J]. Fuel, 2008(87):3409–3419.
    [107]贾德祥,吴颖.采场温度迁移规律的物理模拟实验[J].阜新矿业学院学报,1990,9(1):9-13.
    [108]秦书玉,孙树江,溪博权.采场温度场的计算机数值模拟原理与方法[J].阜新矿业学院学报,1991,10(3)119-125.
    [109]冯小平.采空区高温点位置确定的计算机模拟分析[J].淮南矿业学院学报,1995,15(1):36-41.
    [110]张瑞林,杨运良,马哲伦,郑立军.自燃采空区风流场、温度场及热力风压场的计算机模拟[J].焦作工学报,1998,17(4):253-257.
    [111]杜礼明,杨运良.采空区三维非稳定流场的数学模型及热力风压的计算[J].焦作工学院学报,1999,18(3):169-173.
    [112]刘剑,王继仁,孙宝铮.煤的活化能理论研究[J].煤炭学报,1999,24(3):316-320.
    [113]卞晓锴,包宗宏,史美仁.采空区温度场模拟及煤自燃状态预测[J].南京化工大学学报,2000,22(2):43-47.
    [114]刘剑.采场自燃数学模型及其应用[D].沈阳:东北大学,2000.
    [115]文虎.煤自燃过程的实验及数值模拟研究[D].西安:西安科技大学,2003.
    [116]徐精彩,邓军,张辛亥等.常村煤矿综放面采空区三带规律及自燃危险性研究[J].湖南科技大学学报,2004,19(3):1-4.
    [117]文虎.综放工作面采空区煤自燃过程的动态数值模拟[J].煤炭学报,2002,27(1):54-57.
    [118]何启林,王德明.综放面采空区遗煤自然发火过程动态数值模拟[J].中国矿业大学学报,2004,33(1)11-14.
    [119]陈长华.基王模糊渗流理论的采场自然发火位置顶测模型及其相似模拟研究[D].辽宁:辽宁工程技术大学,2004.
    [120]李宗翔,许端平,刘立群.采空区自然发火三带划分的数值模拟[J].辽宁工程技术大学学报,2002,21(5):455-548.
    [121]李宗翔,吴志君,马友发.采空区场域自燃CO向工作面涌出的数值模拟[J].燃烧科学与技术,2006,12(6):563-568.
    [122]李宗翔,孟宪臣,纪传仁.垮落非均质平面流场非达西渗流新迭代算法[J].力学与实践,2007,29(2):28-30.
    [123]李宗翔,吴强,王志清.自燃采空区耗氧-升温的区域分布特征[J].煤炭学报,2009,34(5):667-672.
    [124]朱建芳,蔡卫,秦跃平.基于移动坐标的采空区自然发火模型研究[J].煤炭学报,2009,34(8):1095-1099.
    [125]徐精彩,葛岭梅.煤炭低温自燃过程的研究[J].煤炭工程师,1989(5):7-13.
    [126] B Basil Beamish1, Modher A Barakat, Andrew L Cooper1 etc. Sensitivity of adiabatic self-heating rates[C]. Proceedings of 2000 Queensland Mining Industry Health and Safety Conference. Townsville, Queensland, Australia, August,2000.
    [127]张瑞新,谢和平.煤堆自然发火的实验研究[J].煤炭学报,2001,26(4):168-171.
    [128]张瑞新,谢和平,谢之康.露天煤体自然发火的试验研究[J].中国矿业大学学报,2000, 29(4):235-238.
    [129]文虎,徐精彩,葛岭梅等.煤自燃性测试技术及数值分析[J].北京科技大学学报,2001,(6):499-501.
    [130]邓军,徐精彩.煤自燃性参数的测试与应用[J].燃料化学学报,2001,29(6):553-556.
    [131]邬剑明,迟克勇,肖建红.煤自然发火过程的模拟实验研究[J].中国煤炭,2008(4):49-51.
    [132] Michael C.Clarke, Joseph A Shonhardt, David F Bagster. The estimation of the propensity for spontaneous combustion in colliery wastes. Mining and the Environment, A Professional Approach[C]. A National Conference, July 1997.
    [133] Wiwik Sujanti, Dong-ke Zhang. A laboratory study of spontaneous combustion of coal: the influence of inorganic matter and reactor size[J]. Fuel, 1999,78(2):549-556.
    [134] Vance W E, Chen X D, Scott S C. The rate of temperature rise of subbituminous coal during spontaneous combustion in an adiabatic device: the effect of moisture content and dryingmethods[J]. Combustion and Flame, 1996(106):261-270.
    [135] David Cliff, Fiona Clarkson, Ray Davis, Tony Bennett. The implications of large scaletests for the detection and monitoring of spontaneous combustion in underground coal[C]. Proceedings of 2000 Queensland Mining Industry Health and Safety Conference. Townsville, Queensland, Australia, August, 2000.
    [136] Vance,W E. Adiabatic studies of two New Zealand coals[C]. Proceedings of 5th New Zealand Coal Conference, Coal Research Limited, Wellington, New Zealand, 1993:94-100.
    [137] B Basil Beamish1, Modher A Barakat, Andrew L Cooper1 etc. Sensitivity of adiabatic self-heating rates[C]. Proceedings of 2000 Queensland Mining Industry Health and Safety Conference. Townsville, Queensland, Australia, August,2000.
    [138] Frank-Kamenetskii D A. Diffusion and heat exchange in chemical kinetics[C]. 2nd ed. New York:Plenum Press,1969.
    [139] Chen X D, Chong L V. Some characteristics of transient self-heating inside an exothermically reactive porous solid slab[J]. Transaction of Institution of Chemical Engineers, 1995,73(B):101-107.
    [140]Chen X D. On basket heating methods for obtaining exothermic reactivity of solid materials: the extent and impact of the departure of the crossing point temperature from the oven temperature[J]. Transaction of Institution of Chemical Engineers 1999,77(B):187-192.
    [141] Jone J C, Chiz P S,Koh R etc. Kinetic Parameters of oxidation of bituminous coals from heat-release rate measurements[J]. Fuel,1996,75(15):1755-1757.
    [142] Jones J C, Henderson K P, Littlefair J etc. Kinetic parameters of oxidation of coals by heat-release measurement and their relevance to self-heating tests[J]. Fuel, 1998,77(1):19-22.
    [143] Jones J C. Recent developments and improvements in test methods for propensity[J]. Fire and Materials.1999(23):239-243.
    [144] J.M.Kuchta, V.R.Rowe, D.S.Burgess. Spontaneous combustion susceptibility of US coals[R]. US Bureau of Mines Report of Investigations RI 8474, 1980:37-40.
    [145] Andrzej Struminski, Zwalezanie Pozaroww w KoPalniach Glebinowych Katowice: Slask 1996:46-52.
    [146]刘剑,王继仁,孙宝铮.煤的活化能理论研究[J].煤炭学报,1999,24(3):316-320.
    [147] Jones, J C.. A new and more reliable test for the propensity of coals and carbons to spontaneous heating[J]. Journal of Loss Prevention in the Process Industries, 2000(13):69-71.
    [148]陆伟,王德明,周福宝等.绝热氧化法研究煤的自燃特性[J].中国矿业大学学报,2005,34(2):213-217.
    [149]陆伟,王德明,仲晓星等.基于活化能的煤自燃倾向性研究[J].中国矿业大学报,2006,35(2):201-205.
    [150]王启杰.对流传热传质分析[M].西安:西安交通大学出版社,1996.
    [151] Frank P Incropera,David P Dewitt. Introduction to Heat Transfer[M]. New York: School of Mechanical Engineering Purdue University, 1985.
    [152]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003:119-180.
    [153]李宗翔.高瓦斯易自燃采空区瓦斯与自燃耦合研究[D].辽宁:辽宁工程技术大学,2007:21.
    [154] Munson, D E; Benzley, S E. Analytic subsidence model using void-volume distribution functions[J]. International Journal of Rock Mechanics and Mining Sciences & GeomechanicsAbstracts, 1981, 18(5):98.
    [155]郭广礼,缪协兴,张振南.老采空区破裂岩体变形性质研究[J].科学技术与工程,2002(2):44-47.
    [156]李树刚.综放开采围岩活动及瓦斯运移[M].中国矿业大学出版社,2000:105-106.
    [157]谭云亮.矿山压力与岩层控制[M].北京:煤炭工业出版社,2008.
    [158]缪协兴,茅献彪,胡光伟等.岩石(煤)的碎胀与压实特性研究[J].实验力学,1997,12(3):394-400.
    [159]李增华,齐峰,杜长胜等.基于吸氧量的煤低温氧化动力学参数测定[J].采矿与安全工程学报,2007,24(2):137-140.
    [160]罗新荣,蒋曙光,李增华等.采场自然发火危险预测方法与控制原理研究[J].中国矿业,2000,9(2):83-88.
    [161]徐永圻.煤矿开采学[J].徐州:中国矿业大学出版社,1999.
    [162]王省身.矿井通风学[M].中国工业出版社,1964.
    [163] Davis J D, Byrne J F. An adiabatic method for studying spontaneous heating of Coal[J]. Journal of Am Ceram Soc,1924(7):809-816.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700