杂多酸(盐)制备、表征及其催化环己酮氨肟化反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以苯为原料己内酰胺生产工艺中,环己酮肟是关键中间体,传统工艺大多采用环己酮-羟胺法。以钛硅分子筛TS-1为催化剂,环己酮、氨和双氧水为原料的液相氨肟化反应,条件温和,选择性高,副产物少,能基本实现“零排放”。1990年前后意大利Enichem公司开发建成TS-1分子筛催化液相氨肟化反应工业化装置,为环己酮肟的工业化生产打开了一个新的篇章。然而,TS-1分子筛催化剂价格昂贵,粒度较小(0.1-0.3μm),催化环己酮氨肟化反应后难以与反应液体系分离,回收困难,流失严重。因此,分离回收TS-1分子筛已成为环己酮氨肟化工艺中迫切需要解决的难题,限制着氨肟化技术的推广应用。
     本文采用环境友好型“双功能催化剂”——杂多酸(盐)催化环己酮氨肟化反应,成功制备了以P为中心原子,W、Mo、V为配位原子的杂多酸及其盐,经FTIR、XRD、ICP表征,结果表明其具有Keggin型结构。对影响杂多酸(盐)合成收率的主要因素,如反应温度、物料配比、pH值及溶剂量等进行了考察。结果表明:合成保持在近沸状态,物料配比接近化学计量,pH值维持在1.6-1.8,杂多酸收率达82.51%。
     以环己酮氨肟化催化反应体系对杂多酸(盐)进行评价,结果表明以Keggin型磷钨杂多酸的催化性能最好,具有催化活性高,选择性和稳定性好,催化反应条件温和且无污染等优点。以磷钨杂多酸为催化剂对环己酮氨肟化反应工艺条件进行了优化,考察了催化剂用量、反应温度、反应时间、H2O2用量及溶剂对反应的影响。实验结果表明:以水作溶剂,H3PW12O40用量为19.6g/1mol环己酮,双氧水与酮摩尔比为1.6/1,20℃下反应5.0h,氨肟化反应收率89.41%,选择性高达98.38%。
     在预实验的基础上,初步探索了环己酮氨肟化的反应机理。水相中Keggin型杂多负离子通过与过氧化氢形成一种高活性过氧化多酸化合物,使过氧化多酸几乎完全转移到有机相,从而将氧原子从过氧化多酸转移到底物,催化环己酮氨肟化反应。此外,杂多酸的酸性可增加羰基的亲电性,有利于亲核试剂的进攻,并使醇胺的羟基质子化,利于肟的生成。实验结果还表明,高浓度的双氧水对肟的选择性无明显影响,由此推测氨肟化反应可能是按羟胺机理进行的。
     本文通过大量系统性的实验,制备了以SiO2、活性炭、活性Al2O3、水滑石等为载体的负载型催化剂,用BET、FTIR、XRD进行了表征。结果表明,活性组分可不同程度与载体结合,但其结构并未发生变化。首次用负载型杂多酸(盐)催化环己酮氨肟化反应,结果表明,以活性Al2O3为载体的杂多酸(盐)催化剂性能最好,环己酮肟收率达90.23%,选择性高达99.78%,比均相催化剂更高。负载后的催化剂易分离,但由于活性组分(盐)易溶脱,在催化剂回收方面未能达到预期的效果。
Cyclohexanone oxime is one of the most important intermediate in the industrial caprolactam technology in which benzene is used to be raw material. Conventionally it is synthesized in the cyclohexanone-hydroxylamine process. Using Titanium Silicate-1(TS-1) as catalyst, cyclohexanone oxime can be prepared from cyclohexanone, ammonia and hydrogen peroxide, which is called liquid phase ammoximation process. It can not only proceed in mild reaction condition, reach high selectivity, but also can avoid byproducts, finally realize“Zero Emission”. In 1990, Enichem of Italy developed and built an industrial equipment of liquid phase ammoximation catalyzed by titanium silicate-1, which opened a new period of cyclohexanone oxime industrial producing. However, TS-1 is very expensive and with small-granularited catalyst, which causes difficulties in industrial production, for example separation and recycle. So, how to separate and reclaim the titanium silicate-1 zeolite is becoming the most urgent problem to be resolved in the research and development of ammoximation of cyclohexanone.
     In this thesis, environment-friendly heteropoly acid(salts) catalyst are used in the ammoximation reaction of cyclohexanone. In the first part, a series of heteropoly acid(salts) are successfully synthesised, in which P is acted as the central atom and W、Mo、V are acted as coordinating group. They are characterized by FTIR, XRD, ICP and the results reveal that heteropoly acids get the Keggin-type structure. Then, the main factors which affect the yield of heteropoly acids are studied, such as reaction temperature, material ratio, pH value and quantity of solvent. The experiment results show that under condition of boiled and pH 1.6~1.8, the yield of heteropoly acids can reach up to 82.51%.
     In chapter two, the synthesised heteropoly acids(salts) are estimated by ammoximation of cyclohexanone system. Results show that the heteropoly acids with Keggin structure have the advantages of high catalyse ability, excellent selectivity and stability, mild reaction condition and free of pollution. Using heteropoly acids as catalyst, the ammoximation reaction process are optimized and effects of the dosage of catalyst, reaction temperature, reaction time, the dosage of H2O2 and solvent on reaction are inverstigated. The results indicate that using water as solvent, at 20℃for 5.0h, with H3PW12O40 19.6g/1mol cyclohexanone and ratio of hydroperoxide/acetone 1.6/1, the conversion of cyclohexanone and the selectivity of cyclohexanone oxime can reach 89.41% and 98.38% respectively.
     On the base of plenty preliminary experiments, the reaction mechanism of ammoximation catalyzed by heteropoly acids(salts) is studied. In the proposed mechanism, the Keggin-type heteropoly negative ion is bonded with H2O2 in aqueous phase, forms the active peroxidized heteropoly compounds and transfers most of the peroxidized polyacid into the organic phase, then oxygen is transfered from peroxidized polyacid to the substrate, which catalyzes the ammoximation. Moreover, the electrophilicity of the carbonyl group can increase the acidity of heteropoly compound. This not only creats a suitable condition for the attack of nucleophilic reagent, but also make the hydroxyl group in alcohols and amine protonation, which benefit the formation of cycohexanoxime. Meanwhile, results indicated that high concentration of hydroperoxide has no significant influence on the selectivity of oxime, which supposes that the mechanism of ammoximation is hydroxylamine approach.
     At the last part of this thesis, on the basis of systemic research experiments, the immobilized catalysts, which supported on silicon dioxide, active carbon and active alumina, are prepared and characterized by BET, FTIR, XRD. Results proved that the active ingredient is combined with carrier and the characteristic structure is unchanged. The result of ammoximation catalyzed by immobilized heteropoly acids(salts) for the first time shows that the Al2O3-based catalyst exhibits the highest activity with a yield of 90.23% and a selectivity of 99.78%, even better than homogeneous catalyst. Though the immobilized catalyst is easily separated, but active ingredient is also easy off-bonded and the reuse of catalyst can not achieve the prospective results.
引文
[1] Paolo Roffia, Saronno, Mario, etal. Catalytic process for preparing cyclohexanone-oxime[P]. US: 4745221, 1988-05-17.
    [2]姜锋,傅送保,汤琴等.环己酮氨肟化工艺中钛硅分子筛流失问题的研究[J].化工进展, 2003, 22(10): 1116-1118.
    [3]王新农. TS-1的固载化及应用于环己酮氨肟化反应的研究[硕士学位论文].北京:石油化工科学研究院, 1999: 17-36.
    [4]李永祥,吴巍,闵恩泽等.酮氨肟化反应体系中分子筛催化剂的分离方法[P].中国专利: 1432432A, 2003-07-30.
    [5]李永祥,吴巍,闵恩泽等.一种生产环己酮肟的方法[P].中国专利: 1432560A, 2003-7-30.
    [6] Yasui E, Kawaguchi T, Matsubara T, etal. Process for preparing Cyclohexanoneoxime by Ammoxidation of Cyclohexanone[P]. GB: 1092899, 1967-11-29.
    [7] Farbenfabriken Bayer Aktiengesellschaft. Process for Preparation of Cyclohexanone Oxime[P]. GB: 1177495, 1970-1-14.
    [8] D P Dreoni, D Pinelli and F Trifirò. FT-IR and flow reactor studies on heterogeneously catalyzed gas-phase ammoximation of cyclohexanone[J]. J. Mol. Catal., 1992, 71(1): 111-127.
    [9]赵虹.无机钛硅原料TS-1催化环己酮氨氧化制备环己酮肟[硕士学位论文].湘潭,湘潭大学, 2002: 3-4.
    [10]朱波,罗孟飞,袁贤鑫.过渡金属氧化物催化剂对甲苯、丙酮深度氧化性能的考察[J].科技通报, 1995, 11(3): 139-141.
    [11] Maria A, Guido Petrini, Alberto Cesana. Two-step process for liquid-phase production of oximes[P]. US: 5312987, 1994-5-17.
    [12]老川幸,深尾正美.生产环己酮肟的方法[P].中国专利: 1468841A, 2004-01-21.
    [13] M. Taramasso, G. Perego and B. Notari In: L.V. Rees, Editor, Proc. 5th Intern. Conf. Zeol., Heyden, London (1980), p.40.
    [14] Taramasso M, Perego G, Notari B.Prepatation of porous crystalline synthetic material comprised of silicon and titanium oxides[P]. US: 4410501, 1983-10-18.
    [15] A Tuel, S Moussa-Khouzami, Y. Ben Taarit etal. Hydroxylation of phenol over TS-1 Surface and solvent effects[J]. J. Mol. Catal., 1991, 68(1): 45.
    [16] C Neri, Buonomo, Antossl. Process for the synthesis of glycol monomethylethers [P]. EP: 100118, 1984.
    [17] Roffia P, Padovan M, Morettl E.Catalytic process for preparing cyclhexanone-oxime[P]. EP: 0208311A2(1987), 1986-09-07.
    [18]高焕新,舒祖斌等.钛硅分子筛TS-1催化环己酮氨氧化制环己酮肟[J].催化学报(Gao H X, Shu Z B et al. Chinese Journal of Catalysis), 1998, 19(4): 329.
    [19]李平,卢冠忠,罗勇等. TS分子筛的催化氧化性能研究V.环己酮氨肟化反应[J].化学学报(Li P, Lu G Zh, Luo Y et al. Actcz Chim Siu), 2000, 2: 204-208.
    [20] J Le Bars, J Dakka, R A Sheldon.Ammoximation of cyclohexanone and hydroxyaromatic ketones over titanium molecular sieves[J]. Appl. Catal., A: General, 1996, 136: 69-80.
    [21] Berzelius, J. The preparation of the phosphomolybdate ion [PMo12O40]3-[J]. Pogg. Ann, 1826, 6: 369.
    [22] John H. Billman, Alfred W. Seiling. Reactions of organic compounds with heteropoly acids. Part III. Colorimetric determination of carbonyl compounds with 12-molybdosilicic acid. Anal. Chim. Acta, 1965, 33: 561-563.
    [23] Keggin, J. Structure of the molecule of 12-phosphotungstic acid[J]. Nature, 1933, 131:908
    [24] J.N.ARMOR etal. AmmoximationI. A direct route to cyclohexanone oxime and caprolactam from NH3, O2, and cyclohexanone[J]. J. Catal., 1981, 70(1): 72-83.
    [25] J.N.ARMOR etal.AmmoximationⅡ. Catalysts for the ammoximation of Cyclohexanone[J]. J.Catal., 1981, 70: 84-91.
    [26] D.P. Dreoni, D. Pinelli, F. Trifirò, Synthesis of cyclohexanone oxime via ammoximation with molecular oxygen: the reaction network.[J]. J. Mol. Catal., vol. 69, pp. 171-190, 1992.
    [27] Thangaraj A, Ratnasamy P, Patnasamy P. Catalytic properties of crustalline Titanium SilicalitesⅢ.Ammoximation of cyclohexanone[J]. J. Catal., 1991,313(02): 394.
    [28] Sergio Tonti, Palo Roffia, Vittorio,etal. Multistep process for the liquid phase ammoximation of carbonyl compounds[P]. US: 5227525, 1993-07-13.
    [29] Paolo Roffia,Giuseppe Papaaatto,Alberto Cesana, et al. Process of producing Ketoximes[P]. US: 4894478, 1990-01-16.
    [30] John G Zajacek, John C Jubin, Guy L.Crocco.Integrated process for cyclohexanone oxime production[P]. US: 5451701, 1995-09-19.
    [31] Guy L Crocco, John C Jubin, John G. Zajacck. Integrated process for cyclohexanone oxime production[P]. US: 5599987, 1997-02-04.
    [32]周继承,王祥生. Anovel method for synthesis of TS-1[J].催化学报(Zhou J Ch, Wang X Sh, Chinese Journal of Catalysis), 1999, 1: 5.
    [33] Zhou J Ch, Wang X Sh.Novel method for synthesis of TS-1[J] the Chinese journal of chemistry, 2000, 18(1): 42.
    [34] Mario Padovan, Giordano De Alberti, Paolo Roffia. Method for the preparation of a catalyst for the ammoximation of Carboxylic compound[P]. US: 5041652, 1991-08-20.
    [35] Kazuo Tanaka, Kengi Nakaya, Atsushi Ohkoshi et al.Process for productionε-Caprolaction [P]. US: 6063938, 2000-05-16.
    [36]丁勇,张小明,索继栓等.无机原料体系合成TS-1影响因素的影响[J].化学学报, 2001, 59(10): 1604-1608.
    [37]张义华,王祥生,郭新闻等. TS—1的合成、表征及催化性能[J].催化学报(Zhang Y H, Wang X Sh, Chinese Journal of Catalysis), 2001, 22(1): 92.
    [38]程时标,金泽明,闵恩泽等. TS-1分子筛晶化过程的研究[J].催化学报(Cheng Sh B, Jin Z M, Min En Z et al. Chinese Journal of Catalysis), 1999, 20(2): 134.
    [39]林民,林励吾,包信和等. TS-1分子筛的合成[J].催化学报(Lin M, Lin L W, Bao X H et al. Chinese Journal of Catalysis), 1999, 20(1): 29.
    [40]王丽琴,王祥生. Quick Synthesis of Titanium Silicalite-1[J].催化学报(Wang L Q, Wang X Sh etal. Chinese Journal of Catalysis), 2001, 22(6): 513.
    [41] Tsingdinos G A. Heteropoly Compounds of Molybdenum and Tungsten [M]. New York: Sping-Verlev, 1977, 5.
    [42] Kenji Nomiya, Makoto Miwa. Structural stability index of heteropoly and isopolyanions-IV. Application to site-vacant Keggin polyanions, mixed-type Keggin polyanions, some molybdo- and tungsto-vanadates and Jeannin-type polyanion[J]. Poluhedron, 1985, 4(8): 1407-1412.
    [43] A.Muller, F Peters, M. T. Pope, D.Gatteschi. Polyoxomtetalates: Very Large Clusters- Nanoscale Magnets [J]. Chem. Rev. 1998(98): 239-271.
    [44] Raisa I. Maksimovskaya, Gennady M. NMR Studies of Heteropolyanion [P2W20O70(H2O)2]10- Complexes with Metal Cations[J]. Inorg.Chem, 2001, 40: 1284-1290.
    [45]温朗友,闵恩泽.固体杂多酸催化剂研究新进展[J].石油化工, 2000, 29: 49.
    [46]郑汝骊,王恩波.钼钨的多酸化学[J].化学通报, 1984: 12-18.
    [47] Buecheler, N.M, Synthesis and Characterization of Heteropoly Acids and Related Materials[M]. The University of Temple, 1997: 3.
    [48]张渊明.化学化工研究与应用新进展概论[M].广州:华南理工大学出版社, 2000, 1: 161.
    [49]邓筱华,雷秀斌.多酸化合物的形成条件[J].化学通报, 1988. 4(2): 55-56, 49.
    [50]王恩波,赵世良,陈亚光等.镧系元素的钼钒磷杂多酸盐的合成和性质[J].中国稀土学报, 1986 .4(2): 9-13.
    [51]王泳,徐爱民等.杂多酸型催化剂的性质及研究进展[J].齐鲁石油化工, 1999, 27(2): 131-134.
    [52]刘术侠,王恩波. 13-钒镍(锰)杂多酸稀土盐的合成及其镨盐抗肿瘤活性的研究[J] .化学学报, 1996, 54: 673.
    [53]刘术侠,王恩波,曾毅等. Keggin结构钨磷酸稀土盐杂多酸盐的合成及抗艾滋病毒(HIV-I)活性的研究[J].高等学校化学学报, 1996, 17(18):11.
    [54]许林,胡长文,王恩波.杂多酸型催化剂的研究进展[J],石油化工, 1997, 26(9): 632-635.
    [55] Neumann R, Dror I. Oxidative Dehydrogenation of 4-Vinyl cyclo-hexene to Styrene Catalyzed by PMo10V2O40 Heteropoly acids [J]. Appl Catal A, 1998, 172: 67-72.
    [56]王建坤,杨锐.钼钒磷杂多酸催化氧化饱和烃[J].北华大学学报(自然科学版), 2002, 3 (3): 199-201.
    [57]毛萱,段元骐,王浩等.丙烯选择氧化制丙烯酸杂多酸催化剂的探索[J].分子催化, 2000, 14(5): 384-387.
    [58]黄世煜,丁云杰,张连中等.乙烯直接氧化制乙酸的研究I.Pd、Ru/HPA/SiO2双金属催化剂的催化性能[J].催化学报, 2001, 26 (2): 579-581.
    [59]蔡铁军,陈亚中,彭振山等. M-Na-P-Mo-V/SO2系列催化剂对异丁烯氧化反应的催化性能[J].催化学报, 2002, 23(3): 285-288.
    [60]单玉华,邬国英,鱼蓉等.反应萃取法合成戊二醛中H3PMoxW12O 40的催化作用[J].分子催化, 1999, l3(1): 54-58.
    [61]李明华,纪明慧,林海强等.过氧杂多化合物催化环己烯氧化合成己二酸[J].石油化工, 2003, 32(5): 374-377.
    [62]余雅琴,李小晶,林深等.镧钼钒磷杂多配合物催化乙苯选择性氧化制苯乙酮[J].化学研究与应用, 2000, l2(6): 654-657.
    [63]王海英,王晓丹,姜恒等.杂多酸催化下笨甲醇氧化合成苯甲醛反应研究[J].科研开发, 2002, 10 (3): 7-9.
    [64]韩伟,龚剑,杂多酸催化制备丙三醇的研究[J].吉林化工学院学报, 1995, 12 (3): l6-l8.
    [65]于剑锋,杨字,吴通好. Dawson结构钼钒磷杂多化合物对苯酚过氧化氢羟化作用的研究[J].高等学校化学学报, 1996,17:126.
    [66]钱东,张敏,王开毅.杂多酸固载催化剂催化氧化合成2,3,5--三甲基苯醌[J].合成化学, 1998, 6 (2): 111-112.
    [67]陈春生.异丁醛一步氧化制甲基丙烯酸的技术开发[J].化工设计, 1994, l: 40-44.
    [68]马荣华,刘春涛,梁敏.杂多配合物异构体在马来酸环氧化反应中的催化活性[J].合成化学, 2002, 10(3): 277-280.
    [69] Tsigdinos G A. Molybdovanadophosphoric acid and their salts[J]. Inorg Chem, 1968, 7(03): 437-441
    [70]李铭岫,刘景福,王恩波等.电解酸化法合成钼磷杂多酸[J].东北师范大学学报. 1985, 3: 47-54.
    [71]刘慧,张晨凯.负载型钼-钒-磷杂多酸的制备及应用[J].福州大学学报, 2000, 28 (4): 74-77.
    [72]余新武,许春平.固载杂多酸盐催化剂的制备与性能研究[J].化学研究, 2001, 12(2):25.
    [73]赵忠奎,李宗石,王桂茹等.杂多酸催化剂及其在精细化学品合成中的应用[J].化学进展, 2004, 16(4): 624.
    [74]王恩波.多酸化学导论[M].北京:化学工业出版社, 1998-4-1: 22.
    [75]吴通好,杨洪茂,王国甲.叔丁醇在H5PmoV2O40/SiO2催化剂上吸附的红外光谱研究[J].高等学校化学学报, 1985, 6(11): 1025-1029.
    [76]韩秀文,陈杨英,包信和等.一种均相催化剂的回收方法[P].中国专利: 1526707A, 2004-09-08.
    [77] A Zecchina, S Bordiga , C Lamberti.Structural characterization of Ti centres in Ti-silicalite and reaction mechanisms in cyclohexanone ammoximation[J]. Catal. Today, 1996, 32: 105.
    [78] L Dal Pozzo, G Fornasari, T Monti. TS-1 catalytic mechanism in cyclohexanone oxime production[J]. Catal. Commun., 2002, 3: 369-375.
    [79] N.Mizuno, Tetsuji Watanabe, Hiroo Mori etal. Surface-type and bulk-type(II) catalysis in catalytic oxidations over 12-molybdophosphoric acid and its alkali salts[J]. J. Catal., 1990, 123(1): 157-163.
    [80] Craig L., HillChristina M., Prosser-McCart . Homogeneous catalysis by transition metal oxygen anion clusters[J] . Coord. Chem, Rev. 1995, 143, 407-455.
    [81]伊万·科热夫尼科夫著唐培堃李祥高王世荣译.精细化学品的催化合成:多酸化合物及催化[M].北京:化学工业出版社, 2005-4-1:37
    [82]吴越,叶兴凯,杨向光等.杂多酸的固载化-关于制备负载型酸催化剂的一般原理. 分子催化, 1996, 10(4): 299-313.
    [83]陈尊宇,吴正兴.固载型杂多酸催化剂研究新进展.应用化工, 2006, 35(10): 802-804.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700