糖皮质激素及其受体前调控基因多态性与胎儿发育的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章正常妊娠孕晚期糖皮质激素与胎儿发育的关系
     目的:研究正常妊娠孕晚期母胎循环糖皮质激素(glucocorticoid,GC)与胎儿出生体重及早、中及晚期B超下描记的胎儿各种人体测量学指标之间的关系。
     方法:随机选取432例正常妊娠为研究对象,用化学发光法测定脐血及母血血清皮质醇浓度,用B超描记早、中及晚期胎儿各种人体测量学指标。
     结果:妊娠时期B超测量时间:晚期:孕267.61±14.1天;中期:孕160.17±16.12天;早期:孕89.95±7.31天。母体血清皮质醇897.46±342.77nmol/L,胎儿血清皮质醇229.67±139.04nmol/L,两者比值为4.97±2.98。两因素相关分析显示母血血清皮质醇与下列B超下胎儿人体测量学指标呈负相关:晚期双顶径(R~2=0.028, p=0.001),晚期头围(R~2=0.045, p<0.001),晚期胸横径(R~2=0.03, p=0.001),晚期腹横径(R~2=0.016, p=0.013),晚期腹围(R~2=0.025, p=0.002)及晚期股骨长(R~2=0.027, p=0.001)。在考虑B超测量时间、孕前孕妇体重指数(body mass index,BMI)、孕妇分娩体重、胎儿性别、皮质醇测量时孕妇子宫收缩状态及皮质醇测量时间为混杂因素的情况下,多因素回归分析显示母血血清皮质醇与下列B超下胎儿人体测量学指标呈负相关:晚期双顶径(R~2=0.512, p=0.009),晚期头围(R~2=0.498, p=0.001),中期双顶径(R~2=0.819, p=0.013),中期小脑横径(R~2=0.76, p=0.014)及早期双顶径(R~2=0.789, p=0.008)。而其他的B超下胎儿人体测量学指标及胎儿出生体重与母血血清皮质醇不相关。胎儿血清皮质醇与B超下胎儿人体测量学指标及胎儿出生体重不相关。
     结论:研究显示正常妊娠生理浓度变化的母血皮质醇与胎儿头部发育呈负相关,而不与胎儿出生体重相关。这一现象提示母血皮质醇可能影响胎儿大脑发育,而这可能与胎儿成年期不良神经内分泌结局有关。
     第二章ABCB1基因多态性与胎儿发育及母胎界面糖皮质激素转运的关系
     第一节ABCB1基因多态性与胎儿发育的关系
     目的:探讨正常妊娠ABCB1基因多态性与胎儿发育的关系。
     方法:用聚合酶链式反应-限制性片段长度多态性(PCR-RFLP)方法检测正常妊娠262例脐血及142例母血ABCB1/C3435T位点基因多态性,B超测量方法同第一章。
     结果:ABCB1/C3435T基因多态性CC、CT和TT基因型频率脐血组分别为32.44%、53.82%和13.74%;母血组分别为35.91%、50.70%和13.38%,两组差异无显著性(P>0.05),两组研究群体的等位基因发生频率均符合Hardy-Weinberg平衡(P>0.05)。母体ABCB1/C3435T基因型与B超下胎儿人体测量学指标及胎儿出生体重不相关。然而胎儿TT型出生体重为3176.39±436.30g,胎儿CC+CT型出生体重为3345.04±404.61g(p=0.022)。经校正分娩孕周、孕前孕妇BMI、孕妇分娩体重及胎儿性别相关混杂因素后,差异仍然显著(p=0.009)。在考虑B超测量时间、孕前孕妇BMI、孕妇分娩体重及胎儿性别,多因素回归分析显示胎儿ABCB1/C3435T基因型与晚期B超下腹横径(R~2=0.538, p=0.010)及腹围(R~2=0.534, p=0.005)呈负相关。
     结论:低出生体重是成人心血管疾病的发病的重要危险因素,胎儿ABCB1/C3435T基因多态性可能是导致其联系得因素之一。ABCB1/C3435T位点TT基因型携带者胎盘P-糖蛋白介导的某种底物由母体向胎儿通过降低,有可能影响到孕晚期胎儿腹部器官的发育,进而导致新生儿出生体重降低。
     第二节ABCB1基因多态性与母胎界面糖皮质激素转运的关系
     目的:探讨正常妊娠ABCB1基因多态性与母胎界面皮质醇转运的关系。
     方法:ABCB1/C3435T基因分型方法同上一节。血清皮质醇测定方法同第一章。
     结果: TT基因型组胎儿血清皮质醇浓度小于CT及CC+CT基因型组,差异具有显著性(p<0.05); TT基因型组母血与脐血血清皮质醇浓度比值大于CT及CC+CT基因型组,差异具有显著性(p<0.05)。多因素回归分析显示,胎儿ABCB1/C3435T基因型与胎儿血清皮质醇浓度呈负相关(R~2=0.399,B=-33.47,p=0.003),与母血与脐血血清皮质醇浓度比值呈正相关(R~2=0.260,B=0.589,p=0.021)。母体ABCB1/C3435T基因多态性与血清皮质醇浓度无相关关系。
     结论:正常妊娠胎儿ABCB1/C3435T基因多态性与母胎界面皮质醇转运相关。
     第三章HSD11B2基因多态性与胎儿发育及母胎界面糖皮质激素代谢的关系
     目的:探讨正常妊娠HSD11B2基因多态性与胎儿发育及母胎界面皮质醇代谢的关系。
     方法:用PCR-毛细管电泳方法检测187对正常妊娠母血及脐血HSD11B2基因1号内含子CA重复序列微卫星多态性。从研究人群随机抽取33例汉族人群,用基因测序方法检测HSD11B2启动子/G-209A、G-194C、G-151A及G-126A基因多态性。血清皮质醇测定方法同第一章。
     结果:本研究中33例汉族人群HSD11B2启动子/G-209A、G-194C、G-151A及G-126A位点均为野生型GG纯合子,未见突变型GA及GC杂合子或者AA及CC纯合子。在考虑分娩孕周、胎儿性别、血清皮质醇测量的时间及血清皮质醇测量时的子宫收缩状态为混杂因素的情况下,多因素回归分析显示脐血HSD11B2基因1号内含子重复序列微卫星多态性(LL组VS SS+SL组)与母血血清皮质醇呈正相关(R~2=0.26,B=96.27, p=0.007),胎儿HSD11B2基因1号内含子CA重复序列越短,母血皮质醇浓度越高。脐血HSD11B2基因1号内含子重复序列微卫星多态性与脐血皮质醇,母血HSD11B2基因1号内含子重复序列微卫星多态性与母血或者脐血皮质醇,以及母血或者脐血HSD11B2基因1号内含子CA重复序列长度与新生儿出生体重及孕晚期B超下胎儿人体测量学指标之间的关系,均未见相关性。
     结论:正常妊娠胎儿HSD11B2基因1号内含子CA重复序列微卫星多态性与母胎界面皮质醇代谢相关。
     第四章正常妊娠孕晚期糖皮质激素与胎盘体视学的关系
     目的:探讨正常妊娠孕晚期母胎循环GC与胎盘绒毛微血管体视学之间的关系。
     方法:随机选择30名未临产且行剖宫产的正常足月妊娠孕妇为研究对象,通过CD34标记胎盘绒毛血管内皮细胞,进行胎盘绒毛间质内微血管体视学研究,用Western-blot方法检测胎盘GC受体前调节蛋白11β-HSD2蛋白及P-糖蛋白表达情况,血清皮质醇测定方法同第一章。
     结果:母体血清皮质醇631.227±176.75nmol/L,胎儿血清皮质醇116.42±41.67nmol/L,两者比值为6.29±3.59。两因素相关性分析及多因素回归分析均显示:正常妊娠胎盘绒毛微血管长度密度(Lv)和体积密度(Vv)及胎盘重量未见与孕晚期母血及脐血皮质醇或者胎盘GC受体前调节蛋白11β-HSD2蛋白及P-糖蛋白表达水平相关。
     结论:正常妊娠生理浓度下孕晚期母胎循环GC对胎盘绒毛微血管体视学指标影响不明显。
Chapter Ⅰ: Relationship between late gestational serum cortisol and fetalgrowth in normal pregnancy
     Objective:To analyze the association between late gestational maternal and fetal serum cortisoland fetal birth weight and ultrasound parameters describing fetal growth done in early, middleand late pregnancy in normal pregnancy.
     Methods:Blood cortisol was quantified at delivery in432mother/child pairs who were normalpregnancy. Differential ultrasound examination of the fetal body was done in early, middle andlate pregnancy.
     Results: Ultrasound examination was done in early (gestational day89.95±7.31), middle(gestational day160.17±16.12) and late pregnancy (gestational day268.89±12.42). Thematernal cortisol was897.46±342.77nmol/L, the newborn’s cortisol was229.67±139.04nmol/L and the ratio between maternal blood and newborn’s blood was4.97±2.98. Bivariatecorrelation analyses showed that maternal cortisol shows a significantly negative correlation withthe following ultrasound parameters: late biparietal diameter (R~2=0.028, p=0.001), late headcircumference (R~2=0.045, p<0.001), late pectoral diameter (R~2=0.03, p=0.001), late abdominaldiameter (R~2=0.016, p=0.013), late abdominal circumference (R~2=0.025, p=0.002) and late femurlength (R~2=0.027, p=0.001). Multivariable regression analysis, considering timing of theultrasound examination, the child's sex, maternal BMI, maternal age, maternal body weight atdelivery, the timing of cortisol measurement and maternal uterine contractions states, revealedthat maternal serum cortisol was significantly negative correlated with ultrasound parametersdescribing the fetal brain: late biparietal diameter (R~2=0.512, p=0.009), late head circumference(R~2=0.498, p=0.001), middle biparietal diameter (R~2=0.819, p=0.013), middle cerebellum transverse diameter(R~2=0.76, p=0.014) and early biparietal diameter(R~2=0.819, p=0.013). Thesame analysis revealed that birth weight as well as other ultrasound parameters such asabdominal circumference and femur length were not correlated to maternal cortisol levels ornewborn’s cortisol.
     Conclusions: Our study demonstrated that maternal cortisol secretion within physiologicalranges may be inversely correlated to fetal brain growth but not to birth weight. It remains to bedemonstrated weather maternal cortisol secretion negatively influencing fetal brain growthtranslates to adverse neurological outcomes in later life.
     Chapter Ⅱ:Relationship between ABCB1polymorphism and fetal growthand the cortisol transportation in maternofetal interface
     Part Ⅰ: Relationship between ABCB1polymorphism and fetal growth
     Objective:To explore the relationship between ABCB1polymorphisms and fetal growth duringnormal pregnancy.
     Methods:The ABCB1/C3435T genotype was examined in262fetal and142maternal bloodsamples during normal pregnancy by polymerase chain reaction-restriction fragment lengthpolymorphism(PCR-RFLP). Fetal growth was assessed by differential ultrasound examinationof the fetal body prior to birth and by measuring birth weight.
     Results: The frequency of the gene polymorphisms of ABCB1/C3435T: In the fetal group, thefrequency of CC, CT, TT genotype were32.44%,53.82%,13.74%, respectively, and in thematernal group, were35.91%,50.70%,13.38%, respectively. There was no statistic differencebetween the two groups (P>0.05). All allele frequencies of the two research groups were foundto be in Hardy–Weinberg equilibrium(P>0.05).The maternal ABCB1/C3435T polymorphismshowed even no trend for an association with birth weight or any ultrasound parameterdescribing late gestational fetal body shape. Genotyping the newborns, however, demonstratedthat newborns carrying two copies of the T allele had a birth weight of3176.39g, whereas CTand CC newborns had a birth weight of3345.04g (p=0.022). Adjusting for gestational age atdelivery, child's sex, maternal BMI, maternal age and body weight at delivery confirmed thisfinding (p=0.009). Considering gestational day of late ultrasound examination, gestational ageat delivery, child's sex, maternal BMI, maternal age and maternal body weight at delivery, the fetal ABCB1/C3435T genotype revealed likewise a significant negative correlation withabdominal diameter and abdominal circumference (R~2=0.538, p=0.010and R~2=0.534, p=0.005,respectively).
     Conclusions: Low birth weight maybe a risk factor for cardiovascular diseases in later life. Thefetal ABCB1/C3435T gene polymorphism may contribute to this risk. Since P-glycoproteincontrols transport of various biological agents, we suggest that P-glycoprotein is involved in thetransport of biological agents to the fetus that are important for normal fetal growth.
     Part Ⅱ: Relationship between ABCB1polymorphism and the cortisoltransportation in maternofetal interfaceObjective: To explore the relationship between ABCB1polymorphisms and the cortisoltransportation in maternofetal interface during normal pregnancy.
     Methods: The ABCB1/C3435T genotype was examined with the same method part I. Bloodserum cortisol levels were measured with the same method as chapter I.
     Results: The fetal blood serum cortisol in the TT genotype group was significantly lower thanthose in the CT and CC+CT genotype groups(p<0.05); The blood serum maternal/fetal cortisolratio in the TT genotype group was significantly higher than those in the CT and CC+CTgenotype group (p<0.05). Multivariable regression analyses, considering gestational age at delivery,the child's sex, the timing of cortisol measurement and maternal uterine contractions states, showed thatthe fetal ABCB1/C3435T genotype revealed a significantly negative correlation with fetalblood serum cortisol (R~2=0.399,B=-33.47,p=0.003) and a positive correlation with blood serummaternal/fetal cortisol ratio (R~2=0.260,B=0.589,p=0.021).The maternal ABCB1/C3435Tpolymorphism assessed by comparable models showed no significant association with theblood serum cortisol level.
     Conclusions: The fetal ABCB1/C3435T polymorphism is related to the cortisol transportationin maternofetal interface during normal pregnancy.
     Chapter Ⅲ:Relationship between HSD11B2polymorphism and fetal growthand the cortisol metabolism in maternofetal interface
     Objective: To observe the relationship between HSD11B2polymorphism and the cortisolmetobolism in maternofetal interface and fetal growth during normal pregnancy.
     Methods: The first intron of HSD11B2(CA)nmicrosatellite polymorphism was at detected in187mother/child pairs during normal pregnancy by PCR-capillary electrophoresis. TheHSD11B2promoter/G-209A,G-194C,G-151A and G-126A genotype were examined in33Chinese han samples, which were randomly selected from the total study population, by genesequencing. Blood serum cortisol levels were measured with the same method as chapter I.
     Results: All of the HSD11B2promoter/G-209A、G-194C、G-151A and G-126A genotype wereGG, none of these sites were GC,CC,GA or AA in33Chinese han population. Multivariableregression analysis, considering gestational age at delivery, the child's sex, the timing of cortisolmeasurement and maternal uterine contractions states, showed that the fetal HSD11B2(CA)nmicrosatellite polymorphism(LL group VS SS+SL group) revealed a positive correlation withmaternal serum cortisol(R~2=0.26,B=96.27, p=0.007). Assessed by comparable models, none ofthe significant relationships between the fetal HSD11B2(CA)nmicrosatellite polymorphismand fetal serum cortisol, between maternal HSD11B2(CA)nmicrosatellite polymorphism andfetal or maternal serum cortisol, between maternal or fetal HSD11B2(CA)nmicrosatellitepolymorphism and any of the late pregnancy ultrasound measurements or birth weight werefounded.
     Conclusions: The fetal HSD11B2(CA)nmicrosatellite polymorphism is related to the cortisolmetabolism in maternofetal interface during normal pregnancy.
     Chapter Ⅳ: Relationship between late gestational serum cortisol andplacental stereology in normal pregnancy
     Objective: To analyze the association between late gestational maternal and fetal serum cortisoland placental stereology.
     Methods:30normal full-term pregnancy women, who were not in labor and their babies weredelivered by cesarean section, were randomly recruited in this study. A sterological study on theplacental villous capillary was evaluated with anti-CD34as the labelled vascular endothelialcells. The protein expressions of11β-HSD2and p-glycoprotein in the placenta were detected bywestern-blotting. Blood serum cortisol levels were measured with the same method as chapter I.
     Results: The maternal cortisol was631.227±176.75nmol/L, the newborn’s cortisol was116.42±41.67nmol/L and the ratio between maternal blood and newborn’s blood was6.29±3.59.Both of bivariatecorrelation analysis and multivariable regression analysis showed that the length density (Lv),the volume density (Vv) and the weight of the placental villous capillary in normal pregnancywere not significantly related to maternal or fetal serum cortisol or the protein expressions of11β-HSD2and p-glycoprotein in the placenta.
     Conclusions: The impact of maternal or fetal serum cortisol in normal full-term pregnancywithin physiological ranges on placental stereological parameters is not significant.
引文
[1] Murphy VE, Smith R, Giles WB, Clifton VL. Endocrine regulation of human fetal growth: the role ofthe mother, placenta, and fetus. Endocr Rev,2006,27(2):141-169.
    [2] Michael AE, Thurston LM, Rae MT. Glucocorticoid metabolism and reproduction: a tale of twoenzymes. Reproduction,2003,126(4):425-441.
    [3] Mark PJ, Waddell BJ. P-glycoprotein restricts access of cortisol and dexamethasone to theglucocorticoid receptor in placental BeWo cells. Endocrinology,2006,147(11):5147-5152.
    [4] Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of therespiratory distress syndrome in premature infants. Pediatrics,1972,50(4):515-525.
    [5] Matthews SG, Owen D, Kalabis G, Banjanin S, Setiawan EB, Dunn EA, Andrews MH. Fetalglucocorticoid exposure and hypothalamo-pituitary-adrenal (HPA) function after birth. Endocr Res,2004,30(4):827-836.
    [6] Bloom SL, Sheffield JS, McIntire DD, Leveno KJ. Antenatal dexamethasone and decreased birth weight.Obstet Gynecol,2001,97(4):485-490.
    [7] Banks BA, Cnaan A, Morgan MA, Parer JT, Merrill JD, Ballard PL, Ballard RA. Multiple courses ofantenatal corticosteroids and outcome of premature neonates. North American Thyrotropin-ReleasingHormone Study Group. Am J Obstet Gynecol,1999,181(3):709-717.
    [8] Dalziel SR, Liang A, Parag V, Rodgers A, Harding JE. Blood pressure at6years of age after prenatalexposure to betamethasone: follow-up results of a randomized, controlled trial. Pediatrics,2004,114(3):e373-377.
    [9] Dessens AB, Haas HS, Koppe JG. Twenty-year follow-up of antenatal corticosteroid treatment.Pediatrics,2000,105(6):E77.
    [10] Dalziel SR, Walker NK, Parag V, Mantell C, Rea HH, Rodgers A, Harding JE. Cardiovascular riskfactors after antenatal exposure to betamethasone:30-year follow-up of a randomised controlled trial. Lancet,2005,365(9474):1856-1862.
    [11] Sloboda DM, Newnham JP, Challis JR. Effects of repeated maternal betamethasone administration ongrowth and hypothalamic-pituitary-adrenal function of the ovine fetus at term. J Endocrinol,2000,165(1):79-91.
    [12] Johnson JW, Mitzner W, Beck JC, London WT, Sly DL, Lee PA, Khouzami VA, Cavalieri RL.Long-term effects of betamethasone on fetal development. Am J Obstet Gynecol,1981,141(8):1053-1064.
    [13] Benediktsson R, Lindsay RS, Noble J, Seckl JR, Edwards CR. Glucocorticoid exposure in utero: newmodel for adult hypertension. Lancet,1993,341(8841):339-341.
    [14] Dean F, Yu C, Lingas RI, Matthews SG. Prenatal glucocorticoid modifies hypothalamo-pituitary-adrenal regulation in prepubertal guinea pigs. Neuroendocrinology,2001,73(3):194-202.
    [15] Field T, Diego M, Hernandez-Reif M, Gil K, Vera Y. Prenatal maternal cortisol, fetal activity andgrowth. Int J Neurosci,2005,115(3):423-429.
    [16] Diego MA, Jones NA, Field T, Hernandez-Reif M, Schanberg S, Kuhn C, Gonzalez-Garcia A.Maternal psychological distress, prenatal cortisol, and fetal weight. Psychosom Med,2006,68(5):747-753.
    [17] Goedhart G, Vrijkotte TG, Roseboom TJ, van der Wal MF, Cuijpers P, Bonsel GJ. Maternal cortisol andoffspring birthweight: results from a large prospective cohort study.Psychoneuroendocrinology,35(5):644-652.
    [18] Jensen E, Wood CE, Keller-Wood M. Chronic alterations in ovine maternal corticosteroid levelsinfluence uterine blood flow and placental and fetal growth. Am J Physiol Regul Integr Comp Physiol,2005,288(1):R54-61.
    [19] Jensen EC, Rochette M, Bennet L, Wood CE, Gunn AJ, Keller-Wood M. Physiological changes inmaternal cortisol do not alter expression of growth-related genes in the ovine placenta. Placenta,2010,31(12):1064-1069.
    [20] Sapolsky RM. Glucocorticoid toxicity in the hippocampus: temporal aspects of neuronal vulnerability.Brain Res,1985,359(1-2):300-305.
    [21] Huang WL, Beazley LD, Quinlivan JA, Evans SF, Newnham JP, Dunlop SA. Effect of corticosteroidson brain growth in fetal sheep. Obstet Gynecol,1999,94(2):213-218.
    [22] French NP, Hagan R, Evans SF, Godfrey M, Newnham JP. Repeated antenatal corticosteroids: size atbirth and subsequent development. Am J Obstet Gynecol,1999,180(1Pt1):114-121.
    [23] LeWinn KZ, Stroud LR, Molnar BE, Ware JH, Koenen KC, Buka SL. Elevated maternal cortisol levelsduring pregnancy are associated with reduced childhood IQ. Int J Epidemiol,2009,38(6):1700-1710.
    [24] Owen D, Andrews MH, Matthews SG. Maternal adversity, glucocorticoids and programming ofneuroendocrine function and behaviour. Neurosci Biobehav Rev,2005,29(2):209-226.
    [25] Krozowski Z Fau-Baker E, Baker E Fau-Obeyesekere V, Obeyesekere V Fau-Callen DF, Callen DF.Localization of the gene for human11beta-hydroxysteroid dehydrogenase type2(HSD11B2) tochromosome band16q22,1995(71(2):124-5.).
    [26] Higgins CF. ABC transporters: physiology, structure and mechanism--an overview. Res Microbiol,2001,152(3-4):205-210.
    [27] Benediktsson R, Calder AA, Edwards CR, Seckl JR. Placental11beta-hydroxysteroid dehydrogenase:a key regulator of fetal glucocorticoid exposure. Clin Endocrinol (Oxf),1997,46(2):161-166.
    [28] Mesiano S, Jaffe RB. Developmental and functional biology of the primate fetal adrenal cortex.Endocr Rev,1997,18(3):378-403.
    [29] Dy J, Guan H, Sampath-Kumar R, Richardson BS, Yang K. Placental11beta-hydroxysteroiddehydrogenase type2is reduced in pregnancies complicated with idiopathic intrauterine growth Restriction:evidence that this is associated with an attenuated ratio of cortisone to cortisol in the umbilical artery.Placenta,2008,29(2):193-200.
    [30] Causevic M, Mohaupt M.11beta-Hydroxysteroid dehydrogenase type2in pregnancy andpreeclampsia. Mol Aspects Med,2007,28(2):220-226.
    [31] Stewart PM, Rogerson FM, Mason JI. Type211beta-hydroxysteroid dehydrogenase messengerribonucleic acid and activity in human placenta and fetal membranes: its relationship to birth weight andputative role in fetal adrenal steroidogenesis. J Clin Endocrinol Metab,1995,80(3):885-890.
    [32] Rogerson FM, Kayes KM, White PC. Variation in placental type211beta-hydroxysteroiddehydrogenase activity is not related to birth weight or placental weight. Mol Cell Endocrinol,1997,128(1-2):103-109.
    [33] Mizutani T, Masuda M, Nakai E, Furumiya K, Togawa H, Nakamura Y, Kawai Y, Nakahira K, ShinkaiS, Takahashi K. Genuine functions of P-glycoprotein (ABCB1). Curr Drug Metab,2008,9(2):167-174.
    [34] Nakamura Y, Ikeda S, Furukawa T, Sumizawa T, Tani A, Akiyama S, Nagata Y. Function ofP-glycoprotein expressed in placenta and mole. Biochem Biophys Res Commun,1997,235(3):849-853.
    [35] Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N, Komano T, Hori R. HumanP-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem,1992,267(34):24248-24252.
    [36] Yates CR, Chang C, Kearbey JD, Yasuda K, Schuetz EG, Miller DD, Dalton JT, Swaan PW. Structuraldeterminants of P-glycoprotein-mediated transport of glucocorticoids. Pharm Res,2003,20(11):1794-1803.
    [37] Hocher B, Slowinski T, Stolze T, Pleschka A, Neumayer HH, Halle H. Association of maternal Gprotein beta3subunit825T allele with low birthweight. Lancet,2000,355(9211):1241-1242.
    [38] Gomes MV, Soares MR, Pasqualim-Neto A, Marcondes CR, Lobo RB, Ramos ES. Associationbetween birth weight, body mass index and IGF2/ApaI polymorphism. Growth Horm IGF Res,2005,15(5):360-362.
    [39] Bertalan R, Patocs A, Vasarhelyi B, Treszl A, Varga I, Szabo E, Tamas J, Toke J, Boyle B, Nobilis A,Rigo J, Jr., Racz K. Association between birth weight in preterm neonates and the BclI polymorphism of theglucocorticoid receptor gene. J Steroid Biochem Mol Biol,2008,111(1-2):91-94.
    [40] Alikhani-Koupaei R, Fouladkou F, Fustier P, Cenni B, Sharma AM, Deter HC, Frey BM, Frey FJ.Identification of polymorphisms in the human11beta-hydroxysteroid dehydrogenase type2gene promoter:functional characterization and relevance for salt sensitivity. Faseb J,2007,21(13):3618-3628.
    [41] Williams TA, Mulatero P, Filigheddu F, Troffa C, Milan A, Argiolas G, Parpaglia PP, Veglio F, GloriosoN. Role of HSD11B2polymorphisms in essential hypertension and the diuretic response to thiazides. KidneyInt,2005,67(2):631-637.
    [42] Hitzl M, Schaeffeler E, Hocher B, Slowinski T, Halle H, Eichelbaum M, Kaufmann P, Fritz P, FrommMF, Schwab M. Variable expression of P-glycoprotein in the human placenta and its association withmutations of the multidrug resistance1gene (MDR1, ABCB1). Pharmacogenetics,2004,14(5):309-318.
    [43] Newnham JP, Evans SF, Godfrey M, Huang W, Ikegami M, Jobe A. Maternal, but not fetal,administration of corticosteroids restricts fetal growth. J Matern Fetal Med,1999,8(3):81-87.
    [44] Wyrwoll CS, Seckl JR, Holmes MC. Altered placental function of11beta-hydroxysteroiddehydrogenase2knockout mice. Endocrinology,2009,150(3):1287-1293.
    [45] Hewitt DP, Mark PJ, Waddell BJ. Glucocorticoids prevent the normal increase in placental vascularendothelial growth factor expression and placental vascularity during late pregnancy in the rat. Endocrinology,2006,147(12):5568-5574.
    [46] Michael AE, Papageorghiou AT. Potential significance of physiological and pharmacologicalglucocorticoids in early pregnancy. Hum Reprod Update,2008,14(5):497-517.
    [47] Jensen E, Wood C, Keller-Wood M. The normal increase in adrenal secretion during pregnancycontributes to maternal volume expansion and fetal homeostasis. J Soc Gynecol Investig,2002,9(6):362-371.
    [1] Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions onadult health and disease. N Engl J Med,2008,359(1):61-73.
    [2] Murphy VE, Smith R, Giles WB, Clifton VL. Endocrine regulation of human fetal growth: the role ofthe mother, placenta, and fetus. Endocr Rev,2006,27(2):141-169.
    [3] Seckl JR, Meaney MJ. Glucocorticoid programming. Ann N Y Acad Sci,2004,1032:63-84.
    [4] Banks BA, Cnaan A, Morgan MA, Parer JT, Merrill JD, Ballard PL, Ballard RA. Multiple courses ofantenatal corticosteroids and outcome of premature neonates. North American Thyrotropin-ReleasingHormone Study Group. Am J Obstet Gynecol,1999,181(3):709-717.
    [5] Shams M, Kilby MD, Somerset DA, Howie AJ, Gupta A, Wood PJ, Afnan M, Stewart PM.11Beta-hydroxysteroid dehydrogenase type2in human pregnancy and reduced expression in intrauterinegrowth restriction. Hum Reprod,1998,13(4):799-804.
    [6] Kajantie E, Phillips DI, Andersson S, Barker DJ, Dunkel L, Forsen T, Osmond C, Tuominen J, Wood PJ,Eriksson J. Size at birth, gestational age and cortisol secretion in adult life: foetal programming of bothhyper-and hypocortisolism? Clin Endocrinol (Oxf),2002,57(5):635-641.
    [7] McCalla CO, Nacharaju VL, Muneyyirci-Delale O, Glasgow S, Feldman JG. Placental11beta-hydroxysteroid dehydrogenase activity in normotensive and pre-eclamptic pregnancies. Steroids,1998,63(10):511-515.
    [8] Diego MA, Jones NA, Field T, Hernandez-Reif M, Schanberg S, Kuhn C, Gonzalez-Garcia A. Maternalpsychological distress, prenatal cortisol, and fetal weight. Psychosom Med,2006,68(5):747-753.
    [9] Diego MA, Field T, Hernandez-Reif M, Schanberg S, Kuhn C, Gonzalez-Quintero VH. Prenataldepression restricts fetal growth. Early Hum Dev,2009,85(1):65-70.
    [10] Goland RS, Tropper PJ, Warren WB, Stark RI, Jozak SM, Conwell IM. Concentrations ofcorticotrophin-releasing hormone in the umbilical-cord blood of pregnancies complicated by pre-eclampsia.Reprod Fertil Dev,1995,7(5):1227-1230.
    [11] Strinic T, Bukovic D, Radic A, Sumilin L, Hauptman D, Sovic T. Comparison of fetal plasma cortisollevel between eutrophic and hypotrophic newborns. Coll Antropol,2005,29(2):739-741.
    [12] Goedhart G, Vrijkotte TG, Roseboom TJ, van der Wal MF, Cuijpers P, Bonsel GJ. Maternal cortisol andoffspring birthweight: results from a large prospective cohort study.Psychoneuroendocrinology,35(5):644-652.
    [13] Weitzman ED, Fukushima D, Nogeire C, Roffwarg H, Gallagher TF, Hellman L. Twenty-four hourpattern of the episodic secretion of cortisol in normal subjects. J Clin Endocrinol Metab,1971,33(1):14-22.
    [14] Kivlighan KT, DiPietro JA, Costigan KA, Laudenslager ML. Diurnal rhythm of cortisol during latepregnancy: associations with maternal psychological well-being and fetal growth. Psychoneuroendocrinology,2008,33(9):1225-1235.
    [15] Lao TT, Panesar NS. The effect of labour on prolactin and cortisol concentrations in the mother and thefetus. Eur J Obstet Gynecol Reprod Biol,1989,30(3):233-238.
    [16] LeWinn KZ, Stroud LR, Molnar BE, Ware JH, Koenen KC, Buka SL. Elevated maternal cortisol levelsduring pregnancy are associated with reduced childhood IQ. Int J Epidemiol,2009,38(6):1700-1710.
    [17] Matthews SG. Antenatal glucocorticoids and programming of the developing CNS. Pediatr Res,2000,47(3):291-300.
    [18] Dy J, Guan H, Sampath-Kumar R, Richardson BS, Yang K. Placental11beta-hydroxysteroiddehydrogenase type2is reduced in pregnancies complicated with idiopathic intrauterine growth Restriction:evidence that this is associated with an attenuated ratio of cortisone to cortisol in the umbilical artery.Placenta,2008,29(2):193-200.
    [19] Mericq V, Medina P, Kakarieka E, Marquez L, Johnson MC, Iniguez G. Differences in expression andactivity of11beta-hydroxysteroid dehydrogenase type1and2in human placentas of term pregnanciesaccording to birth weight and gender. Eur J Endocrinol,2009,161(3):419-425.
    [20]李辉.超声检查在胎儿监测中的应用[J].中国实用妇科与产科杂志.2010;26(2):89-92.
    [21]乐杰,谢幸,韦有吉.妇产科学(第6版)[M].北京:人民卫生出版社,2004,72.
    [22] Michael AE, Thurston LM, Rae MT. Glucocorticoid metabolism and reproduction: a tale of twoenzymes. Reproduction,2003,126(4):425-441.
    [23]尹玉竹,谌小卫,李小毛,侯红瑛,周水生.孕前体重孕期增重与妊高征及新生儿出生体重的关系[J].第一军医大学学报.2005;25(2):226-228.
    [24]孙宝治,李娟,宋清萍,宫桂芳,徐风森,王兰,修俊玲.妇女孕前身高、体重及孕期体重增加对妊娠结局的影响[J].中华妇产科杂志;1998:33(2)71-73.
    [25] Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses?Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev,2000,21(1):55-89.
    [26] Smith ID, Shearman RP. Fetal plasma steroids in relation to parturition. I. The effect of gestational ageupon umbilical plasma corticosteroid levels following vaginal delivery. J Obstet Gynaecol Br Commonw,1974,81(1):11-15.
    [27] Mark PJ, Waddell BJ. P-glycoprotein restricts access of cortisol and dexamethasone to theglucocorticoid receptor in placental BeWo cells. Endocrinology,2006,147(11):5147-5152.
    [28] Welberg LA, Seckl JR, Holmes MC. Prenatal glucocorticoid programming of brain corticosteroidreceptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience,2001,104(1):71-79.
    [29] Seckl JR, Cleasby M, Nyirenda MJ. Glucocorticoids,11beta-hydroxysteroid dehydrogenase, and fetalprogramming. Kidney Int,2000,57(4):1412-1417.
    [30] McTernan CL, Draper N, Nicholson H, Chalder SM, Driver P, Hewison M, Kilby MD, Stewart PM.Reduced placental11beta-hydroxysteroid dehydrogenase type2mRNA levels in human pregnanciescomplicated by intrauterine growth restriction: an analysis of possible mechanisms. J Clin Endocrinol Metab,2001,86(10):4979-4983.
    [31] Struwe E, Berzl GM, Schild RL, Beckmann MW, Dorr HG, Rascher W, Dotsch J. Simultaneouslyreduced gene expression of cortisol-activating and cortisol-inactivating enzymes in placentas ofsmall-for-gestational-age neonates. Am J Obstet Gynecol,2007,197(1):43e41-46.
    [32] Hornnes PJ, Kuhl C. Cortisol and glucose tolerance in normal pregnancy. Diabete Metab,1984,10(1):1-6.
    [33] Nelson SM, Coan PM, Burton GJ, Lindsay RS. Placental structure in type1diabetes: relation to fetalinsulin, leptin, and IGF-I. Diabetes,2009,58(11):2634-2641.
    [34] Jensen E, Wood CE, Keller-Wood M. Chronic alterations in ovine maternal corticosteroid levelsinfluence uterine blood flow and placental and fetal growth. Am J Physiol Regul Integr Comp Physiol,2005,288(1):R54-61.
    [35] Jensen EC, Rochette M, Bennet L, Wood CE, Gunn AJ, Keller-Wood M. Physiological changes inmaternal cortisol do not alter expression of growth-related genes in the ovine placenta. Placenta,2010,31(12):1064-1069.
    [36] Mesiano S, Jaffe RB. Developmental and functional biology of the primate fetal adrenal cortex.Endocr Rev,1997,18(3):378-403.
    [37] Kawata M. Roles of steroid hormones and their receptors in structural organization in the nervoussystem. Neurosci Res,1995,24(1):1-46.
    [38] Sapolsky RM. Glucocorticoid toxicity in the hippocampus: temporal aspects of neuronal vulnerability.Brain Res,1985,359(1-2):300-305.
    [39] Owen D, Andrews MH, Matthews SG. Maternal adversity, glucocorticoids and programming ofneuroendocrine function and behaviour. Neurosci Biobehav Rev,2005,29(2):209-226.
    [40] Huang WL, Beazley LD, Quinlivan JA, Evans SF, Newnham JP, Dunlop SA. Effect of corticosteroidson brain growth in fetal sheep. Obstet Gynecol,1999,94(2):213-218.
    [41] French NP, Hagan R, Evans SF, Godfrey M, Newnham JP. Repeated antenatal corticosteroids: size atbirth and subsequent development. Am J Obstet Gynecol,1999,180(1Pt1):114-121.
    [42] Lou HC, Hansen D, Nordentoft M, Pryds O, Jensen F, Nim J, Hemmingsen R. Prenatal stressors ofhuman life affect fetal brain development. Dev Med Child Neurol,1994,36(9):826-832.
    [43] Dodic M, Peers A, Coghlan JP, Wintour M. Can Excess Glucocorticoid, Predispose to Cardiovascularand Metabolic Disease in Middle Age? Trends Endocrinol Metab,1999,10(3):86-91.
    [44] Field T, Diego M, Hernandez-Reif M, Figueiredo B, Schanberg S, Kuhn C, Deeds O, Contogeorgos J,Ascencio A. Chronic prenatal depression and neonatal outcome.Int J Neurosci.2008,118(1):95-103.
    [1] Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions onadult health and disease. N Engl J Med,2008,359(1):61-73.
    [2] Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cellmutants. Biochim Biophys Acta,1976,455(1):152-162.
    [3] Mizutani T, Masuda M, Nakai E, Furumiya K, Togawa H, Nakamura Y, Kawai Y, Nakahira K, Shinkai S,Takahashi K. Genuine functions of P-glycoprotein (ABCB1). Curr Drug Metab,2008,9(2):167-174.
    [4] Nakamura Y, Ikeda S, Furukawa T, Sumizawa T, Tani A, Akiyama S, Nagata Y. Function ofP-glycoprotein expressed in placenta and mole. Biochem Biophys Res Commun,1997,235(3):849-853.
    [5] Mark PJ, Waddell BJ. P-glycoprotein restricts access of cortisol and dexamethasone to theglucocorticoid receptor in placental BeWo cells. Endocrinology,2006,147(11):5147-5152.
    [6] Smyth MJ, Krasovskis E, Sutton VR, Johnstone RW. The drug efflux protein, P-glycoprotein,additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. ProcNatl Acad Sci U S A,1998,95(12):7024-7029.
    [7] Heazell AE, Crocker IP. Live and let die-regulation of villous trophoblast apoptosis in normal andabnormal pregnancies. Placenta,2008,29(9):772-783.
    [8] Evseenko DA, Murthi P, Paxton JW, Reid G, Emerald BS, Mohankumar KM, Lobie PE, Brennecke SP,Kalionis B, Keelan JA. The ABC transporter BCRP/ABCG2is a placental survival factor, and its expressionis reduced in idiopathic human fetal growth restriction. Faseb J,2007,21(13):3592-3605.
    [9] Gil S, Saura R, Forestier F, Farinotti R. P-glycoprotein expression of the human placenta duringpregnancy. Placenta,2005,26(2-3):268-270.
    [10] Kolwankar D, Glover DD, Ware JA, Tracy TS. Expression and function of ABCB1and ABCG2inhuman placental tissue. Drug Metab Dispos,2005,33(4):524-529.
    [11] Hitzl M, Schaeffeler E, Hocher B, Slowinski T, Halle H, Eichelbaum M, Kaufmann P, Fritz P, FrommMF, Schwab M. Variable expression of P-glycoprotein in the human placenta and its association withmutations of the multidrug resistance1gene (MDR1, ABCB1). Pharmacogenetics,2004,14(5):309-318.
    [12] Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A, Cascorbi I, Gerloff T, RootsI, Eichelbaum M, Brinkmann U. Functional polymorphisms of the human multidrug-resistance gene: multiplesequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. ProcNatl Acad Sci U S A,2000,97(7):3473-3478.
    [13] Sun M, Kingdom J, Baczyk D, Lye SJ, Matthews SG, Gibb W. Expression of the multidrug resistanceP-glycoprotein,(ABCB1glycoprotein) in the human placenta decreases with advancing gestation. Placenta,2006,27(6-7):602-609.
    [14] Lankas GR, Wise LD, Cartwright ME, Pippert T, Umbenhauer DR. Placental P-glycoproteindeficiency enhances susceptibility to chemically induced birth defects in mice. Reprod Toxicol,1998,12(4):457-463.
    [15] Xu P, Jiang ZP, Zhang BK, Tu JY, Li HD. Impact of MDR1haplotypes derived from C1236T,G2677T/A and C3435T on the pharmacokinetics of single-dose oral digoxin in healthy Chinese volunteers.Pharmacology,2008,82(3):221-227.
    [16] Benediktsson R, Calder AA, Edwards CR, Seckl JR. Placental11beta-hydroxysteroid dehydrogenase:a key regulator of fetal glucocorticoid exposure. Clin Endocrinol (Oxf),1997,46(2):161-166.
    [17] Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N, Komano T, Hori R. HumanP-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem,1992,267(34):24248-24252.
    [18] Yates CR, Chang C, Kearbey JD, Yasuda K, Schuetz EG, Miller DD, Dalton JT, Swaan PW. Structuraldeterminants of P-glycoprotein-mediated transport of glucocorticoids. Pharm Res,2003,20(11):1794-1803.
    [19] Mathias AA, Hitti J, Unadkat JD. P-glycoprotein and breast cancer resistance protein expression inhuman placentae of various gestational ages. Am J Physiol Regul Integr Comp Physiol,2005,289(4):R963-969.
    [20] Pariante CM, Makoff A, Lovestone S, Feroli S, Heyden A, Miller AH, Kerwin RW. Antidepressantsenhance glucocorticoid receptor function in vitro by modulating the membrane steroid transporters. Br JPharmacol,2001,134(6):1335-1343.
    [21] Nakayama A, Eguchi O, Hatakeyama M, Saitoh H, Takada M. Different absorption behaviors amongsteroid hormones due to possible interaction with P-glycoprotein in the rat small intestine. Biol Pharm Bull,1999,22(5):535-538.
    [22] Saitoh H, Hatakeyama M, Eguchi O, Oda M, Takada M. Involvement of intestinal P-glycoprotein inthe restricted absorption of methylprednisolone from rat small intestine. J Pharm Sci,1998,87(1):73-75.
    [23] Weitzman ED, Fukushima D, Nogeire C, Roffwarg H, Gallagher TF, Hellman L. Twenty-four hourpattern of the episodic secretion of cortisol in normal subjects. J Clin Endocrinol Metab,1971,33(1):14-22.
    [24] Kivlighan KT, DiPietro JA, Costigan KA, Laudenslager ML. Diurnal rhythm of cortisol during latepregnancy: associations with maternal psychological well-being and fetal growth. Psychoneuroendocrinology,2008,33(9):1225-1235.
    [25] Goland RS, Tropper PJ, Warren WB, Stark RI, Jozak SM, Conwell IM. Concentrations ofcorticotrophin-releasing hormone in the umbilical-cord blood of pregnancies complicated by pre-eclampsia.Reprod Fertil Dev,1995,7(5):1227-1230.
    [26] Lao TT, Panesar NS. The effect of labour on prolactin and cortisol concentrations in the mother and thefetus. Eur J Obstet Gynecol Reprod Biol,1989,30(3):233-238.
    [27] Taubert D, von Beckerath N, Grimberg G, Lazar A, Jung N, Goeser T, Kastrati A, Schomig A, SchomigE. Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther,2006,80(5):486-501.
    [28] Hemauer SJ, Nanovskaya TN, Abdel-Rahman SZ, Patrikeeva SL, Hankins GD, Ahmed MS.Modulation of human placental P-glycoprotein expression and activity by MDR1gene polymorphisms.Biochem Pharmacol,2010,79(6):921-925.
    [29] Green H, Soderkvist P, Rosenberg P, Mirghani RA, Rymark P, Lundqvist EA, Peterson C.Pharmacogenetic studies of Paclitaxel in the treatment of ovarian cancer. Basic Clin Pharmacol Toxicol,2009,104(2):130-137.
    [30] Wang XD, Meng MX, Gao LB, Liu T, Xu Q, Zeng S. Permeation of astilbin and taxifolin in Caco-2cell and their effects on the P-gp. Int J Pharm,2009,378(1-2):1-8.
    [1] Benediktsson R, Calder AA, Edwards CR, Seckl JR. Placental11beta-hydroxysteroid dehydrogenase: akey regulator of fetal glucocorticoid exposure. Clin Endocrinol (Oxf),1997,46(2):161-166.
    [2] Krozowski Z Fau-Baker E, Baker E Fau-Obeyesekere V, Obeyesekere V Fau-Callen DF, Callen DF.Localization of the gene for human11beta-hydroxysteroid dehydrogenase type2(HSD11B2) tochromosome band16q22.,1995(71(2):124-5.).
    [3] Agarwal AK, Giacchetti G, Lavery G, Nikkila H, Palermo M, Ricketts M, McTernan C, Bianchi G,Manunta P, Strazzullo P, Mantero F, White PC, Stewart PM. CA-Repeat polymorphism in intron1ofHSD11B2: effects on gene expression and salt sensitivity. Hypertension,2000,36(2):187-194.
    [4] Williams TA, Mulatero P, Filigheddu F, Troffa C, Milan A, Argiolas G, Parpaglia PP, Veglio F, GloriosoN. Role of HSD11B2polymorphisms in essential hypertension and the diuretic response to thiazides. KidneyInt,2005,67(2):631-637.
    [5] Osinski PA. Steroid11beta-ol dehydrogenase in human placenta. Nature,1960,187:777.
    [6] Sun K, Yang K, Challis JR. Differential regulation of11beta-hydroxysteroid dehydrogenase type1and2by nitric oxide in cultured human placental trophoblast and chorionic cell preparation. Endocrinology,1997,138(11):4912-4920.
    [7] Driver PM, Kilby MD, Bujalska I, Walker EA, Hewison M, Stewart PM. Expression of11beta-hydroxysteroid dehydrogenase isozymes and corticosteroid hormone receptors in primary cultures ofhuman trophoblast and placental bed biopsies. Mol Hum Reprod,2001,7(4):357-363.
    [8] Sun K, Adamson SL, Yang K, Challis JR. Interconversion of cortisol and cortisone by11beta-hydroxysteroid dehydrogenases type1and2in the perfused human placenta. Placenta,1999,20(1):13-19.
    [9] Krozowski Z, MaGuire JA, Stein-Oakley AN, Dowling J, Smith RE, Andrews RK.Immunohistochemical localization of the11beta-hydroxysteroid dehydrogenase type II enzyme in humankidney and placenta. J Clin Endocrinol Metab,1995,80(7):2203-2209.
    [10] Nunez BS, Rogerson FM, Mune T, Igarashi Y, Nakagawa Y, Phillipov G, Moudgil A, Travis LB,Palermo M, Shackleton C, White PC. Mutants of11beta-hydroxysteroid dehydrogenase (11-HSD2) withpartial activity: improved correlations between genotype and biochemical phenotype in apparentmineralocorticoid excess. Hypertension,1999,34(4Pt1):638-642.
    [11] Manning JR, Bailey MA, Soares DC, Dunbar DR, Mullins JJ. In silico structure-function analysis ofpathological variation in the HSD11B2gene sequence. Physiol Genomics,42(3):319-330.
    [12] Alikhani-Koupaei R, Fouladkou F, Fustier P, Cenni B, Sharma AM, Deter HC, Frey BM, Frey FJ.Identification of polymorphisms in the human11beta-hydroxysteroid dehydrogenase type2gene promoter:functional characterization and relevance for salt sensitivity. Faseb J,2007,21(13):3618-3628.
    [13] Lovati E, Ferrari P, Dick B, Jostarndt K, Frey BM, Frey FJ, Schorr U, Sharma AM. Molecular basis ofhuman salt sensitivity: the role of the11beta-hydroxysteroid dehydrogenase type2. J Clin Endocrinol Metab,1999,84(10):3745-3749.
    [14] Hocher B, Slowinski T, Stolze T, Pleschka A, Neumayer HH, Halle H. Association of maternal Gprotein beta3subunit825T allele with low birthweight. Lancet,2000,355(9211):1241-1242.
    [15] Gomes MV, Soares MR, Pasqualim-Neto A, Marcondes CR, Lobo RB, Ramos ES. Associationbetween birth weight, body mass index and IGF2/ApaI polymorphism. Growth Horm IGF Res,2005,15(5):360-362.
    [16] Bertalan R, Patocs A, Vasarhelyi B, Treszl A, Varga I, Szabo E, Tamas J, Toke J, Boyle B, Nobilis A,Rigo J, Jr., Racz K. Association between birth weight in preterm neonates and the BclI polymorphism of theglucocorticoid receptor gene. J Steroid Biochem Mol Biol,2008,111(1-2):91-94.
    [17] Dwyer T, Blizzard L, Patterson B, Ponsonby AL, Martin K, Quinn S, Sale MM, Richards SM, MorleyR, Rich S, Dickinson JL. Association between birth weight and adolescent systolic blood pressure in acaucasian birth cohort differs according to skin type, CRH promoter or11beta-HSD2genotype. Arch DisChild,2008,93(9):760-767.
    [1] Newnham JP, Evans SF, Godfrey M, Huang W, Ikegami M, Jobe A. Maternal, but not fetal,administration of corticosteroids restricts fetal growth. J Matern Fetal Med,1999,8(3):81-87.
    [2]申洪,沈忠英.实用生物体视学技术[M].第一版,广州:中山大学出版社,1991:65-87.
    [3] Wyrwoll CS, Seckl JR, Holmes MC. Altered placental function of11beta-hydroxysteroiddehydrogenase2knockout mice. Endocrinology,2009,150(3):1287-1293.
    [4] Hewitt DP, Mark PJ, Waddell BJ. Glucocorticoids prevent the normal increase in placental vascularendothelial growth factor expression and placental vascularity during late pregnancy in the rat. Endocrinology,2006,147(12):5568-5574.
    [5] Schaiff WT, Barak Y, Sadovsky Y. The pleiotropic function of PPAR gamma in the placenta. Mol CellEndocrinol,2006,249(1-2):10-15.
    [6] Michael AE, Papageorghiou AT. Potential significance of physiological and pharmacologicalglucocorticoids in early pregnancy. Hum Reprod Update,2008,14(5):497-517.
    [7] Baisden B, Sonne S, Joshi RM, Ganapathy V, Shekhawat PS. Antenatal dexamethasone treatment leadsto changes in gene expression in a murine late placenta. Placenta,2007,28(10):1082-1090.
    [8] Jensen E, Wood C, Keller-Wood M. The normal increase in adrenal secretion during pregnancycontributes to maternal volume expansion and fetal homeostasis. J Soc Gynecol Investig,2002,9(6):362-371.
    [9] Jensen E, Wood CE, Keller-Wood M. Chronic alterations in ovine maternal corticosteroid levelsinfluence uterine blood flow and placental and fetal growth. Am J Physiol Regul Integr Comp Physiol,2005,288(1):R54-61.
    [10] Jensen EC, Rochette M, Bennet L, Wood CE, Gunn AJ, Keller-Wood M. Physiological changes inmaternal cortisol do not alter expression of growth-related genes in the ovine placenta. Placenta,2010,31(12):1064-1069.
    [11] Nelson SM, Coan PM, Burton GJ, Lindsay RS. Placental structure in type1diabetes: relation to fetalinsulin, leptin, and IGF-I. Diabetes,2009,58(11):2634-2641.
    [1] Young AM, Allen CE, Audus KL. Efflux transporters of the human placenta. Adv Drug Deliv Rev,2003,55(1):125-132.
    [2] Higgins CF. ABC transporters: physiology, structure and mechanism--an overview. Res Microbiol,2001,152(3-4):205-210.
    [3] Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cellmutants. Biochim Biophys Acta,1976,455(1):152-162.
    [4] Schinkel AH. The physiological function of drug-transporting P-glycoproteins. Semin Cancer Biol,1997,8(3):161-170.
    [5] Goldstein LJ, Gottesman MM, Pastan I. Expression of the MDR1gene in human cancers. Cancer TreatRes,1991,57:101-119.
    [6] Mizutani T, Masuda M, Nakai E, Furumiya K, Togawa H, Nakamura Y, Kawai Y, Nakahira K, Shinkai S,Takahashi K. Genuine functions of P-glycoprotein (ABCB1). Curr Drug Metab,2008,9(2):167-174.
    [7] Huls M, Russel FG, Masereeuw R. The role of ATP binding cassette transporters in tissue defense andorgan regeneration. J Pharmacol Exp Ther,2009,328(1):3-9.
    [8] Bremer S, Hoof T, Wilke M, Busche R, Scholte B, Riordan JR, Maass G, Tummler B. Quantitativeexpression patterns of multidrug-resistance P-glycoprotein (MDR1) and differentially spliced cystic-fibrosistransmembrane-conductance regulator mRNA transcripts in human epithelia. Eur J Biochem,1992,206(1):137-149.
    [9] Leazer TM, Klaassen CD. The presence of xenobiotic transporters in rat placenta. Drug Metab Dispos,2003,31(2):153-167.
    [10] Cordon-Cardo C, O'Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, Bertino JR.Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. ProcNatl Acad Sci U S A,1989,86(2):695-698.
    [11] Sugawara I, Akiyama S, Scheper RJ, Itoyama S. Lung resistance protein (LRP) expression in humannormal tissues in comparison with that of MDR1and MRP. Cancer Lett,1997,112(1):23-31.
    [12] Nakamura Y, Ikeda S, Furukawa T, Sumizawa T, Tani A, Akiyama S, Nagata Y. Function ofP-glycoprotein expressed in placenta and mole. Biochem Biophys Res Commun,1997,235(3):849-853.
    [13] Sun M, Kingdom J, Baczyk D, Lye SJ, Matthews SG, Gibb W. Expression of the multidrug resistanceP-glycoprotein,(ABCB1glycoprotein) in the human placenta decreases with advancing gestation. Placenta,2006,27(6-7):602-609.
    [14] Mylona P, Hoyland JA, Sibley CP. Sites of mRNA expression of the cystic fibrosis (CF) and multidrugresistance (MDR1) genes in the human placenta of early pregnancy: No evidence for complementaryexpression. Placenta,1999,20(5-6):493-496.
    [15] Novotna M, Libra A, Kopecky M, Pavek P, Fendrich Z, Semecky V, Staud F. P-glycoproteinexpression and distribution in the rat placenta during pregnancy. Reprod Toxicol,2004,18(6):785-792.
    [16] Mark PJ, Augustus S, Lewis JL, Hewitt DP, Waddell BJ. Changes in the placental glucocorticoidbarrier during rat pregnancy: impact on placental corticosterone levels and regulation by progesterone. BiolReprod,2009,80(6):1209-1215.
    [17] Kalabis GM, Kostaki A, Andrews MH, Petropoulos S, Gibb W, Matthews SG. Multidrug resistancephosphoglycoprotein (ABCB1) in the mouse placenta: fetal protection. Biol Reprod,2005,73(4):591-597.
    [18] Kalabis GM, Petropoulos S, Gibb W, Matthews SG. Multidrug resistance phosphoglycoprotein(ABCB1) expression in the guinea pig placenta: developmental changes and regulation by betamethasone.Can J Physiol Pharmacol,2009,87(11):973-978.
    [19] Gil S, Saura R, Forestier F, Farinotti R. P-glycoprotein expression of the human placenta duringpregnancy. Placenta,2005,26(2-3):268-270.
    [20] Mathias AA, Hitti J, Unadkat JD. P-glycoprotein and breast cancer resistance protein expression inhuman placentae of various gestational ages. Am J Physiol Regul Integr Comp Physiol,2005,289(4):R963-969.
    [21] Lankas GR, Wise LD, Cartwright ME, Pippert T, Umbenhauer DR. Placental P-glycoproteindeficiency enhances susceptibility to chemically induced birth defects in mice. Reprod Toxicol,1998,12(4):457-463.
    [22] Utoguchi N, Chandorkar GA, Avery M, Audus KL. Functional expression of P-glycoprotein in primarycultures of human cytotrophoblasts and BeWo cells. Reprod Toxicol,2000,14(3):217-224.
    [23] Pavek P, Fendrich Z, Staud F, Malakova J, Brozmanova H, Laznicek M, Semecky V, Grundmann M,Palicka V. Influence of P-glycoprotein on the transplacental passage of cyclosporine. J Pharm Sci,2001,90(10):1583-1592.
    [24] Pavek P, Staud F, Fendrich Z, Sklenarova H, Libra A, Novotna M, Kopecky M, Nobilis M, Semecky V.Examination of the functional activity of P-glycoprotein in the rat placental barrier using rhodamine123. JPharmacol Exp Ther,2003,305(3):1239-1250.
    [25] Nekhayeva IA, Nanovskaya TN, Deshmukh SV, Zharikova OL, Hankins GD, Ahmed MS.Bidirectional transfer of methadone across human placenta. Biochem Pharmacol,2005,69(1):187-197.
    [26] Nanovskaya T, Nekhayeva I, Karunaratne N, Audus K, Hankins GD, Ahmed MS. Role ofP-glycoprotein in transplacental transfer of methadone. Biochem Pharmacol,2005,69(12):1869-1878.
    [27] Michael AE, Thurston LM, Rae MT. Glucocorticoid metabolism and reproduction: a tale of twoenzymes. Reproduction,2003,126(4):425-441.
    [28] Krozowski Z Fau-Baker E, Baker E Fau-Obeyesekere V, Obeyesekere V Fau-Callen DF, Callen DF.Localization of the gene for human11beta-hydroxysteroid dehydrogenase type2(HSD11B2) tochromosome band16q22.,1995(71(2):124-5.).
    [29] Meijer OC, de Lange EC, Breimer DD, de Boer AG, Workel JO, de Kloet ER. Penetration ofdexamethasone into brain glucocorticoid targets is enhanced in mdr1A P-glycoprotein knockout mice.Endocrinology,1998,139(4):1789-1793.
    [30] Karssen AM, Meijer OC, van der Sandt IC, Lucassen PJ, de Lange EC, de Boer AG, de Kloet ER.Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse andhuman brain. Endocrinology,2001,142(6):2686-2694.
    [31] Pariante CM, Makoff A, Lovestone S, Feroli S, Heyden A, Miller AH, Kerwin RW. Antidepressantsenhance glucocorticoid receptor function in vitro by modulating the membrane steroid transporters. Br JPharmacol,2001,134(6):1335-1343.
    [32] Pariante CM. The role of multi-drug resistance p-glycoprotein in glucocorticoid function: studies inanimals and relevance in humans. Eur J Pharmacol,2008,583(2-3):263-271.
    [33] van Kalken CK, Broxterman HJ, Pinedo HM, Feller N, Dekker H, Lankelma J, Giaccone G. Cortisol istransported by the multidrug resistance gene product P-glycoprotein. Br J Cancer,1993,67(2):284-289.
    [34] Nakayama A, Eguchi O, Hatakeyama M, Saitoh H, Takada M. Different absorption behaviors amongsteroid hormones due to possible interaction with P-glycoprotein in the rat small intestine. Biol Pharm Bull,1999,22(5):535-538.
    [35] Saitoh H, Hatakeyama M, Eguchi O, Oda M, Takada M. Involvement of intestinal P-glycoprotein inthe restricted absorption of methylprednisolone from rat small intestine. J Pharm Sci,1998,87(1):73-75.
    [36] Oka A, Oda M, Saitoh H, Nakayama A, Takada M, Aungst BJ. Secretory transport ofmethylprednisolone possibly mediated by P-glycoprotein in Caco-2cells. Biol Pharm Bull,2002,25(3):393-396.
    [37] Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N, Komano T, Hori R. HumanP-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem,1992,267(34):24248-24252.
    [38] Yates CR, Chang C, Kearbey JD, Yasuda K, Schuetz EG, Miller DD, Dalton JT, Swaan PW. Structuraldeterminants of P-glycoprotein-mediated transport of glucocorticoids. Pharm Res,2003,20(11):1794-1803.
    [39] Mark PJ, Waddell BJ. P-glycoprotein restricts access of cortisol and dexamethasone to theglucocorticoid receptor in placental BeWo cells. Endocrinology,2006,147(11):5147-5152.
    [40] Scotto KW. Transcriptional regulation of ABC drug transporters. Oncogene,2003,22(47):7496-7511.
    [41] Coles LD, Lee IJ, Voulalas PJ, Eddington ND. Estradiol and progesterone-mediated regulation of P-gpin P-gp overexpressing cells (NCI-ADR-RES) and placental cells (JAR). Mol Pharm,2009,6(6):1816-1825.
    [42] Schuetz JD, Silverman JA, Thottassery JV, Furuya KN, Schuetz EG. Divergent regulation of the classII P-glycoprotein gene in primary cultures of hepatocytes versus H35hepatoma by glucocorticoids. CellGrowth Differ,1995,6(10):1321-1332.
    [43] Pavek P, Cerveny L, Svecova L, Brysch M, Libra A, Vrzal R, Nachtigal P, Staud F, Ulrichova J,Fendrich Z, Dvorak Z. Examination of Glucocorticoid receptor alpha-mediated transcriptional regulation ofP-glycoprotein, CYP3A4, and CYP2C9genes in placental trophoblast cell lines. Placenta,2007,28(10):1004-1011.
    [44] Sukhai M, Yong A, Pak A, Piquette-Miller M. Decreased expression of P-glycoprotein ininterleukin-1beta and interleukin-6treated rat hepatocytes. Inflamm Res,2001,50(7):362-370.
    [45] Sukhai M, Yong A, Kalitsky J, Piquette-Miller M. Inflammation and interleukin-6mediate reductionsin the hepatic expression and transcription of the mdr1a and mdr1b Genes. Mol Cell Biol Res Commun,2000,4(4):248-256.
    [46] Hartmann G, Kim H, Piquette-Miller M. Regulation of the hepatic multidrug resistance geneexpression by endotoxin and inflammatory cytokines in mice. Int Immunopharmacol,2001,1(2):189-199.
    [47] Hirsch-Ernst KI, Ziemann C, Foth H, Kozian D, Schmitz-Salue C, Kahl GF. Induction of mdr1bmRNA and P-glycoprotein expression by tumor necrosis factor alpha in primary rat hepatocyte cultures. JCell Physiol,1998,176(3):506-515.
    [48] Saito S, Iida A, Sekine A, Miura Y, Ogawa C, Kawauchi S, Higuchi S, Nakamura Y. Three hundredtwenty-six genetic variations in genes encoding nine members of ATP-binding cassette, subfamily B(ABCB/MDR/TAP), in the Japanese population. J Hum Genet,2002,47(1):38-50.
    [49] Hitzl M, Schaeffeler E, Hocher B, Slowinski T, Halle H, Eichelbaum M, Kaufmann P, Fritz P, FrommMF, Schwab M. Variable expression of P-glycoprotein in the human placenta and its association withmutations of the multidrug resistance1gene (MDR1, ABCB1). Pharmacogenetics,2004,14(5):309-318.
    [50] Hemauer SJ, Nanovskaya TN, Abdel-Rahman SZ, Patrikeeva SL, Hankins GD, Ahmed MS.Modulation of human placental P-glycoprotein expression and activity by MDR1gene polymorphisms.Biochem Pharmacol,2010,79(6):921-925.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700