高速硅基Mach-Zehnder调制器设计与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅材料作为微电子领域的传统材料,在加工工艺和制作成本上有着其他材料无可比拟的优势。现在许多传统的基于Ⅲ-Ⅴ族材料的电光调制器利用直接电光效应实现了40GHz高速电光调制,但是器件制作成本高,而且与微电子工艺不兼容,而硅基材料是能够做到低成本光电集成的首选材料。本文在湖北省重大自然科学研究基金的资助下,对硅基调制器的理论模型和性能参数做了系统性的分析研究,设计了硅基热光以及电光调制器结构,并对其进行模拟,完成的主要工作有以下几点:
     (1)基于硅材料的高热光系数,以及在1550波段的透明性,设计了硅基的热光调制器,通过Ansys软件对其导热温度分布,及导热响应速度进行了模拟,并优化了器件的结构参数;
     (2)根据等离子色散的原理,利用Atlas软件设计了双金属氧化半导体电容型的硅基电光调制器,并对其结构进行优化设计,主要通过研究调制器的调制速度,调制臂的长度,所加的电压之间的关系,调整器件的结构参数;
     (3)同样是基于等离子色散的原理,利用Atlas软件设计了N-P-N结构的硅基电光调制器,在不同的反向偏压下,pn的耗尽层宽度会有所变化,从而使得硅材料的折射率发生变化,由此对光进行调制,通过改变结构参数,进行了一系列的模拟,并得到一个相对优化的结果。
Silicon is an extraordinary material in microelectronics due to the compatibility with standard CMOS platform and low cost. Nowadays, manyⅢ-Ⅴbased electro-optic modulator can reach modulation speed as high as 40GHz. However, they are not so favorable for their high cost and non- compatibility with CMOS platform. Moreover, Silicon is the first choice for low cost optoelectronic integrated circuit (OEIC). Supported by the Natural Science Foundation of Hubei Province, the theoretical model and several typical kinds of silicon based MZI modulator are introduced and studied in this thesis. The main contents are listed as follows:
     (1)Based on the high thermal-optical constant and the transparency of silicon at 1.55nm, a silicon based thermal-optic MZI modulator is designed. The thermal distribution and thermal conduct are simulated by using the software Ansys. The parameters are optimized.
     (2)Based on the carrier plasma dispersion effect, a forward biased pn junction structure is designed. Photonic crystal waveguide is introduced into this structure. The structure is designed by using the software Atlas, and the optimization has been done to the structure.
     (3)Based on the carrier plasma dispersion effect, a double MOS capacity structure is designed by using the software Atlas. The parameters are optimized by analyzing the modulation speed, the length of arm of the modulator as well as the applied voltage.
     (4)Also based on the carrier plasma dispersion effect, a N-P-N structure is designed. When reverse biased voltage is applied to pn junction, the depletion width of the pn junction will change according to the applied voltage, so as to change the index of silicon. An optimized result is achieved by changing the parameters of the structure.
引文
[1]严清峰. SOI波导电光调制器和电光开关研究: [博士论文].北京:中国科学院半导体研究所, 2003
    [2]王启明.信息高科技领域中的半导体光电子学.半导体学报, 1998, 19(10): 721~728
    [3]余金中. Si基光电子学进展.半导体志, 1998, 23(1): 21~32
    [4] T. Bestwick. ASOC-a silicon-based integrated optical manufacturing technology. Electronic Components and Technology Conference, 48th IEEE, 1998. 566~571
    [5] W. Lin and C. Wu. Photonics on silicon integrated circuits. Proc. SPIE, 2001, 4579: 64~70
    [6] D. L. Mathine. The integration ofⅢ-Ⅴoptoelectronics with silicon circuitry. IEEE J. Slelected Toptics Quantum Electron., 1997, 3(3): 952~959
    [7] R. A. Soref. Silicon-based optoelectronics. Proc. Of IEEE, 1993, 81(12): 1687~1706
    [8] R. A. Soref, B. R. Bennett. Electrooptical effects in silicon. IEEE J. Quantum Electron., 1987, 23: 123~129
    [9] T. Chu, H. Yamada, S. Ishida, et al. Thermooptic switch based on photonic-crystal line-defect waveguides. IEEE. Photonic technology letters, 2005, 17: 2083
    [10] C. K. Tang, G. T. Reed. Highly efficient optical phase modulator in SOI waveguides. Electronics Letter, 1995, 31: 451~452
    [11] P. Dainesi, A. Kung, M. Chabloz, et al. CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology. IEEE Photon. Technol. Lett, 2000, 12: 660~662
    [12] C. E. Png, G. T. Reed, R. M. Atta, et al. Development of small silicon modulators in silicon-on-insulator (SOI). Proc. Of SPIE, 2003, 497: 190~197
    [13] P. D. Hewitt, G. T. Reed. Improving the Response of optical Phase Modulators in SOI by Computer Simulation. Journal of Lightwave Technology, 2000, 18(3): 443~450
    [14] D. Marris-Morini, X. Le Roux. L. Vivien, et al. Optical modulation by carrier depletion in a silicon PIN diode. Opt. Express, 2006, 14: 10838~10843
    [15]屠晓光,陈少武,余金中.硅基GHz高速电光调制器研究进展.物理, 2006, 35(4): 317~321
    [16] A. Cutolo, M. Iodice, A. Irace, et al. An electrically controlled Bragg reflector integrated in rib silicon on insulator waveguide. Appl. Phys. Lett., 1997, 71: 199~201
    [17] A. Irace, G. Breglio, A. Cutolo. All-silicon optoelectronic modulator with 1GHz switching capability. Electronics Lett, 2003, 39: 232~233
    [18] Q. F. Xu, B. Schmidt, S. Pradhan, et al. Micrometerscale silicon electro-optic modulator. Nature, 2005, 435: 325~327
    [19] L. L. Gu, Y. Q. Jiang, W. Jiang, et al. Silicon–On–Insulator-Based Photnic-Crystal Mach-Zehnder Interferometers. Proc. Of SPIE, 2006, 6128(15): 1~8
    [20] R. Soref. Silicon photonics technology: past, present and future. Proceedings of SPIE, 2005, 5730: 19~28
    [21] P. D. Hewitt and G. T. Reed. Improved Modulation Performance of a Silicon p-i-n Device by Trench Isolation. Journal of Lightwave Technology, 2001, 19(3): 387~390
    [22] A. S. Liu, R. Jones, L. Liao, et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature, 2003, 427: 615~618
    [23] Ansheng Liu, Ling Liao, Doron Rubin et. al. High-speed optical modulation based on carrier depletion in a silicon waveguide. Optics Express 2007, 15(2): 660~668
    [24] G. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro. Silicon thermal optical micromodulator with 700-KHz-3dB bandwidth. IEEE. Photonic technology letters, 1995, 7: 363
    [25] G. V. Treyz. Silicon Mach-Zehnder waveguide interferometer operating at 1. 3um. Electronics Letters, 1991, 27: 118
    [26] U. Fischer, T. Zinker, B. Schuppert and K. Petermann. Singlemode optical swithces based on SOI waveguides with large cross-section. Electronics Letters, 1994, 30~406
    [27]赵策洲.半导体导波光学器件理论与技术. (第一版).北京:国防工业出版社, 1998: 204~209
    [28] A. Cutolo, M. Iodice, P. Spirito, et al. Silicon electro-optic modulator based on a three terminal device intergrated in a low-loss single-mode SOI waveguide. J. Lightwave Technol., 1997, 15(3): 505-517
    [29] S. R. Giguere, L. Friedman, R. A. Sored, et al. Simulation studies of silicon electro-optic waveguide devices, J. Applied Physics, 1990, 68(10): 4964~4970
    [30] S. V. Burke, M. J. Adams, P. C. Kendall, et al. Design of ridge waveguide couplers with carrier injection using discrete spectral index method. Electron. Lett., 1992, 28: 841~843
    [31] A. Vonsovici and A. Koster. Numerical simulation of a silicon-on-insulator waveguide structure for phase modulation at 1. 3 m. J. Lightwave Technol., 1999, 17(1): 129~135
    [32] Y. Q. Jiang, Tao Ling, L. L. Gu, W. Jiang, et al. Highly Dispersive Photonic Crystal Waveguides and their Applications in Optical Modulators and True-Time Delay Lines. Proc. of SPIE, 2006, 61280: 1~10
    [33] M. Soljacic, J. D. Joannopoulos. Enhancement of nonlinear effects using photonic crystals. Nature materials 2004, 3: 211~219
    [34] M Soljacic, S. G. Johnson, S. Fan, et al. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B, 2002, 19(9): 2052~2059
    [35] M. Notomi, K. Yamada. et al. Extremely large group velocity dispersion of line-defect waveguides in Photonic Crystal Slabs. Phys. Rev. Lett., 2001, 87: 253902
    [36] D. W. Prather. Dispersion-based optical routing in photonic crystals. Optics Lett., 2004, 29: 50~52
    [37] Lanlan Gu, Wei Jiang, Yongqiang Jiang, Xiaonan Chen, et al. Silicon Modulators Based on Photonic-crystal Waveguides. OSA Intergrated Photonics Research and Applications Topical Meeting, 2006, NWA3
    [38] Y. Q. Jiang, W. Jiang, L. L. Gu, X. Chen, et al. 80-micron interaction length silicon photonic crystal waveguide modulator. Appl. Phy. Lett., 2005, 87:221105-1~221105-3
    [39] S. P. Pogossian, L. Vescan, and A. Vonsovici. The single-mode condition for semiconductor rib waveguides with large cross section. J. Lightwave Technol., 1998, 16(10): 1851~1853
    [40] D. A. Neamen. Semiconductor Physics and Devices, Basic Principles. (Third Edition). Beijing: Tsinghua University Press, 2003, 268~295

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700