酞菁类配合物的合成及其对锂/亚硫酰氯电池催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文设计合成了四大系列二十二种酞菁类配合物,探讨了不同系列、不同金属对锂/亚硫酰氯(Li/SOCl2)电池放电性能的影响。
     采用固相熔融法合成了氯代单核(MPcCl16)、双核(M2Pc2Cl24)金属酞菁及同核、异核双金属(M2Pc2)酞菁配合物,采用溶剂法合成了四-α-(8-喹啉氧基)酞菁锌(α-(QO)4PcZn)配合物,对所有配合物进行元素分析,红外吸收光谱、紫外吸收光谱表征并对部分配合物进行了热重分析。
     对上述所有配合物进行电性能测试,并根据所得的电池放电电压与放电时间之间的关系,推导所对应的电池能量及电池容量等方面性能的变化,以及对部分酞菁类配合进行循环伏安测试,来分析催化反应特性,探讨中心金属对电池催化活性的影响。结果发现:对于不同系列的金属酞菁,即使同一中心金属对电池的催化活性也是不一样的,这与酞菁的取代基团、取代基团数目及酞菁环的共轭环境有关。
     本论文通过对Li/SOCl2正极碳膜做扫描电镜,对比不同放大倍数下添加了酞菁类催化剂的与未添加的碳膜形貌,发现酞菁类配合物可以使碳膜变得疏松,一定程度上有利于提高电池放电电压,延长放电时间。同时,在酞菁对Li/SOCl2电池的催化机理方面做进一步完善,对于某一种酞菁配合物,当它具有足够数目的活性点并且这些活性点通过协同作用可达到一个恰当的状态时,才会具有良好的催化活性。
     除此之外,本文还在培养酞菁晶体方面进行了尝试,期望得到更精确的酞菁配合物结构。
In this thesis, twenty-two phthalocyanine compounds which fall into four categories were designed and prepared. Besides, we discussed the effects of different series and different metals to the discharge characteristic of Li/SOCl2 battery.
     Among these phthalocyanine compounds, chloride single-core and double-core metal phthalocyanines which include homonuclear and heteronuclear compounds were prepared by solide-phase melting method, and a-(QO)4PcZn was prepared in solvent. All of the compounds were characterized by Element Analyse, FT-IR, UV-vis and some of them were also characterized dy TGA.
     The catalytic activity of all these prepared compounds were evaluated by electrical property test for Li/SOCl2 battery. Besides, some cyclic voltammetry experiments were completed to study the property of the catalystic reaction. As shown in the result, The different substitute group, the amount of substitute group and the conjugated circumstance all will effect the catalytic activity.
     The SEM analyse were finished to study the morphology of carbon membrane, the result shown that the carbon membrane were loosen by phthalocyanine compounds, which could increase the discharge voltage of Li/SOCl2 battery. The catalytic mechanism of Li/SOCl2 battery was also investigated. Phthalocyanine compounds will act as efficient active catalyst when they have enough active sites and all these active sites reach a proper state by synergistic effect.
     Besides, we designed a lot of experiments to obtain the crystal of the phthalocyanine compounds, which could study the accurate molecular structures of the catalysts.
引文
[1]刘海燕,王国强,李卫宏.脱硫技术进展[J].辽宁化工,2008,37(1):44-46
    [2]Hakka, Leo E., Forte, et al. Process for removing sulfur compounds from gas and liquid hydrocarbon streams[P]. US:6531103,2003
    [3]王力臻.化学电源设计[M].北京:化学工业出版社,2008
    [4]杨军,解晶莹,王久林等.化学电源测试原理与技术[M].北京:化学工业出版社,2006
    [5]黄可龙,王兆翔,刘素琴等.锂离子电池原理与关键技术[M].北京:化学工业出版社,2008
    [6]吴宇平,戴晓兵,马军旗等.锂离子电池-应用于实践[M].北京:化学工业出版社,2004
    [7]戴维·林登,托马斯B.雷迪.电池手册[M].北京:化学工业出版社,2007
    [8]Claessens C. G., Hahn U., Torres T.. Phthalocyanines:from outstanding electronic properties to emerging applications [J]. Chemical Record,2008,8(2):75-97
    [9]王俊东.烷氧基取代酞菁及其用做CD-R染料的研究[D].福州:福州大学,2002
    [10]Braun A., Tcherniac T. C.. Uber die Produckte der Einwirkung von Acetanhydridauf Phthalaid[J]. Chemische Berichte,1907,40:2709-2714
    [11]Mao J. H., Zhang H. G., Jiang Y. H., et al. Tunability of Supramolecular Kagome Lattices of Magnetic Phthalocyanines Using Graphene-Based Moire Patterns as Templates [J]. Journal of the American Chemical Society,2009,131(40):14136-14137
    [12]Ramunas J. M., Martell A. E., Lehn J. M.. Anion binding in macrobicyclic metal cryptate complexes copper(II)-Bistren[J]. Inorganic Chemistry,1984,23(11):1588-1591
    [13]Lenzboff C. C., Lever. A. B. P.. Phthalocyanines, Properties and Application[M]. VCH, Weinheim,1989
    [14]Hasan T., Moor A.C.E., Ortel B, et al. Cancer Medical[M]. London:Bc Decker Inc, 2000.
    [15]Lukyanets E. A. Phthalocyanines as Photosensitizers in thePhotodynamic Therapy of Cancer[J]. Journal of Porphyrins and Phthalocyanines,1999,3(6):424
    [16]Shirai H., Kobayashi N. Phthalocyamines:Chemistry and Functions[M]. Tokyo:IPC Ltd., 1998
    [17]Tolbin A. Y, Pushkarev V. E., Nikitin G. F., et al. Heteroligand and heteronuclear clamshell-type phthalocyanines:selective preparation, spectral properties, and synthetic application[J]. Tetrahedron Letters,2009,50(34):4848-4850
    [18]Thomas A. L.. Phthalocyanine Research and Applications[M]. Boston:CRC Press,1990
    [19]Robert D. G., Arthur W. S., James S. S., et al. The Alpha Substitution Effect on Phthalocyanine Aggregation[J]. Journal of Porphyrins and Phthalocyanines,1998,2(1): 1-7
    [20]Gorlach B., Dachtler M., Glaser T., et al. Synthesis and separation of structural isomers of 2(3),9(10),16(17),23(24)-tetrasubstituted phthalocyanines[J]. Chemistry-A European Journal,2001,7(11):2459-2465
    [21]Sommerauer M., Rager C., Hanack M. Separation of 2(3),9(10),16(17),23(24)-Tetrasubstituted Phthalocyanines with Newly Developed HPLC Phases[J]. Journal of the American Chemical Society,1996,118(42):10085-10093
    [22]Jincan Chen, Naisheng Chen, Jinling Huang, et al. Derivatizable phthalocyanine with single carboxyl group:Synthesis and purification[J]. Inorganic Chemistry Communications,2006,9:313-315
    [23]冷丰收,尹炳柱,沈永嘉.含四硫富瓦烯结构单元的酞菁和四氮卟啉衍生物的研究概况[J].有机化学,2008,28(11):1875-1887
    [24]Angela S., Andreas G., Purificacion V., et al. Phthalocyanine-Azacrown-Fullerene multicomponene system:Synthesis, photoinduced processes, and electrochemistry [J].Organic Letters,1999,1(11):1807-1810
    [25]GUROL I., AHSEN V. Synthesis and aggregation behavior of phthalocyanines substituted with flexible crown ether[J]. J. Porphyrins Phthalocyanines 2000,4:621-626
    [26]Takamitsu F., Tsuneaki B., Nagao K.. A Discrete Quadruple-Decker Phthalocyanine [J], Journal of the American Chemical Society,2010,132(18):6278-6279
    [27]Kimura T., Suzuki T., Takaguchi Y., et al. Preparation and electrochemical properties of 1,4,8,11,15,18,22,25-octalkylphthalocyanines containing four trithiole rings[J]. European Journal of Organic Chemistry,2006,5:1262-1270
    [28]Leng F. S., Yin B. Z., Shen Y. J.. A survey of studies on phthalocyanines and porphyrazines having tetrathiafulvalene units[J]. You ji Hua xue,2008,28(11): 1875-1887
    [29]Beatriz B., Stephane C., Gemadela T., et al. Synthesis, characterization and photophysica lproperties of a SWNT-phthalocyanine hybrid[J]. Chemical Communications,2007, 2950-2952
    [30]Kenneth J. B., Ferraris J. P. Application of differential scanning calorimetry in the study of intrazeolite metallophthalocyanines[J]. Journal of Physical Chemistry,1990,94 (21): 8019-8020
    [31]鲁宇浩,吴益华,郭丽.聚合物电解质燃料电池中的酞菁催化剂[J].电源技术,2003,27(3):333-338
    [32]Vinod M. P. D., Chandwadkar A. J., et al. Catalytic and electrocatalytic properties of intrazeolitically prepated iron phthalocyanine [J]. Materials Chemistry And Physics,1999, 58:37-43
    [33]Jakub D. Baran, J. Andreas Larsson. Inversion of the shuttlecock shaped metal phthalocyanines MPc(M= Ge, Sn, Pb)-a density functional study [J]. Physical Chemistry Chemical Physics,2010, xxx:xxx-xxx
    [34]Wan L, Zhang Y. X., Qi D. D., et al, Structures and properties of 1,8,15,22-tetrasubstituted phthalocyaninato zinc and nickel complexes:Substitution and axially coordination effects study based on density functional theory calculations [J]. Journal of Molecular Graphics and Modelling,2010, xxx:xxx-xxx
    [35]杨军,解晶莹,王久林等.化学电源测试原理与技术[M].化学电源技术丛书,化学工业出版社,2006
    [36]Usui Y., Tanaka M., Kimura O., et al. Direct alcohol-type fuel cell, anode catalyst containing metal phthalocyanine, its manufacture, and electronic apparatus[P]. JP 2008243697,2008
    [37]Zhou X. R., Li J., Wang X. N., et al. Oxidative desulfurization of dibenzothiophene based on molecular oxygen and ironphthalocyanine[J]. Fuel Processing Technology,2009, 90(2):317-323
    [38]Rajagopal, Gurusamy, Kim, et al. Aluminum phthalocyanine:an active and simple catalyst for cyanosilylation of aldehydes[J]. Applied Organometallic Chem.,2007,21(3): 198-202
    [39]Agrawal B. B., Puri, S. N., Das G, et al. Halogenated metal phthalocyanine catalysts for sweetening and desulfurization of light and middle petroleum fractions [P]. FR: 2816853A1,2002
    [40]梁氏秋水,陈振兴,朱宏伟等.铜酞菁与富勒烯共混层对柔性薄膜太阳电池光伏性 能的影响[J],功能材料,2009,40(7):1140-1142
    [41]Doddapaneni N. [A]. Proceedings of the 30th Power Sources Symposium[C]. AtlanticCit y:1982,169.
    [42]Bernstein P.A., Lever A.B.P..Two-electron oxidation of cobalt phthalocyanines by thionyl chloride. Implications for lithium/thionylchloride batteries[J]. Inorganic Chemistry,1990,29 (4):608-616
    [43]Ngudiankama N., Tebello N.. Photoassisted reduction of thionyl chloride by neodymium/europium/thulium and lutetium diphthalocyanines[J]. Polyhedron,1998, 17(19):3467-3475
    [44]许占位,赵建社,冯虹等.酞菁铜衍生物对Li/SOCl2电池性能的影响[J].电池,2008,38(5):275-277
    [45]许占位,孙庆津,苏碧云等.酞菁配合物对锂-亚硫酰氯电池正极的催化作用[J].电化学,2007,13(3):293-296
    [46]Yasuhiro Y., Kenji T. Synthesis of m-oxo-bridged hetero-metal phthalocyanine dimer analogues and application for charge generating material in photoreceptor[J]. Dyes and Pigments,2006,70:105-109
    [47]黄斯娉,袁中直.双核钴锰酞菁对SOCl2还原反应的电催化性能[J].物理化学学报,2009,25(8):1599-1604
    [1]郭忠平,吴明光,詹梦雄.酞菁锶及其磺化衍生物的合成与性质研究[J],高等学校化学学报,1999,20(3):350-352
    [2]Nevin. W. A., Dimerisation of mononuclear and binuclear cobalt phthalocyanines[J]. Canadian Journal of Chemistry,1987,65:855
    [3]沈玉芳,彭正合,周运鸿,金属十六氯酞菁MPcCl16(M=FeⅡ,CoⅡ,CuⅡ,ZnⅡ)的制备及光催化降解性能[J],武汉大学学报(理学版),2006,52(6):663-666
    [4]Guo, Z. P., Wu, M. G., Zhan, M. X. Syntheses and properties for strontiumphthalocyanine and its sulfonated derivative[J]. Chemical Research in Chinese Universities,1999,20(3):350-352
    [5]金永茂,毛雪,尹彦冰.四卤代金属酞菁的合成及光谱研究[J],化工时刊,2008,22(1):15-17
    [6]荣国斌译,朱士正校.波谱数据表-有机化合物的结构解析[M].华东理工大学出版社,2007(原著.)Pretsch E., Buhlmam P., Affolter C., Structure Determination Compounds Tables of Spectral Data)
    [7]Ramunas J. Motekaitis., Martell.A. E., Lehn J. M. Anion binding in macrobicyclic metal cryptate complexes copper(II)-Bistren[J]. Inorganic Chemistry,1984,23(11):1588-1591
    [8]Lenzboff C. C., Lever. A. B. P. Phthaloeyanines, properties and application[M]. VCH, Weinheim,1989, (1-4):156-163
    [9]Josef M., Otto S., Michad H. Synthesis and Properties of Substituted (Phtbalocyaninato)iron and-cobalt Compounds and Their Pyridine Adducts[J]. Inorganic Chemistry,1984,2318:1065-1071
    [1]Yasuhiro Yamasaki, Kenji Takaki. Synthesis of m-oxo-bridged hetero-metal phthalocyanine dimer analogues and application for charge generating material in photoreceptor[J]. Dyes and Pigments,2006,70:105-109
    [2]黄斯娉,袁中直.双核钴锰酞菁对SOCl2还原反应的电催化性能[J],物理化学学报,2009,25(8):1599-1604
    [3]汪晓梅.一种酞菁铁钴磺酸盐脱硫催化剂及其制备方法[P].CN:101049576A,2007
    [4]马金福,刘艳,赖俊华等.双核双金属酞菁(FeCoPc2)阴极催化直接硼氢化物燃料电池[J].电化学,2009,15(3):280-283
    [5]Janczak J., Kubiak R.. Polyhedron, Synthesis and characterisation of dipyridinated magnesium phthalocyaninato(2-) comple[J]. Polyhedron,2002,21(1):265-274
    [1]薛金萍,刘宏,方昱婷等.α-(8-喹啉氧基)单取代酞菁锌及其制备方法[P].CN:101260110A,2008
    [2]郭忠平,吴明光,詹梦雄,酞菁锶及其磺化衍生物的合成与性质研究[J].高等学校化学学报,1999,20(3):350-352
    [3]Nevin. W.A.. Dimerisation of mononuclear and binuclear cobalt phthalocyanines[J]. Canadian Journal of Chemistry.1987,65:855
    [4]Barbaros A., Esin H.. Enhancement of solubility via esterification:Synthesis and characterization of octakis (ester)-substituted phthalocyanines[J]. Dyes and Pigments, 2008,79:153-158
    [5]薛金萍,含氮芳氧基取代酞菁金属配合物的合成及光敏活性研究[D].福州大学博士学位论文,2005
    [6]Snow A.W., Jarvis N.L. Molecular association and monolayer formation of soluble phthalocyanine compounds[J]. Journal of the American chemical society,1984,106: 4706-4711
    [7]Kobaryashi N., Muranaka A. A mutually perpendicular phthalocyanine pentamer obtained by a one-step reaction[J]. Chemical Communications,2000(19):1855-1856
    [8]Tomoda H., Saito S., Ogawa S., et al. Synthesis of phthalocyanines from phthalonitrile with organic strong bases[J]. Chemistry Letters,1980,9(10):1277-1280
    [9]Oliver S. W., Smith T. D., Oligomeric cyclization of dinitriles in the synthesis of phthalocyanines and related compounds:the role of the alkoxide anion[J]. Journal of the Chemistry Society Perkin Transactions Ⅱ,1987:1579-1582
    [1]黄可龙,王兆翔,刘素琴等.锂离子电池原理与关键技术[M].北京:化学工业出版社,2008
    [2]Frysz C. A., Chung D. D. L.. Improving the electrochemical behavior of carbon black and carbon filaments by oxidation[J]. Carbon,1997,35(8):1111-1127
    [3]Weissmann G. S., Carle S. F, Fogg G. E.. Three-dimensional hydrofacies modeling based on soil survey analysis and transition probability geostatistics[J]. Water Resources Research,1999,35(6):1761-1770
    [4]肖顺华.提高锂/亚硫酰氯电池可靠性的方法研究[J].化工进展,2004,23(9):1001-1003
    [5]吴宇平,戴晓兵,马军旗等.锂离子电池-应用于实践[M].北京:化学工业出版社,
    2004
    [6]Abraham K. M., Mank R. M.. Some chemistry in the Li/SOCl2 cell[J]. Journal of The Electrochemical Society,1980,127(10):2091-2096
    [7]黄斯娉,袁中直.双核钻锰酞菁对SOCl2还原反应的电催化性能[J].物理化学学报,2009,25(8):1599-1604
    [8]许占位,赵建社,冯虹,马素杰.酞菁铜衍生物对Li/SOCl2电池性能的影响[J].电池,2008,38(5):275-277
    [9]Lee, S. B., Pyun, S. I.. Electrocatalytic performance of binuclear Co-Mn phthalocyanine for the reduction of thionyl chloride[J]. Lee, E. J. Electrochim. Acta,2001,47:855
    [10]Doddapaneni N.. Low-temperature performance of high-rate lithium/thionyl chloride cells. In:Proceedings of the 30th Power Sources Symposium, Atlantic:NJ,1982: 169-172
    [11]Bernstain P.A., Lever A.B.P.. Perchlorinated phthalocyanines:spectroscopic properties and surface electrochemistryInorg[J]. Inorganic Chemistry,1990,29:608-616
    [12]Zhanwei X., Guoxiang Z., Zeyuan C., et al. Effect of N atoms in the backbone of metal phthalocyanine derivatives on their catalytic activity to lithium battery[J]. Journal of Molecular Catalysis A:Chemical,2010,318(1-2):101-105
    [13]Zhanwei X., Jianshe Z., Hejun L., et al. Influence of the electronic configuration of the central metal ions on catalytic activity of metal phthalocyanines to Li/SOCl2 battery[J]. Journal of Power Sources.2009,194:1081-1084
    [1]何为,几种酞菁的合成、性质及其近红外发光器件研究[D].大连理工大学博士学位论文,2008
    [2]姚连增,俞文海著.晶体世界[M].北京:科学出版社,1992
    [3]Robertson J. M., Woodward I.. An X-ray study of the structure of phthalocyanines.Part
    Ⅰ.The metal-free,nickel,copper,and platinum compounds[J]. Journal of the Chemical Society,1935:615-621
    [4]Robertson J. M., Woodward I.. An X-ray study of the phthalocyanines. Part Ⅳ. Direct quantitative analysis of the platinum compound[J]. Journal of the Chemical Society,1940: 36-48
    [5]姜文海,王旭,马春雨等.氮酞菁铜azaOCuPc的合成与晶体结构[J].高等学校学报,2006,27(12):2263-2265
    [6]Miyahara T., Shimizu M.. Single crystal growth of organic semiconductors by the Repeated Solid Solvent Growth Method using melted anthracene as a solvent[J]. Journal of Crystal Growth,2001,229:553-557
    [7]Selvaraj S.L., Xavier F.P.. The role of traps in electrical conductivity and optical absorption in phthalocyanine-doped anthracene co-crystals[J]. Journal of Crystal Growth, 2001,233:583-590
    [8]Zeis R., Siegrist T., Kloc Ch.Single-crystal field-effect transistors based on copper phthalocyanine[J], Applied physics letters,2005,86(2):022103
    [9]夏道成,于书坤,马春雨等.溶剂热法直接合成酞菁铜晶体[J].高等学校化学学报,2008,29(2):244-246
    [10]Yoon S. M., Hwang I. C., Kim K. S., et al. Synthesis of Single-Crystal Tetra(4-pyridyl)porphyrin Rectangular Nanotubes in the Vapor Phase[J]. Angewandte Chemie International Edition.2009,48:2506-2509
    [11]Yoon S. M., Song H. J., Hwang I. C., et al. Single crystal structure of copper hexadecafluorophthalocyanine(F16CuPc) ribbon[J]. Chemical Communications,2010,46: 231-233

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700