双特异分子探针技术的建立及对十二种常见赤潮藻的检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤潮的发生、发展和消亡等是当前海洋生态学研究的热点之一,而对赤潮藻种类和数量的分析是其中的基础内容。除了传统的显微镜观察外,越来越多的新兴技术正被引入这一领域并发挥着越来越重要的作用。
     本研究利用S1酶能够保护完全匹配的双链核酸的性质,将分子生物学中的酶保护分析技术和夹心杂交技术融合在一起,创立了双特异分子探针技术以实现对赤潮藻的检测。该技术将酶保护分析探针(NPA探针)与细胞裂解液中的rRNA进行杂交,再用S1酶处理(降解)不匹配的双链杂合体和单链分子,然后采用微孔板夹心杂交技术测定保留下来的与rRNA分子等量匹配的NPA探针及其数量,从而实现对微藻种类和数量的鉴定。本研究还从细胞破碎程度、酶保护分析和夹心杂交三个方面对诸多影响因素进行条件优化,最终建立了针对裸甲藻、红色赤潮藻、海洋原甲藻、微小原甲藻、东海原甲藻、链状亚历山大藻、锥状斯氏藻、旋链角毛藻、中肋骨条藻、尖刺拟菱形藻、圆海链藻和球形棕囊藻等7种甲藻、4种硅藻和1种定鞭藻的相关检测曲线和方法,获得了良好的特异性和灵敏度。将双特异分子探针技术应用于模拟样品和现场样品分析,取得了理想的检测结果。
     双特异分子探针技术避免了核酸定量检测技术一般需要的核酸纯化步骤,将目标生物的rRNA转化为等量的互补DNA探针,既解决了RNA不稳定易于降解的难题,又利用S1酶能够降解单链DNA、RNA或不完全匹配的双链核酸分子的特性,将探针的专一性从DNA探针与藻类的RNA杂交一个层次,提高到对杂交真实性进行校验的第二个层次(也就是说特异结合的探针被保留,其它探针被分解),从根本上解决了探针种属特异性的难题。本技术方法简单,条件易于控制,不但满足了微藻分析技术鉴定到种并且定量的要求,而且降低了关键探针的设计难度,使研发针对多种微藻并行分析的技术成为可能,为海洋微藻、特别是赤潮藻的快速、准确、连续大面积观测研究开辟了一条新路。
It is one of the research focuses for marine ecology that the emergence, development and vanishment of harmful algae blooms (HABs) at present. Among them, qualitative and quantitative detection for HAB species is the basic task. Besides traditional microscopy technology, more and more new technologies are introduced into this field. In this study, combining traditional S1 enzyme analysis with sandwich hybridization, sandwich hybridization integrated with nuclease protection assay (NPA-SH) was developed. The assay consists of three steps: firstly, cell-derived rRNA sample was hybridized with the nuclease-protection-assay probe (NPA probe) and subjected to digestion with S1 nuclease to clear all mismatched probes and preserve perfectly matched probes stoichiometrically; secondly, the remaining NPA probes were sandwich hybridized with the corresponding capture DNA probes immobilized on a microplate and then the corresponding signal probes were hybridized with the NPA probes; finally, the probe‘sandwich’was quantified with enzyme-mediated color reaction. The signal intensity correlated to the abundance of the target species in the original samples. On the basis of feasibility, this method was optimized from cells splitting, nuclease protection assay and sandwich hybridization. Finally, twelve species-specific NPA probes were respectively designed, the standard curves for each alga, Gymnodinium sp., Akashiwo sanguinea, Prorocentrum micans, Prorocentrum minimum, Prorocentrum donghaiense, Alexandrium catenella, Scrippsiella trochoidea, Chaetoceros curvisetus, Skeletonema costatum, Pseudo-nitzschia pungens, Thalassiosira rotula and Phaeocystis globosa, were established and the equations were deducted. Good specificity and sensitivity had achieved. Moreover, there were good results when cultured samples and field ones were analyzed with this method.
     NPA-SH avoided complicated pre-treatments of purification of nucleic acid, transformed the targeted rRNA into the complemental DNA probes equally. This method solved the problem of RNA easy to degrade and upgraded the probe specificity from DNA probes hybridizing with RNA of microalgae to check reality of hybridization, using the ability of S1 nuclease, which degrades single-stranded nucleic acids to yield 5' phosphoryl mono or oligonucleotides to leave double stranded DNA, RNA and DNA/RNA hybrids intact (That is to say, the specific probes were kept and the others
引文
1. Adrianna Ianora, Antonio Miralto,et al. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature, 2004, 429:403-407.
    2. Amann R, Ludwig W. Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiology Reviews, 2000, 24(5): 553-553.
    3. Amann R I, Snaidr J C, Wagner M, et a1. In situ visualization of high genetic diversity in a natural microbial community. Journal of Bacteriology, 1996, 178:3496-3500.
    4. Amann R I, Krumholz L, Stahl D A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. Journal of Bacteriology, 1990, 172:762-770.
    5. Angelika Preisfeld, Silke Berger, Ingo Busse, et al. Phylogenetic analysis of various euglenoid taxa (euglenozoa) based on 18S rDNA sequence data. Journal of Phycology, 2000, 36:220-226.
    6. Asai R, Nakanishi K, Nakamura C, et al. A polymerase chain reaction-based ribosomal DNA detection technique using a surface plasmon resonance detector for a red tide causing microalga, Alexandrium affine. Phycological Research, 2003, 51(2): 118-125.
    7. Ban S, Burns C, Castel J. The paradox of diatom-copepod interactions. Marine Ecology Process Series, 1997, 157: 287-293.
    8. Bates S S, Scholin C A, Ferguson M, et al. Application of ribosomal RNA-targeted probes to detect Pseudo-nitzschia multiseries and P. pungens in Atlantic Canadian waters. Canandian Techechnical Reports of Fisheries and Aquatic Sciences, 1999 (2261): 63-67.
    9. Becker A, Meister A, Wilhelm C. Flow cytometric discrimination of various phycobilin-containing phytoplankton groups in a hypertrophic reservoir. Cytometry, 2002, 48(1): 45-57.
    10. Biegala I C, Not F, Vaulot D. Quantitative assessment of picoeukaryotes in the natural environment by using taxon-specific oligonucleotide probes in association with tyramide signal amplification-fluorescence in situ hybridization and flow cytometry. Applied and Environmental Microbiology, 2003, 69(9): 5519-5529.
    11. Biegala I, Kennaway G, Alverca E, et al. Identification of bacteria associated with dinoflagellates(Alexandrium sp) using TSA-FISH (Tyramide signal amplification-fluorescent in situ hybridization) and confocal microscopy. Journal of Phycology, 2002, 38: 404-411.
    12. Bowers H A, Tengs T, Glasgow B, et al. Development of real-time PCR assays for rapid detection of Pfiesteria piscicida and related dinoflagellates. Applied and Environmental Microbiology, 2000, 66(11): 4641-4648.
    13. Brinkmeyer R, Rappe M, Gallacher S. Development of clade- (Roseobacter and Alteromonas) and taxon-specific oligonucleotide probes to study interactions between toxic dinoflagellates and their associated bacteria. European Journal of Phycology, 2000, 35: 315-329.
    14. Brotas V, Plante-Cuny M R. Identification and quantification of chlorophyⅡ and carotenoid pigments in marine sediments: A protocol for HPLC analysis. Oceanographic Acta, 1996, 19(6): 623-634.
    15. Brotas V, Plante-Cuny M R. The use of HPLC pigment analysis to study microphytobenthos communities. Acta Oecologica, 2003, 24(1): 109-115.
    16. Buttino I, Miralto A, Ianora A, Romano G,S A Poulet. Water-soluble extracts of the diatom Thalassiosira rotula induce aberrations in embryonic tubulin organisation of sea urchin Paracentrotus lividus. Marine Biology, 1999, 134: 147-154.
    17. Cai Q S, Li R X, Zhen Y, et al. Detection of two Prorocentrum species using sandwich hybridization integrated with nuclease protection assay. Harmful Algae, 2006, 5(3): 300-309.
    18. Carmelo R.Tomas [eds.]. Identifying marine phytoplankton. Academic Press, USA, 1997.
    19. Casademont I, Bizet C, Chevrier D, et al. Rapid detection of Campylobacter fetus by polymerase chain reaction combined with non-radioactive hybridization using an oligonucleotide covalently bound to microwells. Molecular Cell Probes, 2000, 14: 233-240.
    20. Daniel Grzebyk, Yoshihiko Sako, Brigitte Berland. Phylogenetic analysis of nine species of Prorocentrum (Dinophyceae) inferred from 18S ribosomal DNA sequences, morphological comparisons, and description of Prorocentrum panamensis, sp.nov. Journal of Phycology, 1998, 34: 1055-1068.
    21. David W O, Charles F D, Kjetill S J, et al. Heteroduplex mobility assay-guided sequence discovery: Elucidation of the small subunit (18S) rDNA sequences of Pfiesteria piscida andrelated dinoflagellates from complex algal culture and environmental sample DNA pools. PNAS, 2000, 97(8): 4303-4308.
    22. Delaporte M, et al. Effect of a mono-specific algal diet on immune functions in two bivalve species--Crassostrea gigas and Ruditapes philippinarum. Journal of Experimental Biology, 2003, 206: 3053-3064.
    23. Dunn A R, Hassell J A. A novel method to map transcripts: evidence for homology between an adenovirus mRNA and discrete multiple regions of the viral genome. Cell, 1977, 12: 23-26.
    24. Fan C, Glibert P M, and Burkholder J M. Characterization of the affinity for nitrogen, uptake kinetics, and environmental relationships for Prorocentrum minimum in natural blooms and laboratory cultures. Harmful Algae, 2003, 2(4): 283-299.
    25. Fukuyo, Y, et al. Red Tide Organisms in Japan. An Illustrated Taxonomic Guide. 1990: Uchida Rokakuho, Co., Ltd., Tokyo. 407.
    26. Galluzzi L, et al. Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a Dinoflagellate). Applied Environmental Microbiology, 2004, 70(2): 1199-1206.
    27. Garver S A, Siegel D A. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: I. Time series from the Sargasso Sea. Journal of Geophysical Research, 1997, 102:18607-18625.
    28. Gibb S W, Cummings D G, Irigoien X, Barlow R G, Mantoura R F C. Phytoplankton pigment chemotaxonomy of the northeastern Atlantic, Deep-Sea Research II, 2001, 48,795-823.
    29. Groben R, Doucette G J, Kopp M, et al. 16S rRNA targeted probes for the identification of bacterial strains isolated from cultures of the toxic dinoflagellate Alexandrium tamarense. Microbial Ecology, 2000, 39: 186-196.
    30. Guillard R R L, Ryther J H. Studies of marine Planktonic diatoms. I. Cyclotellanana Hustedt and Detonula confervacea (Cleve). Canadian Journal of Microbiology, 1962, 8: 229-239.
    31. Hallegraeff G M, Anderson D M, Cembella A D. Manual on Harmful Marine Microalgae IOC Manuals and Guides No. 33. Paris: UNESCO Publishing, 1995.
    32. Hutton J R and J G Wetmur. Activity of endonuclease S1 in denaturing solvents: dimethysulfoxide, dimethylformamide, formamide and formaldehyde. Biochemical & Biophysical Research Communications, 1975, 66(3): 942-948.
    33. Jari R, Kim B B, Juhani L, et al. Sandwich hybridization assay for quantitative detection of yeast RNAs in crude cell lysates. Microb Cell Fact, 2003, 2(1): 4-12.
    34. Jeffrey, S. W. and N. A. Welschmeyer. Spectrophotometric and fluorometric equations in common use in oceanography. In: Jeffrey, S. W. et al. (Ed.) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO, Paris: 1997, 661-682.
    35. Jonker R R, Meulemans J T, Dubelaar G B J et al. Flow cytometry: a powerful tool in analysis of biomass distributions in phytoplankton. Water Science and Technology, 1995, 32(4): 177-182.
    36. Juan F S, Taylor F J R, Patrick J K, et al. Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. Journal of Molecular Evolution, 2001, 53:204-213.
    37. Keijiro N, Isao K, Shingo H, et al. Detection of the red tide-causing plankton Chattonella marina using a piezoelectric immunosensor. Analytica Chimica Acta, 1996, 325: 73-80.
    38. Koehne, B., G. Elli, R. C. Jennings, et al. Spectroscopic and molecular characterization of a long-wave length absorbing antenna of Ostreobium sp.. Biochimica et Biophysica Acta / Bioenergetics, 1999, 1412: 94-107.
    39. Kwan Wong C, Kim Wong C. HPLC pigment analysis of marine phytoplankton during a red tide occurrence in Tolo Harbour, Hong Kong. Chemosphere, 2003, 52(9): 1633-1640.
    40. Lange M, Guillou L, Vaulot D, et al. Identification of the class Prymnesiophyceae and the genus Phaeocystis with ribosomal RNA-targeted nucleic acid probes detected by flow cytometry. Journal of Phycology, 1996, 32: 858-868.
    41. Lange M, Medlin L K. Design and testing of ITS probes for distinguishing Phaeocystis species. Protist, 2002, 153(3): 275-282.
    42. Latasa Mikel, Bidigare Robert R, Ondrusek Michael E, et al. HPLC analysis of algal pigments: a comparison exercise among laboratories and recommendations for improved analytical performance. Marine Chemistry, 1996, 51(4): 315-324.
    43. Li W K, Dickie P M. Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry. Cytometry, 2001, 44(3): 236-246.
    44. Lin S J, et al. Development of an immunofluorescence technique for detecting Pfiesteria piscicida. Harmful Algae, 2003. 2(3): 223-231.
    45. Lu S and Hodgkiss I J. Harmful algal bloom causative collected from Hong Kong waters. Hydrobiologia, 2004. 512(1-3): 231-238.
    46. Luckenbach M W, et al. Effects of two bloom- forming dinoflagellates, Prorocentrum minimum and Gyrodinium uncatenum, on the growth and survival of the Eastern oyster, Crassostrea virginica (Gmelin 1791). Journal of Shellfish Research, 1993. 12(2): 411-415.
    47. Marie D., et al. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR green I. Applied Environmental Microbiology, 1997. 63(1): 186-193.
    48. Medlin L K, Elwood H J, Stickel S, Sogin M L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 1988,71:491-499.
    49. Medlin L K, Groben R, Valentin K. Molecular tools in the study of marine microbial diversity, Biotechnology. In: Doelle H W. Encyclopedia of Life Support Systems (EOLSS): Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK, 2002.
    50. Meyer-Harms B, Von Bodungen B. Taxon-specific ingestion rates of natural phytoplankton by calanoid copepods in an estuarine environment (Pomeranian Bight, Baltic Sea) determined by cell counts and HPLC analyses of marker pigments. Marine Ecology progress Series, 1997, 153(1-3): 181-190.
    51. Mikulski Christina M, Morton Steve L, Doucette Gregory J. Development and application of LSU rRNA probes for Karenia brevis in the Gulf of Mexico, USA. Harmful Algae, 2005, 4(1): 49-60.
    52. Miller P E, Scholin C A. Identification and enumeration of cultured and wild Pseudo-nitzschia (Bacillariophyceae) using species-specific LSU rRNA-targeted fluorescent probes and filter-based whole cell hybridization. Journal of Phycology, 1998, 34: 371-382.
    53. Miller P E, Scholin C A. Identification of cultured Pseudo-nitzschia (Bacillariophyceae) using species-specific LSU rRNA-targeted fluorescent probes. Journal of Phycology, 1996, 32: 646-655.
    54. Miller P E, Scholin C A. Identification and enumeration of cultured and wild Pseudo-nitzschia (Bacillariophyceae) using species-specific LSU rRNA-targeted fluorescent probes and filter-based whole cell hybridization. Journal of Phycology, 1998, 34:371-382.
    55. Miller P E, Scholin C A. On detection of Pseudo-nitzschia species using rRNA-targeted probes: sample fixation and stability. Journal of Phycology, 2000, 36:238-250.
    56. Miralto A, Barone G, Romano G, et al. The insidious effect of diatoms on copepod reproduction.Nature, 1999, 402:173-176.
    57. Nandakumar K et al. Laser impact on marine planktonic diatoms: an experimental study using a flow cytometry system. Biofouling, 2003, 19(2): 133-138.
    58. Okaichi, T. Red tide problems in the Seto Inland Sea, Japan. In Okaichi, T., D. M. Anderson & T. Nemoto (Ed.) Red tides, biology, environmental science, and toxicology. Elsevier, 1989, 137-142.
    59. Parsons M L, C Scholin, G Doucette, et al. Pseudo-nitzschia species (Bacillariophyceae) in Louisiana coastal waters: molecular probe field trials, genetic variability and domoic acid analyses. Journal of Phycology, 1999, 35: 1368-1378.
    60. Penna A and M Magnani. Identification of Alexandrium (Dinophyceae) species using PCR and rDNA-targeted probes. Journal of Phycology, 1999, 35(3): 615-628.
    61. Penna A and M Magnani. A PCR method immunoassay for the detection of Alexandrium (Dinophyceae) species. Journal of Phycology, 2000, 36(6): 1183-1199.
    62. Ranki M, Palva A, Virtanen M, et al. Sandwich hybridization as a convenient method for detection of nucleic acid in crude samples. Gene, 1983, 21: 77–85.
    63. Rhodes L, Scholin C, Garthwaite I. Pseudo-nitzschia in New Zealand and the role of DNA probes and immunoassays in refining marine biotoxin monitorring programmes. Natural Toxins, 1998, 6: 105-111.
    64. Scholin C A, Buck K R, Britschgi T, et al. Identification of Pseudo-nitzschia australis (Bacillariophyceae) using rRNA-targeted probes in whole cell and sandwich hybridization formats. Phycologia, 1996a, 35: 190-197.
    65. Scholin C A, Gulland F, Doucette G J, et al. Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature, 2000, 403: 80-84.
    66. Scholin C A, Maission G, Mellinger E, et al. Proceedings of the Ocean Community Conference on Harmful Algae Technology Society. Baltimore: Baltimore Convention Center, 1998b. 1: 367-370.
    67. Scholin C A, Marin R, Miller P E, et al. DNA probes and a receptor-binding assay for detection of Pseudo-nitzschia (Bacillariophyceae) species and domoic acid activity in cultured and natural samples. Journal of Phycology, 1999, 35: 1356-1367.
    68. Scholin C A, Marin R, Miller P E, et al. Application of DNA probes and a receptor binding assayfor detection of Pseudo-nitzschia (Bacillariophyceae) species and domoic acid activity in cultured and natural samples. Journal of Phycology, 1999, 35: 1356-1367.
    69. Scholin C A, Marin R, Miller P E, et al. DNA probe-based detection of harmful algal species using Pseudo-nitzschia species as models. In Oshima Y. & Y. Fukuyo (Eds.) Harmful and Toxic Algal Blooms, Intergovernmental Oceanographic Commission of UNESCO, Paris, 1996b: 439-422.
    70. Scholin C A, Miller P E, Buck K, et al. Detection and quantification of Pseudo-nitzschia australis in cultured and natural populations using LSU rRNA-targeted probes. Limnology and Oceanography, 1997, 42: 1265-1272.
    71. Sieracki C K, Sieracki M E, Yentsch C S. An imaging-in-flow system for automated analysis of marine microplankton. Marine Ecology Progress Series, 1998, 168: 285-296.
    72. Simon N, Campbell L, Ornolfsdottir E, et al. Oligonucleotide probes for the identification of three algal groups by dot blot and fluorescent whole-cell hybridization. Journal of Eukaryotic Microbiology, 2000, 47(1): 76-84.
    73. Simon N, Brenner J, Edvardsen B. The identification of Chrysochromulina and Prymnesium species (Haptophyta, Prymnesiophyceae) using fluorescent or chemiluminescent oligonucleotide probes: a means for improving studies on toxic algae. European Journal of Phycology, 1997, 32: 393-401.
    74. Sournia A. Red tide and marine phytoplankton of the world ocean: an inquiry into biodiversity. In: Lassus P, Arzul G, Denn E et al. (eds). Harmful Marine Algal Bloom. London, New York, Paris: Technique & Documentation Lavoisier/Andover, England UK: Intercept Ltd, 1995, 103-112.
    75. Stauber J L, Franklin N M, Adams M S. Applications of flow cytometry to ecotoxicity testing using microalgae. Trends Biotechnol, 2002. 20(4): 141-143.
    76. Stubner S. Enumeration of 16SrDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen? detection. Journal of Microbiological Methods, 2002, 50(2): 155-164.
    77. Tengs T, Bowers H A, Ziman A P, et al. Genetic polymorphism in Gymnodinium galatheanum chloroplast DNA sequences and development of a molecular detection assay. Molecular Ecology, 2001, 10: 515-523.
    78. Tyrrell J V, Berguist P R, et al. Detection and enumeration of Heterosigma akashiwo andFibrocapsa japonica (Raphidophyceae) using rRNA-targeted oligonucleotide probes. Phycologia, 2001, 40(5): 457-467.
    79. Tyrrell J V, Connell L B, Scholin C A. Monitoring for Heterosigma akashiwo using a sandwich hybridization assay. Harmful Algae, 2002, 1: 205-214.
    80. Umek R M, Lin S W, Vielmetter J, et al. Electronic detection of nucleic acids: a versatile platform for molecular diagnostics. Journal of Molecular Diagnostics, 2001, 3:74-84.
    81. Venugopalan C, Kapoor H C. Single step isolation of plant RNA. Phytochemistry, 1997, 46: 1303-1305.
    82. Vrieling E G, Anderson D M.Immunofluorescence in phytoplankton research: applications and potential. Journal of Phycology, 1996, 32: 1-16.
    83. Wiegand R C, G N Godson, C M Radding. Specificity of the S1 nuclease from Aspergillus oryzae. Journal of Biological Chemistry, 1975, 250(22): 8848-8855.
    84. Wright S W, Jeffrey S W, Mantoura R F C, et al. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress Series, 1991, 77:183-196.
    85. Wright S W, Van Den Enden R L. Phytoplankton community structure and stocks in the East Antarctic marginal ice zone (BROKE survey, January-March 1996) determined by CHEMTAX analysis of HPLC pigment signatures. Deep-Sea Research Ⅱ, 2000, 47:2363-2400.
    86. Xin Z Y, Yu Z G et al. Identification and quantification of the toxic dinoflagellate Gymnodinium sp. with competitive enzyme-linked immunosorbent assay (cELISA). Harmful Algae, 2004, 4(2): 297-307.
    87. Zammatteo Nathalie, Alexandre Isabelle, Ernest Isabelle et al. Comparison between microwell and bead supports for the detection of human cytomegalovirus amplicons by sandwich hybridization. Analytical Biochemistry, 1997, 253(2): 180-189.
    88. Zhang H and S Lin. Detection and quantification of Pfiesteria piscicida by using the mitochondrial cytochrome b gene. Applied Environmental Microbiology, 2002, 68(2): 989-994.
    89. Zhu J, Wang J, and Wu H. Observation and analysis of the diluted water and red tide in the sea off the Changjiang River mouth in middle and late June 2003. Chinese Science Bulletin, 2005, 50(3): 240-247.
    90. Zou J, Zhou M J, Zhang Ch. Ecological features of toxic Nitzschia pungens Grunow in Chinesecoastal waters. In: Smayda T. J. and Shimizu Y. (eds.) Toxic phytoplankton blooms in the sea. Elsevier Sci. Publ. B. V., Amsterdam, 1993, 651-657.
    91. 2004 年东莞水产品质量与海洋监测简报, 2004.1.8.
    92. 2005 年中国海洋环境质量公报.国家海洋局, 2006.1.9.
    93. 陈菊芳,徐宁,江天久等. 中国赤潮新记录种─球形棕囊藻(Phaeocystis globosa). 暨南大学学报(自然科学与医学版), 1999, 20(3):124-129.
    94. 杜佳垠. 我国黄海海域首次出现链状亚历山大藻赤潮. 中国渔业报, 2004, 11.23.
    95. 苟万里. rDNA序列在几种浮游植物的分类及中肋骨条藻定量检测中的应用. [博士论文], 中国海洋大学, 2003.
    96. 郭皓等. 中国近海赤潮生物图谱. 北京: 海洋出版社, 2004.
    97. 韩笑天,邹景忠,张永山. 胶州湾赤潮生物种类及其生态分布特征.海洋科学,2004, 28(2): 49-54.
    98. 何闪英,程刚,苟万里等. 运用荧光定量 PCR 技术检测中肋骨条藻的研究.高技术通讯,2006, 16(3): 313-318.
    99. 霍文毅,俞志明,邹景忠等. 胶州湾中肋骨条藻赤潮与环境因子的关系.海洋与湖沼,2001, 32(3):311-318.
    100. 李淑冰,李惠珍,许旭萍. 贝毒素的研究现状及产生源探究. 福建水产, 2000, 1: 70-74.
    101. 梁君荣,高杨,高亚辉等. 全细胞杂交在三种赤潮微藻检测中的应用. 高技术通讯, 2005, 15(12):84-89.
    102. 刘东艳,孙军,陈洪涛等. 2001 年夏季胶州湾浮游植物群落结构的特征.青岛海洋大学学报, 2003, 33(3):366-374.
    103. 刘慧,方建光,董双林等. 莱州湾和桑沟湾养殖海区浮游植物的研究Ⅱ.海洋水产研究,2003, 24(3):20-28.
    104. 刘仁沿,马德毅,梁玉波. 赤潮甲藻毒素麻痹性贝毒的生物合成研究进展.海洋环境科学, 2004,23(4):71-75.
    105. 刘堂友,匡定波,尹球. 藻类光谱实验及其光谱定量信息提取研究. 红外与毫米波学报,2002,21(3):213-217.
    106. 陆斗定,齐雨藻, Jeanette Goebel, 等. 东海原甲藻修订及相关原甲藻的分类学比较. 应用生态学报, 2003, 14(7):1060-1064.
    107. 卢圣栋等.现代分子生物学实验技术.北京: 中国协和医科大学出版社,1999.
    108. 米铁柱,甄毓,于志刚等. 海洋浮游藻类检测技术发展与展望.高技术通讯,2003,13(3,增刊):96-100.
    109. 潘德炉,毛天明,李淑菁. 卫星遥感监测我国沿海水色环境的研究. 第四纪研究, 2000,20(3): 240-246.
    110. 齐雨藻等.中国沿海赤潮.北京: 科学出版社, 2003.
    111. 萨姆布鲁克 J,弗里奇 E F, 曼尼阿蒂斯 T,等. 分子克隆实验指南.北京: 科学出版社,2002.374-380.
    112. 王金辉.长江口邻近水域的赤潮生物.海洋环境科学,2002,21(2):37-41.
    113. 王金辉,秦玉涛,李志恩等. 南麂列岛自然保护区海域红色裸甲藻赤潮及其成因分析.海洋科学,2005,29(2):32-36.
    114. 卫玮,肖雯. 藻毒素的类型、危害和防治. 生物学通报, 2004,39(8):21-23.
    115. 吴玉霖,周成旭,张永山等. 烟台四十里湾海域红色裸甲藻赤潮发展过程及其成因. 海洋与湖沼,2001,32(2):159-167.
    116. 肖咏之,王朝晖,陈菊芳等. 广东大亚湾甲藻孢囊及其与锥状斯氏藻赤潮的关系. 水生生物学报,2003,27(4):372-377.
    117. 齐雨藻,徐宁等. 中国赤潮研究的新进展—球形棕囊藻赤潮及其产硫的研究. 中国基础科学,2002,21(4):23-28.
    118. 颜天,陈洋,谭志军等. 东海大规模赤潮对海洋浮游生态系统结构的影响. 毒理学杂志,2005,19(3,增刊):314.
    119. 姚鹏,于志刚,米铁柱. 海洋浮游藻类的化学分类法.海洋环境科学, 2003, 22(1):75-80.
    120. 张宝玉,王广策,齐雨藻等. 用荧光原位杂交 (FISH)技术鉴定赤潮甲藻的研究. 高技术通讯, 2005,15(11): 101-105.
    121. 张宝玉,王广策,张炎等. 东海原甲藻 (Prorocentrum donghaiense)和海洋原甲藻 APBM (P. micans APBM)的 5.8S rDNA 及其转录间隔区 (ITS)的克隆和序列分析. 海洋与湖沼,2004, 35(3): 264-272.
    122. 张东鹏,黎晓涛,黄远峰等. 深圳沿海浮游植物组成及赤潮发生趋势分析.暨南大学学报(自然科学版), 2001,22(5):122-126.
    123. 邹景忠. 赤潮生物与赤潮灾害研究. 曾呈奎编,中国海洋科学研究及开发. 青岛:青岛出版社, 1992, 675-680.
    124. 邹景忠. 海洋环境科学. 济南:山东教育出版社, 2004, 273-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700