β二酮二亚胺Zn配合物的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对过渡金属与β二酮二亚胺配体形成的配位化合物的研究是金属有机化学里的一个重要研究领域。同时,因为β二酮二亚胺配体对过渡金属的立体和电子效应,相关研究已经诞生了许多高效催化剂.
     本论文在B3LYP水平上,选用适当的基组对一系列的β二酮二亚胺配合物进行了结构优化,在相同的水平下,对优化得到的配合物的稳定结构进行自然键轨道(NBO)分析。在平衡构型的基础上,对各临界点进行电荷密度的拓扑分析。并计算了相关化合物的解离能。
     对于RM(μ-X)_2Li(OEt_2)_2(R=[{(C_6H_3)N(Me)C}_2CH])的含有不同过渡金属(X=I;M=Cu,Zn,Cd)及不同卤素(X=Br,Cl,F;M=Zn)化合物,研究表明对于含有不同卤素,相同过渡金属Zn的配位化合物,随着卤素半径减小,Zn-Li和Zn-X距离减小,Zn-X键级和稳定化能减小。而Zn,X带电荷数上升,结合能上升,稳定性逐渐增大。对于含有相同卤素I,不同过渡金属的配合物,同族的Zn,Cd的化合物之间区别不大。但与Zn同周期缺少价电子的Cu的化合物结合能很小。过渡金属M所带电荷大小顺序为Cu     对于LZn(μ-X)_2ZnL(L={HC(CMeNPh)_2})的不同桥接基团(X=F,OH,NH_2,Cl,SH,PH_2)的配位化合物,研究表明配位化合物四元桥环按F     本文同时还对RZn-ZnR(R=[{-PhN(Me)C}_2CH])配位化合物和含有负氢桥原子的HC(CMeNAr)_2Zn(μ-H)_2BH_2配位化合物进行了自然键轨道(NBO)和AIM分析。分析表明以上两者都具有较为稳定的结构。
The compounds formed with transition metal andβ-diketiminate ligands are important in research of organometallic chemistry.β-diketiminate ligands can regulate metal center on stereo and electronic effects. Therefore, the studies of the compound have obtained much efficient catalysts.
     In this paper, a series ofβ-diketiminate complex structures have been optimized in the B3LYP level and an appropriate basis set selected. In the same level, natural bond orbital (NBO) analysis has been applied in the optimized structure of compounds. On the equilibrium geometries, the charge density topological analysis of critical points has been achieved. In addition, the dissociation-energy of related compounds has been calculated.
     For RM(μ-X)_2Li(OEt_2)_2(R=[{(C_6H_3)N(Me)C}_2CH]) compounds containing different transition metals (X = I; M = Cu, Zn, Cd) and different halogen (X = Br, Cl, F; M = Zn), the study shows that Zn-Xbond order and stabilization are reduced with decrease of the halogen radius, Zn-Li and Zn-X distance, in the condition of containing different halogens, same transition metal Zn compound. Charge of Zn and X, binding energy and stability increase gradually. In the condition of containing same halogen I, different transition metal, it is not obvious difference between Zn and Cd. However, Cu compound which lacks valence electron has small binding energy. The order of charge at M is Cu      For compounds LZn(μ-X)_2ZnL(L={HC(CMeNPh)_2}) containing different bridged groups (X=F, OH, NH_2, Cl, SH, PH_2), the study shows that the stability of bridged four-membered ring gradually increases in ascending order, i.e., F      This paper also has optimized RZn-ZnR(R=[{-PhN(Me)C}_2CH]) coordination compound and HC(CMeNAr)_2Zn(μ-H)_2BH_2 coordination compound. Then, these compounds are analyzed in terms of Natural Bond orbital analysis(NBO) and atom in molecular analysis(AIM). The above analysis indicates that both of these compounds stay in stable structures.
引文
[1] 杨帆,林纪筠,单永奎.配位化学[M].北京:华东师范大学出版社,2007
    [2] Martell A E, Motekaites R J, Menif R, et al. Catalytic Oxidation with Dinuclear Cu(Ⅰ) Macrocyclic Dioxygen Complexes as Intermedeates[J]. J. Mol. Catal., 1997, 117: 205-207
    [3] Yamami M, Tanaka M, Sakiyama H, et al. Dinuclear Complexes of Mn(Ⅱ), Co(Ⅱ) and Zn(Ⅱ) Triply Bridged by Carboxylate groups; Structure, Properties and Catalase-like Function[J]. J. Chem. Soc. Dalton Trans, 1997: 4595-4598.
    [4] Mathur P, Crowder M, Dismukes G C. Dimanganese Complexes of a Septadentate Ligand, Functional Analogues of the Manganses Pseudocatalase[J]. J. Am. Chem. Soc., 1987, 109: 5227-5229
    [5] Byrne S, Shirodaria C, Millar T, et al. Inhibition of Platelet Aggregation with Glyceryl Trinitrate and Xanthine Oxidoreductase[J]. J.Pharmacology and Experimental Therapeutics, 2000, 292: 326-329
    [6] Cuzocrea S, Costantino G, Mazzon E, et al. Beneficial Effects of Mn(Ⅲ) Tetrakis(4-benzoic acid) Porphyrin (MnTBAP), a Superoxide Dismutase mimetic, in Zymosan-induced Shock[J]. J. Pharmacology, 1999,128: 1241-1243
    [7] Hunger M, Limberg C, Zsolnai L, Catalysis of Esterification Reaction by Oxo-molybdenum-alkoxides: X-ray Structures of Cl_2(O)Mo(μ-Pr)_2-(μ-HOPr) Mo(O) Cl_2 and Cl_2(O)Mo(μ-OEt)_2(μ-n-HOCH_2CH_2OH)Mo(O)Cl_2[J]. Poly- hedron, 1998, 22:3955-3957
    [8] Zaw K, Herry P M. Heterogenized Polymetallic Catalysis. Part Ⅰ. Catalytic Air Oxidation of 3, 5-di-t-butyphenol by Cu(Ⅱ) and Fe(Ⅲ) Complexes to a Polyphenyl-ene Polymer containing b-di- and tri-ketone Siuface ligands[J]. J. Mol. Catal., 1999, 8: 402-405
    [9] Robert S, Timothy L, John E M. Quantifying the effect of high-spin/low-spin crossover on electron delocalization in d~5d~5 M_2C1_9~(3-) (M=Fe,Ru,Os) dimmers[J]. Polyhedron, 2002, 21: 1969-1977
    [10] Bell N A, Kassyk A L. Reactions of zinc dihydride with donor molecules containing acidic hydrogen atoms[J]. J. Organomet. Chem., 1988, 345: 245-251
    [11] Gao Y, Harada K, Urabe H, Sato F. Stereo- and Regioselective Generation of Alkenylzinc Reagents via Titanium-Catalyzed Hydrozincation of Internal Acetylenes[J]. J. Org. Chem., 1995, 60: 290-291
    [12] Bell N A, Kassyk A L, Preparation of the N,N,N',N'-tetramethylenediamine complex of hydridozinc chloride. Reactions of zinc hydrides with some organic substrates[J]. Inorg. Chim. Acta, 1996,250: 345-349
    [13] Han R, Gorrell I B, Looney A G, Parkin G. Tris(3-tert-butylpyrazoly) hydroborate Zinc Hydride: Synthesis, Structure and Reactivity of a Monomeric Zinc Hydride Derivative[J]. J. Chem. Soc., Chem.Commun., 1991: 717-719
    [14] Looney A, Han R, Gorrell I B, et.al. Monomeric Alkyl and Hydride Derivatives of Zinc Supported by Poly(pyrazoly)hydroborato Ligation: Synthetic, Structural, and Reactivity Studies[J]. Organometallics, 1995,14: 274-288
    [15] Jost-Steffen H, Gerrit A L, Peter W R. Aminotroponiminate alkyl and alkoxide complexes of zinc[J]. Journal of Organometallic Chemistry, 2004(16), 689: 2720-2725.
    [16] Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbon dioxide and epoxide[J]. J. Polym.Sci.Polym.Lett.Ed., 1969,7: 287-290
    [17] Darensbourg D J, Holtcamp M W, Struck G E, Zimmer M S, Niezgoda S A, Rainey P, Robertson J B, Draper J D, Reibenspies J H. Catalytic Activity of a Series of Zn(Ⅱ) Phenoxides for the Copolymerization of Epoxides and Carbon Dioxide[J]. J. Am. Chem. Soc. 1999,121:107-116
    [18] Dinger M B, Scott M J. Synthesis, Characterization, and Reactivity of Multinuclear Zinc(Ⅱ)Alkyl Derivatives of Linked Phenoxides[J]. Inorg. Chem., 2001,40:1029-1036
    [19] Koning C E, Wildeson J, Parton R, Plum B, Steeman P, Darensbourg D J. Synthesis and physical characterization of poly(cyclohexane carbonate), synthesized from CO_2 and cyclohexene oxide[J]. Polymer, 2001, 42:3995-4004
    [20] Darensbourg D J, Wildeson J R, Lewis S J, Yarbrough J C. Solution and Solid-State Structural Studies of Epoxide Adducts of Cadmium Phenoxides. Chemistry Relevant to Epoxide Activation for Ring-Opening Reactions[J]. J. Am. Chem. Soc. 2002, 124: 7075-7083
    [21] Darensbourg D J, Wildeson J R, Yarbrough J C. Solid-State Structures of Zinc(Ⅱ) Benzoate Complexes. Catalyst Precursors for the Coupling of Carbon Dioxide and Epoxides[J]. Inorg. Chem., 2002, 41: 973-980
    [22] Darensbourg D J, Wildeson J R, Yarbrough J C, Reibenspies J H. Bis 2,6-difluorophenoxide Dimeric Complexes of Zinc and Cadmium and Their Phosphine Adducts: Lessons Learned Relative to Carbon Dioxide/Cyclohexene Oxide Alternating Copolymerization Processes Catalyzed by Zinc Phenoxides[J]. J. Am.Chem. Soc., 2000, 122: 12487-12496
    [23] Darensbourg D J, Zimmer M S, Rainey P, Larkins D L. Solution and Solid-State Structures of Phosphine Adducts of Monomeric Zinc Bisphenoxide Complexes. Importance of These Derivatives in CO2/Epoxide Copolymerization Processes[J]. Inorg. Chem., 2000, 39:1578-1585
    [24] Darensbourg D J, Niezgoda S A, Draper J D, Reibenspies J H. Trigonal-Planar Zinc(Ⅱ) and Cadmium(Ⅱ) Tris(phenoxide) Complexes[J]. Inorg. Chem., 1999,38: 1356-1359
    [25] Darensbourg D J, Niezgoda S A, Draper J D, Reibenspies J H. Mechanistic Aspects of the Copolymerization of CO2 and Epoxides by Soluble Zinc Bis(phenoxide) Catalysts as Revealed by Their Cadmium Analogues[J]. J. Am. Chem. Soc., 1998,120,4690-4698
    [26] Darensbourg D J, Holtcamp M W. Catalytic Activity of Zinc(Ⅱ) Phenoxides Which Possess Readily Accessible Coordination Sites. Copolymization and Terpolymerization of Epoxides and Carbon Dioxide[J]. Macromolecules 1995,28: 7577-7579
    [27] Aida T, Ishikawa M, Inoue S. Alternating copolymerization of carbon dioxide and epoxide catalyzed by the aluminum porphyrin-quaternary organic salt or -triphenylphosphine system. Synthesis of polycarbonate with well-controlled molecular weight[J].Macromolecules 1986,19: 8-11.
    [28] Tan C S, Hsu T J. Alternating Copolymerization of Carbon Dioxide and Propylene Oxide with a Rare-Earth-Metal Coordination Catalyst [J]. Macromolecules 1997,30: 3147-3150.
    [29] Resa I, Carmona E, Gutirrez-Puebla E, Monge A. Decamethyldizincocene, a Stable Compound of Zn(Ⅰ) with a Zn-Zn Bond[J]. Science 2004,305: 1136-1138.
    [30] Diego D R, Galindo A, Resa I, Ernesto C. Theoretical and Synthetic Studies on [Zn2(h5-C5Me5)2]: Analysis of the Zn-Zn Bonding Interaction[J]. Angew. Chem. Int. Ed. 2005,44: 1244-1247
    [31] Andreas S, Himmel H. Subvalent Compounds Featuring Direct Metal-Metal Bonds: The Zn-Zn Bond in [Cp_2~*Zn_2]~(**)[J]. Angew. Chem. Int. Ed. 2005, 44: 3006-3008
    [32] James W K. Density Functional Theory Investigation of Decamethyldizincocene[J]. J. Phys. Chem. A, 2005,109: 7757-7763
    [33] Hong S K. Theoretical Study of Complexes of Extended Cyclopentadienyl Ligands with Zinc and Cadmium[J]. J. Phys. Chem. A 2005, 109: 4342-4351
    [34] Xie Z Z, Fang W H. A combined DFT and CCSD(T) study on electronic structures and stability of the M_2(η_5-CpX)_2 (M=Zn and Cd, CpX = C_5Me_5 and C_5H_5) complexes [J]. Chemical Physics Letters, 2005,404: 212-216
    [35] Xie Y M, Henry F, Bruce K R. The Dichotomy of Dimetallocenes: Coaxial versus Perpendicular Dimetal Units in Sandwich Compounds[J]. J. Am. Chem. Soc., 2005, 127: 2818-2819
    [36] Xie Y M, Henry F S, Eluvathingal D J. Characteristics of novel sandwiched beryllium, magnesium, and calcium dimers: C_5H_5BeBeC_5H_5, C_5H_5MgMgC_5H_5,and C_5H_5CaCaC_5H_5[J]. Chemical Physics Letters, 2005,402: 414-421
    [37] Wang H Y, Xie Y M, King R B, Henry F S. Binuclear Cyclopentadienylcobalt Carbonyls: Comparison with Binuclear Iron Carbonyls[J]. J. Am. Chem. Soc. 2005,127,11646-11651
    [38] Alexey Y T, Henry F. S. Donor-Acceptor Sandwiches of Main-Group Elements[J]. Organometallics,2005,24: 3343-3345
    [39] Gabriel M, Hiram I B, Alberto V. Donor-Acceptor Heteroleptic Open Sandwiches[J]. Inorg. Chem., 2006, 45: 1091-1095
    [40] Liu Z Z, Wei Q T, Feng J K, Gang Z, Li W Q, Cui Y H, Sun C C. A Theoretical Study on Structures, Bonding Energies and Aromaticity of Two New Series of Dinuclear Phosphametallocenes: (η_5-P_5)MM(η_5-P_5) and (η_5-C_5H_5)MM(η_5-P_5) (M, M= Zn, Cd)[J]. Eur. J. Inorg. Chem., 2006: 2808-2818
    [41] Liu Z Z, Wei Q T, Feng J K, Zhang G, Li W Q. The electronic structures and aromaticities for zinc sandwich, half-sandwich and zinc-zinc sandwich complexes within density functional theory[J]. Journal of Molecular Structure: THEOCHEM, 2006, 758: 127-138
    [42] Li Q S, Xu Y. A DFT Study on Dinuclear Metallocenes RMMR [R=(BCO)_5, (BNN)_5; M=Be, Mg, Ca, Zn, Cd][J]. J. Phys. Chem. A, 2006,110: 11898-11902
    [43] 杨宏梅,磷桥联双金属配合物的量子化学研究[D].北京.北京化工大学.2005
    [44] Leeni H, Matti H, Jouni P. Synthesis, crystal and molecular structure of a binuclear, double-bridged hexacarbonyl tungsten derivative of 4-pyridyldiphenylphosphane[J]. J. Organomet. Chem. 2001,633: 66-68.
    [45] Cheng M, Lobkovsky E B, Coates G W. Catalytic Reactions Involving C1 Feedstocks: New High-Activity Zn(Ⅱ)-Based Catalysts for the Alternating Copolymerization of Carbon Dioxide and Epoxides[J]. J. Am. Chem. Soc. 1998, 120: 11018-11019.
    [46] Moore D R, Cheng M, Lobkovsky E B, Coates G W. Mechanism of the Alternating Copolymerization of Epoxides and CO_2 Using β-Diiminate Zinc Catalysts: Evidence for a Bimetallic Epoxide Enchainment[J]. J. Am. Chem. Soc. 2003,125: 11911.
    [47] Hao H J, Cui C M, Roesky H W, et al. Syntheses and structures of the first examples of zinc compounds with bridging fluorine and hydrogen atoms[J]. Chem. Commun., 2001:1118-1119
    [48] Neils T L, Burlitch J M. A Soluble alkoxyzinc hydride, [HZnOC(CH_3)_3]_4. Synthesis and reactions with copper(Ⅰ) alkoxides[J]. Inorg. Chem., 1989, 28:1607-1609
    [49] Koning A J, Boersma J, vanderKerk G J M. Reactions of zinc hydride and magnesium hydride with pyridine; synthesis and characterization of 1,4-dihydro-1-pyridylzinc and -magnesium complexes[J]. J. Organomet.Chem., 1980, 186:159-172
    [50] J(?)rg P, Kerstin M, M(?)ller I, Andreas S. Roesky H W. Synthesis and Structures of Vinamidine MnⅡ, ZnⅡ, and CdⅡ Iodine Derivatives[J]. Eur. J. Inorg. Chem. 2001, 6:1613-1615.
    [51] J(?)rg P, Holger H, Andreas S, Roesky H W. Synthesis and Structural Characterization of β-Diketoiminate Complexes Containing Three-Coordinate Zinc and Copper Atoms[J]. Eur. J. Inorg. Chem. 2002, 8: 2156-2158.
    [52] Wang Y. Z.; Brandon Q. On the Chemistry of Zn-Zn Bonds, RZn-ZnR (R = [{(2,6-Pr_2~iC_6H_3)N(Me)C}_2CH]): Synthesis, Structure, and Computations[J]. J. Am. Chem. Soc. 2005,127: 11944-11946.
    [53] Wang F, Yang H M, Yang Z Y, Zhang J C, Cao W L. Geometries and properties of bimetallic phosphido-bridged complex Cp(CO)_2W(μ-PPh_2)W(CO)_5 and Cp(CO)_3W(μ-PPh_2)W(CO)_5[J]. Chemical Physics. 2007,332: 33-38
    [54] 王芳.桥联双金属配合物的理论研究[D].北京:北京化工大学理学院,2006
    [55] Pauling L, Wilson E B. Introduction to quantum mechanics [M]. New York: McGraw-Hill Book Company, Inc., 1935
    [56] Hehre W J, Radom L, Schleyer P V R, Pople J A. Ab inito molecular orbital theory [M]. New York: John Wiley & Sons, Inc., 1986
    [57] 徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社,1985
    [58] Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Cerrelation Effects[J]. Phys. Rev. A, 1965, 140:1133
    [59] Slater J C. Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids[M]. New York:McGraw-Hill. 1974.
    [60] Pople J A, Gill P M W, Johnson B G. Kohn-Sham density-functional theory within a finite basis set[J]. Chem. Phys. Lett. 1992,199: 557-560
    [61] Lee C, Yang W, Parr R G. Development of the Colle-Sulvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988,37: 785-789
    [62] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys. Rev. A, 1988,38: 3098-3100
    [63] Becke A D. Density-functional thermochemistry.The role of exact exchange[J]. J. Chem. Phys., 1993,98: 5648-5652
    [64] 林梦海.量子化学计算方法与应用[M].北京:科学出版社.2004.17-154
    [65] Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev., 1964,136: B864-871
    [66] Slater J C. Quantum theory of molecular and solids [M]. New York: McGraw-Hill, 1974
    [67] Salahub D R, Zerner M C. The challenge of d and f electrons: theory and computation [M]. Washington D C: American Chemical Society, 1989
    [68] Parr R G, Yang W. Density-functional theory of atoms and molecules [M]. Oxford: Oxford Univ. Press, 1989
    [69] Labanowski J K, Andzelm J W. Density functional methods in chemistry [M]. New York: Springer- Verlag, 1991
    [70] L(?)wdin P O. Quantum Theory of Many-Particle Systems. Ⅰ. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction[J]. Phys.Rev., 1955, 97:1474
    [71] Reed A E, Curtiss L A, Weinhold F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint[J]. Chem. Rev. 1988, 88: 899-926
    [72] Jensen, F. Introduction to Computational Chemistry[M]. New York:JOHN WILEY & SONS. 1999
    [73] Reed A E, Weinhold F. Natural bond orbital analysis of near-Hartree-Fock water dimmer[J]. J. Chem. Phys., 1983, 78: 4066-4073
    [74] Reed A E, Weinstock R B, Weinhold F. Natural population analysis[J]. J. Chem. Phys., 1985,83: 735-746
    [75] Carpenter J E, Weinhold F. Analysis of the geometry of the hydroxymethyl radical by the "different hybrids for different spins" natural bond orbital procedure[J]. J. Mol. Struct (Theochem), 1988, 169:41-62
    [76] Bader R F W. Atoms in Molecules. A Quantum Theory[M]. Oxford,U.K.:Clarendon. 1990
    [77] Popelier P L A. Atoms in Molecules. An Introduction[M]. HarIow,U.K.:Pearson Education. 1999
    [78] David C Y. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems[M], New York:JOHN WILEY & SONS,2001,231-238
    [79] Gaussian 03, Revision C.02, M. J. Frisch, G. W Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
    [80] Foster J P, Weinhold F. Natural Hybrid Orbitals[J]. J. Am. Chem. Soc., 1980, 102: 7211-7218
    [81] Reed A E, Weinhold F. Natural localized molecular orbitals[J]. J.Chem.Phys., 1985, 83: 1736-1740
    [82] Weinhold F, Carpenter J E. The Structure of Small Molecules and Ions[M]. New York:Plenum, 1988,227
    [83] Biegler-KOnig F, SchOnbohm J, Derdau R, et al. AIM2000 version 1.0, http://gaussian.fh-bielefeld.de/aim2000/index.htm
    [84] Wiberg K B. Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane[J]. Tetrahedron, 1968, 24:1083-1096.
    [85] Carpenter J E, Weinhold F. Analysis of the geometry of the hydroxymethyl radical by the "different hybrids for different spins" natural bond orbital procedure[J]. Journal of molecular structure: THEOCHEM, 1988,169: 41-62.
    [86] Fukuda M. The band spectra of zinc hydride [J].Scientific Papers of the Institute of Physical and Chemical Research(Japan),1931,15:227-245.
    [87] Lengnick G F. Zinc hydride,useful as a reagent in the reduction of metal alkyls to metals and alkanes[P].US 3542514,1970-11-24.
    [88] Ashby E c,Watkins J. New and convenient method for the preparation of complex metal hydrides of Group Ⅱ metals.Synthesis of complex metal hydrides of zinc [J].Inorg Chem 1973,12(11):2493-503.
    [89] Ashby E C, Watkins J. Zinc dihydride[J]. Inorg Synth, 1977,17:6-9.
    [90] Shayesteh A,Yu S,Bernath P F,Gaseous HgH2,CdH2,and ZnH2[J].chem Euro J,2005,11(16):4709-4712.
    [91] Bell N A,Coates G E. Amino- and oxyberyllium hydrides. 2-Dimethylaminoethyl (methyl)aminozinc hydride dimmer[J]. J. Chem. Soc. C, 1968, 4:823-826.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700