横向大剪切量干涉技术及其在物理量检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光干涉原理下的各种检测技术在本质上都是直接反映被测场折射率的分布特征,借助于Lorentz-Lorenz关系式及其针对气相介质的简化形式(即Gladstone-Dale关系式),可以实现从折射率到密度、浓度、温度等诸多物理量的无损检测。现有的具备多方向投影能力的实时干涉检测系统都基于双路干涉技术组建。以横向剪切为代表的共光路干涉技术具有前者所没有的布局紧凑、抗振性强、光学元件数量少且没有苛刻的定位要求等适于工业现场应用的优点,只是其输出条纹的分布特征要比前者的复杂得多。
     传统的横向剪切干涉应用中缺乏对横向剪切量的重视和讨论,而本文作者发现当横向剪切量超过了被测对象畸变波面半宽时,剪切干涉条纹的两侧将显露出半幅类似于双曝光全息干涉原理的简单条纹;当横向剪切量超过了被测对象畸变波面宽度时,剪切干涉条纹将在水平方向上分裂为两个完整的类似于双曝光全息干涉原理的简单条纹。这意味着横向大剪切量干涉技术在实验流程和数据处理流程两个方面都表现优异,较之现有各类多方向干涉检测系统来说无疑是一种更经济的选择。考虑到实用的光学系统总存在像差,横向剪切干涉系统的背景条纹由此产生。由于它的分布特征可以用简单的球差公式来精确描述,因而不会为剪切干涉条纹的后处理过程带来实质性的影响。当横向剪切量足够大时,用被测对象存在时的条纹相位差直接减去背景条纹相位差即可得到仅由被测对象引发的那部分畸变波面的相位差,而传统的小剪切量干涉条件下的数据处理过程中必不可少的剪切还原算法在这里不再需要了。
     我们先将横向大剪切干涉技术应用在肥皂泡液膜厚度(这是一个典型的一维分布)的检测中,对单个肥皂泡从形成初期到临近破裂等几个典型瞬间的全场膜厚分布进行了实验研究。从中可知,被测肥皂泡沿着竖直方向的液膜厚度分布的最大误差为3/8倍波长。破裂之前的各个瞬间的数据显示,它的液膜厚度沿着重力方向的分布均能很好吻合三参数指数膜厚模型,其偏差值不超过0.4倍波长。随着肥皂泡自身排流作用的不断进行,其椭球型轮廓的顶部开始出现一个水层液膜消失而乳化剂层液膜仍保持完整的特殊区域。该区域的边界不断向下扩展,该过程中肥皂泡随时可能破裂。如果将上述三参数指数膜厚模型简化为双参数指数膜厚模型,那么可以推导出等效膜厚值与纵向条纹级数梯度之间的比值随着纵向坐标的分布曲线。在图像分辨率已知的条件下,通过该比值的分布曲线可以评估横向大剪切量干涉技术在任意高度上的液膜厚度检测的极限值。
     考虑到同轴燃烧器生成的火焰总存在一定程度的轴向偏移,因而我们将横向大剪切量干涉系统从单方向投影体系扩展为三方向投影体系,然后对给定工况下的准二维轴对称乙烯扩散火焰分别以二维算法以及三维算法进行了温度场检测。在二维假设中,用于求解Radon逆变换的滤波投影重建算法使用180度范围内的虚拟投影方向,同时使用来自燃烧数值模拟的组分浓度分布来获得特别修正系数场。干涉重建结果与热电偶检测数据对比可知,两者在火焰温度峰值坐标的外侧区域或者内侧较远处显示出了很好的一致性,各个高度上的平均偏差在20 K到40 K之间。但热电偶检测数据在火焰温度峰值坐标的内侧紧邻区域明显偏低,两者的最大偏差可达200 K。这是因为火焰温度峰值坐标的内侧紧邻区域为不充分燃烧,其烟黑容积份额较高。即使热电偶节点以很快速度插入被测火焰的待测目标区域,在节点表面仍会出现烟黑沉积并出现尺度渐长的碳球,其辐射热损失使得热电偶节点表面的烟黑的温度明显低于火焰中气相组分的温度。排除掉这个因素之后,二维假设能够为标准的二维轴对称被测火焰对象提供定量的分析结果。
     在三维假设中,用于求解Radon逆变换的滤波投影重建算法使用三个真实投影方向,同时将特别修正系数在全场大部分区间的统计均值(即1.05)作为通用修正系数,此时的温度场重建结果会表现出不同程度的非轴对称特征。我们发现3厘米高度上的温度重建结果在全场都表现出明显的扰动,这是因为该高度上的烟黑辐射较强导致干涉条纹图像的对比度变差并最终影响了条纹相位差的识别精度。与二维假设下的轴心反演值对比可知,三维假设下在1厘米高度的轴心反演值存在10%以上的偏差,这是因为该高度附近区域的主要组分为乙烯,它相对于空气组分假设所需的浓度场修正系数远超过1.05的通用修正值。然而在距双筒燃烧器的内筒喷嘴较远的其它高度上,三维假设下的轴心反演值仅存在不超过3.3%的偏差。总体来说,三维假设能够为非轴对称的被测火焰对象提供定性的分析结果,并有望用于工业环境下的非稳态火焰的在线监测。
Laser interferometry has an inherent virtue in measuring the index of refraction in a non-destructive way. Moreover, the index of refraction can be related to many other parameters such as density, concentration and temperature by use of the Lorentz-Lorenz equation and its simplified format (namely the Gladstone-Dale equation) for gas. Modern interferometer systems which afford multi-directional projections and real-time measurements are all constructed from the double paths style interferometry. Although the common paths style interferometry has many virtues such as compact layout, insensitivity to vibration, less hardware demand, easy adjustment and adaptation to real-time measurement, the characters of its fringe pattern which is more complex than the double paths style interferometry's has limited its application.
     Although the lateral shearing displacements in the traditional studies about the lateral shearing interferometry are totally small and seem to be unimportant, the author found that when the lateral shearing displacement exceeds half width of the test distorted wave-front, the two sides of the fringe pattern seem similar to the simple one obtained in the double exposure holographic interferometry. Once the lateral shearing displacement exceeds full width of the test distorted wave-front, this fringe pattern would be torn apart and form two separate parts while each part equals the double exposure holographic interferometric fringe pattern. Considering that the primary drawback which limits its applications in comparison with other interferometry could be overcome in the above way, the large lateral shearing displacement interferometry would be a more economic choice to build up a practicable multi-directional interferometric system and has an enormous potential to replace traditional interferometry either in laboratorial conditions or in industrial conditions.
     In fact, there exist many kinds of aberration (such as the spherical aberration) in the optics components so the interferometric system still export a kind of special background fringe pattern even though no test object exists. Fortunately, the character of this special background fringe pattern is regular and can be described accurately using simple expressions. When the lateral shearing displacement is large enough, the phase difference between two states of fringe patterns, for example, one state goes with the test object while the other state doesn't, would directly lead to the test distorted wave-front without the use of a complex reductive algorithm which is essential in a condition with small lateral shearing displacement.
     Firstly, this large lateral shearing displacement interferometry has been used to measure the full field film thickness of the soap bubble, which is a typical 1-D test object, during the process from its formation to burst. We found that the film thickness distribution along the vertical ordinate of the test soap bubble could be calculated with a maximum error less than 3/8λ. Moreover, this film thickness distribution shows a very good agreement with a kind of exponential model at all times and the maximum discrepancy is less than 0.4λin most of the field. When the compensating effect from the plastic cannulation (used to blow the soap bubble and keep its suspense) is weaker than the drained effect from the top of the soap bubble to its bottom, a special zone where the water layer has drained away but the surfactant solution layer remains would appear at the top of the soap bubble and expand towards the bottom, until its burst. Considering the above exponential model with three parameters could also be simplified into an acceptable exponential model with two parameters, the quotient between the equivalent film thickness and the vertical gradient of the fringe order can be deduced along the vertical ordinate. In condition that the resolution of the fringe pattern is known, the measurement limitation of the film thickness along the vertical ordinate can be evaluated by this quotient.
     Considering that the flame of the co-axial burner usually departs slightly from its axis, here we update the above single-directional system and propose a tri-directional large lateral shearing interferometric system. Then this system has been used in the experimental research about the temperature reconstruction of a quasi-axisymmetric diffused ethylene flame under 2-D and 3-D methods.
     The 2-D method is based on axisymmetric character in an inverse Radon transform step and the primary result has been corrected by a particular coefficient field from the numerical simulation work. In comparison with the thermocouple results, the final reconstructed result shows a good agreement either outside the peak temperature location or in the further part inside the peak temperature location, with an average discrepancy between 20 and 40 K. However, the discrepancy is obviously higher in the closer part inside the peak temperature location with a maximum discrepancy up to 200 K. Considering that a high soot volume fraction due to the insufficient combustion only exists in the closer part inside the peak temperature location, the thermocouple results in fact correspond to the continuously growing soot ball around the node rather than to the gas flame. When the deposition effect of soot has been excluded, the 2-D reconstructed result would be a credible and quantitative measurement result for the axisymmetric test flame.
     The 3-D method doesn't utilize the axisymmetric character and has only been corrected by a universal coefficient value as 1.05, which is the average statistical value of the particular coefficient field. This result is qualitatively similar to the 2-D result but also exhibits some asymmetrical character. However, this reconstructed temperature field at 3 cm height exhibits obvious disturbance because the relative intensity ratio between the laser beam and the flame radiation is the weakest at 3 cm height. The relative discrepancies between the two kinds of reconstructed temperature values along the axis are generally less than 3.3% except at 1 cm height, where it has a high concentration of ethylene and is not suitable to use the universal correct coefficient. Therefore the 3-D method might still afford qualitative analysis for an asymmetrical flame, such as online combustion monitoring for turbulent flow flame in industry.
引文
[1]周怀春.炉内火焰可视化检测原理与技术.北京:科学出版社,2005.
    [2]谢明星,汪铸.轴对称火焰温度场的全息干涉计量.航空动力学报.1990,5(3):219-223.
    [3]刘宇,明海,戴特辉,等.全息双频光栅太保效应及其应用.激光杂志.1992,13(1):20-23.
    [4]Tieng, S. M., Lai, W. Z. Temperature measurement of reacting flowfield by phase-shifting holographic interferometry. Journal of Thermophysics and Heat Transfer.1992,6(3):445-451.
    [5]Tieng, S. M., Lai, W. Z., Fujiwara, T. Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame. Engineering Optics.1993,6(1):81-89.
    [6]Tieng, S. M., Lin, C. C., Wang, Y. C., et al. Effect of composition distribution on holographic temperature measurement of a diffuse flame. Measurement Science and Technology.1996,7(4):477-488.
    [7]Philipp, H., Fuchs, H., Winklhofer, E., et al. Flame diagnostics by light sheet imaging and by shearing interferometry. Optical Engineering.1993,32(5):1025-1032.
    [8]黄佐华,潘克煌,蒋德明,等.激光干涉法在燃烧室内气体热力学状态参数测量中的应用研究.西安交通大学学报.1993,27(4):15-20.
    [9]Shakher, C., Daniel, A. J. P. Talbot interferometer with circular gratings for the measurement of temperature in axisymmetric gaseous flames. Applied Optics.1994, 33(25):6068-6072.
    [10]Shakher, C., Nirala, A. K. Comparative study of speckle shearing interferometry and speckle photography for measurement of temperature of an axisymmetric flame. Optik (Jena).1994,97(2):43-46.
    [11]Shakher, C., Nirala, A. K. Measurement of temperature using speckle shearing interferometry. Applied Optics.1994,33(11):2125-2127.
    [12]Vovchuk, J. I., Poletaev, N. I. Temperature field of a laminar diffusion dust flame. Combustion and Flame.1994,99(3-4):706-712.
    [13]肖旭东,是度芳,黄建林,等.循环代数迭代松驰法在全息层析术测量三维温度场中的应用.中国电机工程学报.1994,14(2):43-47.
    [14]是度芳,钟志有,王荣,等.相移全息CT技术测量双烛火焰温度场.光学学报.1996,16(6):768-771.
    [15]Shi, D., Xiao, X., He, Y., et al. Measurement of three-dimension temperature field using phase-shifting holography and CT technique. in:Proc. SPIE. Bellingham WA, WA 98227-0010, United States:SPIE, vol.3172,1997.407-412.
    [16]Khramtsov, P. P., Martynenko, O. G, Burak, V. S., et al. Stable vortex structures in axisymmetric convective torch during oscillating combustion. International Journal of Heat and Mass Transfer.1996,39(7):1519-1525.
    [17]Chen, Y.-M., Wu, S.-J., Wang, Y.-Y. Application of holographic tomography to the measurement of 3D flame temperature field. Journal of the Chinese Institute of Chemical Engineers.1997,28(3):197-202.
    [18]高益庆.用全息干涉C-T技术重建三维折射率场.激光杂志.1997,18(6):32-35.
    [19]Wade, P., Tyler, C. Investigation of various unwrap/reduction methods to quantify phase-shifted holographic interferometry. in. Pacific Grove, CA, USA:IEEE, Piscataway, NJ, USA,1997.322-328.
    [20]徐德衍,戴名奎,沈卫星,等.超半口径补偿剪切干涉法测量脉冲激光波面半径.中国激光.1997,A24(4):311-314.
    [21]李疏芬,赵波,陈振鹏.全息法测量火焰温度探讨.固体火箭技术.1998,21(1):70-74.
    [22]Monteiro, J., Santos, F., Chousal, J., et al. A Michelson type of shear interferometer for non destructive inspection of debondings in structures. in. Nice, France:ASM International, vol.1,1998.825-829.
    [23]Tashtoush, G., Saito, K., Cremers, C., et al. Study of flame spread over JP8 using 2-D holographic interferometry. Journal of Fire Sciences.1998,16(6):437-457.
    [24]Azzoni, R., Ratti, S., Aggarwal, S. K., et al. Structure of triple flames stabilized on a slot burner. Combustion and Flame.1999,119(1):23-40.
    [25]Ito, A.. Narumi, A., Konishi, T., et al. The measurement of transient two-dimensional profiles of velocity and fuel concentration over liquids. Journal of Heat Transfer. 1999,121(2):413-419.
    [26]Shakher, C., Nirala, A. K. Review on refractive index and temperature profile measurements using laser-based interferometric techniques. Optics and Lasers in Engineering.1999,31(6):455-491.
    [27]VanDerWege, B. A., O'Brien, C. J., Hochgreb, S. Quantitative shearography in axisymmetric gas temperature measurements. Optics and Lasers in Engineering. 1999,31(1):21-39.
    [28]Xiao, X., Choi, C. W., Puri, I. K. Temperature measurements in steady two-dimensional partially premixed flames using laser interferometric holography. Combustion and Flame.2000,120(3):318-332.
    [29]Choi, C. W., Puri, I. K. Flame stretch effects on partially premixed flames. Combustion and Flame.2000,123(1):119-139.
    [30]杜文锋,张孝谦,韦明罡,等.差分干涉法测量微重力环境蜡烛火焰的温度.燃烧科学与技术.2000,6(2):129-132.
    [31]Konishi, T., Tashtoush, G, Ito, A., et al. The effect of a cold temperature valley on pulsating flame spread over propanol. in. Edinburgh, United Kingdom:Combustion Institute, vol.28,2000.2819-2825.
    [32]Asseban, A., Lallemand, M., Saulnier, J. B., et al. Digital speckle photography and speckle tomography in heat transfer studies. Optics and Laser Technology.2000, 32(7-8):583-592.
    [33]Stella, A., Guj, G, Giammartini, S. Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames. Experiments in Fluids.2000,29:1-12.
    [34]刘东红.用于温度场研究的光折变全息干涉计量术.光电工程.2001,28(2):32-35.
    [35]Cai, L. Z., Wang, Y. R., Qu, X. M. Real-time analysis of 3-D axisymmetric refractive index field by photorefractive holographic interferometry. Optics and Laser Technology.2000,32(3):171-175.
    [36]Xiao, X., Puri, I. K. Systematic approach based on holographic interferometry measurements to characterize the flame structure of partially premixed flames. Applied Optics.2001,40(6):731-740.
    [37]Choi, C. W., Puri, I. K. Contribution of curvature to flame-stretch effects on premixed flames. Combustion and Flame.2001,126(3):1640-1654.
    [38]Goldmeer, J. S., Urban, D. L., Yuan, Z.-G. Measurement of gas-phase temperatures in flames with a point-diffraction interferometer. Applied Optics.2001,40(27): 4816-4823.
    [39]Liou, T. M. Some applications of experimental and numerical visualization in fluid flow, heat transfer, and combustion. Experimental Thermal and Fluid Science.2001, 25(6):359-375.
    [40]Thakur, M., Vats, R., Rathi, V., et al. Measurement of temperature and temperature fluctuation of a gaseous flame using double and single exposure speckle photography. Journal of Optics (India).2001,30(1):19-28.
    [41]Thakur, M., Vyas, A. L., Shakher, C. Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings. Optics and Lasers in Engineering.2001,36(4):373-380.
    [42]Shimizu, I., Kato, F. Developmental research on the system for making hologram easily and rapidly in real time holographic interferometry. in. Sendai:Society of Photo-Optical Instrumentation Engineers, vol.4183,2001.290-298.
    [43]Kudo, Y., Ito, A. Propagation and extinction mechanisms of opposed-flow flame spread over PMMA. in. Sapporo, Japan:Combustion Institute, vol.29,2002. 237-243.
    [44]Konishi, T., Ito, A., Kudou, Y, et al. The role of a flame-induced liquid surface wave on pulsating flame spread. in. Sapporo, Japan:Combustion Institute, vol.29,2002. 267-272.
    [45]Xiao, X., Puri, I. K. Digital recording and numerical reconstruction of holograms:An optical diagnostic for combustion. Applied Optics.2002,41(19):3890-3899.
    [46]Qin, X., Xiao, X., Puri, I. K., et al. Effect of varying composition on temperature reconstructions obtained from refractive index measurements in flames. Combustion and Flame.2002,128(1-2):121-132.
    [47]Takahashi, S., Kondou, M., Wakai, K., et al. Effect of radiation loss on flame spread over a thin PMMA sheet in microgravity. in. Sapporo, Japan:Combustion Institute, vol.29,2002.2579-2585.
    [48]Thakur, M., Shakher, C., Vyas, A. L. Measurement of temperature profile of a gaseous flame with a Lau phase interferometer that has circular gratings. Applied Optics.2002,41(4):654-657.
    [49]Kawahara, N., Tomita, E., Kamakura, H. Unburned gas temperature measurement in a spark-ignition engine using fibre-optic heterodyne interferometry. Measurement Science and Technology.2002,13(1):125-131.
    [50]Kawahara, N., Tomita, E., Kamakura, H. Transient temperature measurement of unburned gas using optical heterodyne interferometry. Transactions of the Japan Society of Mechanical Engineers, Part B.2003,69(677):229-235.
    [51]Fujisawa, N., Hosokawa. A., Tomimatsu, S. Simultaneous measurement of droplet size and velocity field by an interferometric imaging technique in spray combustion. Measurement Science and Technology.2003,14(8):1341-1349.
    [52]Malina, R., Antos, M. System for optical tomography. in:Proc. SPIE. Prague, Czech Republic:The International Society for Optical Engineering, vol.5036,2003. 505-510.
    [53]Posner, J. D., Dunn-Rankin, D. Temperature field measurements of small, nonpremixed flames with use of an Abel inversion of holographic interferograms. Applied Optics.2003,42(6):952-959.
    [54]Singh, P., Shakher, C. Measurement of the temperature of a gaseous flame using a shearing plate. Optical Engineering.2003,42(1):80-85.
    [55]Thakur, M., Shakher, C., Angra, S. K. Measurements of the temperature profile of a two-dimensional slot burner using a Lau phase interferometer with liner gratings. Optical Engineering.2003,42(1):86-91.
    [56]Wu, K. K., Fan, W. F., Chen, C. H., et al. Downward flame spread over a thick PMMA slab in an opposed flow environment:Experiment and modeling. Combustion and Flame.2003,132(4):697-707.
    [57]Bishop, A. I., McIntyre, T. J., Littleton, B. N., et al. OH concentration and temperature measurements by use of near-resonant holographic interferometry. Applied Optics.2004,43(35):6384-6390.
    [58]Rabat, H., De Izarra, C. Check of OH rotational temperature using an interferometric method. Journal of Physics D:Applied Physics.2004,37(17):2371-2375.
    [59]Singh, P., Faridi, M. S., Shakher, C. Measurement of temperature of an axisymmetric flame using shearing interferometry and Fourier fringe analysis technique. Optical Engineering.2004,43(2):387-392.
    [60]Doi, J., Sato, S. Instantaneous temperature visualization of a turbulent flame using multidirectional interferometer. in. Alexandria, VA, United States:International Society for Optical Engineering, Bellingham, WA 98227-0010, United States, vol. 5580,2005.832-841.
    [61]Ito, A., Kudo, Y, Oyama, H. Propagation and extinction mechanisms of opposed-flow flame spread over PMMA for different sample orientations. Combustion and Flame.2005,142(4):428-437.
    [62]Konishi, T., Ito, A., Kudo, Y., et al. Simultaneous measurement of temperature and chemical species concentrations with a holographic interferometer and infrared absorption. Applied Optics.2006,45(22):5725-5732.
    [63]Liu, D.-x., Feng, H.-q. In-cylinder temperature field measurement with laser shearing interferometry for spark ignition engines. Optics and Lasers in Engineering.2006, 44(12):1258-1269.
    [64]Qi, J. A., Leung, C. W., Wong, W. O., et al. Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry. Applied Energy.2006,83(12):1307-1316.
    [65]Strojnik, M., Paez, G. Vectorial shearing interferometry for combustion application. in. San Diego, CA, United States:International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States, vol.6307,2006.63070.
    [66]Doi, J., Sato, S. Three-dimensional modeling of the instantaneous temperature distribution in a turbulent flame using a multidirectional interferometer. Optical Engineering.2007,46(1):015601.
    [67]Jacquemin, P. B., Laurin, D., Atalick, S., et al. Non-intrusive, three-dimensional temperature and composition measurements inside fluid cells in microgravity using a confocal holography microscope. Acta Astronautica.2007,60(8-9):723-727.
    [68]Zhang, D.-Y., Zhou, H.-C. Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships. Fuel.2007, 86(10-11):1552-1559.
    [69]张大勇,周怀春.非预混火焰中温度与全息干涉测得的折射率之间的新状态关系.燃烧科学与技术.2007,13(4):325-329.
    [70]Qi, J. A., Wong, W. O., Leung, C. W., et al. Temperature field measurement of a premixed butane/air slot laminar flame jet with Mach-Zehnder Interferometry. Applied Thermal Engineering.2008,28(14-15):1806-1812.
    [71]王金树,严国铭,林信宏.旋转之内凹锥型与平顶型驻焰棒对预混火焰温度与速度场之分析.航空太空及民航学刊.2008,40 B(1):27-34.
    [72]Ashjaee, M., Goharkhah, M., Madanipour, K., et al. Calculation of local heat transfer coefficient on axisymmetric geometries using different methods of fringe analysis, in: 2008 2nd International Conference on Thermal Issues in Emerging Technologies. Cairo, Egypt:IEEE Computer Society,2008.297-302.
    [73]Goharkhah, M., Ashjaee, M., Madanipour, K. Investigation of the accuracy of different methods of interferogram analysis for calculation of local free convection heat transfer coefficient on axisymmetric objects. Experimental Thermal and Fluid Science.2009,33:1188-1196.
    [74]Gawlowski, M., Kelly, K. E., Marcotte, L. A., et al. Determining the effect of species composition on temperature fields of tank flames using real-time holographic interferometry. Applied Optics.2009,48(23):4625-4636.
    [75]Madanipour, K., Fatehi, S., Parvin, P. Measurement of temperature, refractive index, density distribution and convective heat transfer coefficient around a vertical wire by michelson interferometer. in:Optical Measurement Systems for Industrial Inspection VI, June 15,2009-June 18,2009. Munich, Germany:SPIE, vol.7389,2009. SPIE Europe.
    [76]Shakher, C., Thakur, M. Lau phase interferometer for the measurement of the temperature and temperature profile of a gaseous flame. in. Yokohama:Society of Photo-Optical Instrumentation Engineers, vol.4416,2001.246-251.
    [77]Chen, Y.-Y., Li, Z.-H., Song, Y, et al. Extension of the Gladstone-Dale equation for flame flow field diagnosis by optical computerized tomography. Applied Optics. 2009,48(13):2485-2490.
    [78]Vest, C. M. Holographic Interferometry. New York:John Wiley and Sons,1979.
    [79]Merzkirch, W. Flow visualization. (2nd). Orlando:Academic Press,1987.
    [80]Bass, M. Handbook of Optics, Third Edition, Volume I:Geometrical and Physical Optics, Polarized Light, Components and Instruments. New York:McGraw-Hill, 2010.
    [81]艾育华,周怀春,卢晶,等.发射CT法测量层流乙烯扩散火焰中温度与烟黑浓度分布的实验研究.工程热物理学报.2006,27(4):717-719.
    [82]Zhou, H.-C., Ai, Y.-H. Effect of radiative transfer of heat released from combustion reaction on temperature distribution:A numerical study for a 2-D system. Journal of Quantitative Spectroscopy and Radiative Transfer.2006,101(1):109-118.
    [83]Kostarev, K., Viviani, A., Zuev, A. Thermal and concentrational maragoni convection at liquid/air bubble interface. Journal of Applied Mechanics, Transactions ASME. 2006,73:66-71.
    [84]Fortes, M. A., Teixeira, P. I. C., Deus, A. M. The shape of soap films and Plateau borders. Journal of Physics Condensed Matter.2007,19(24).
    [85]Muijres, F. T., Lentink, D. Wake visualization of a heaving and pitching foil in a soap film. Experiments in Fluids.2007,43(5):665-673.
    [86]Van Nierop, E. A., Scheid, B., Stone, H. A. On the thickness of soap films:An alternative to Frankel's law. Journal of Fluid Mechanics.2008,602:119-127.
    [87]Braide-Azikiwe, D. C. B., Holt, K. B., Williams, D. E., et al. Soap film electrochemistry. Electrochemistry Communications.2009,11(6):1226-1229.
    [88]Prasad, V, Weeks, E. R. Flow fields in soap films:Relating viscosity and film thickness. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics.2009, 80(2).
    [89]Yang, T. S., Wen, C. Y, Lin, C. Y. Interpretation of color fringes in flowing soap films. Experimental Thermal and Fluid Science.2001,25(3-4):141-149.
    [90]De Gennes, P. G. "Young" soap films. Langmuir.2001,17(8):2416-2419.
    [91]Prasad, V., Weeks, E. R. Two-dimensional to three-dimensional transition in soap films demonstrated by microrheology. Physical Review Letters.2009,102(17).
    [92]Huang, M. J., Wen, C. Y., Lee, I. C., et al. Air-damping effects on developing velocity profiles in flowing soap films. Physics of Fluids.2004,16(11):3975-3982.
    [93]Greffier, O., Amarouchene, Y, Kellay, H. Thickness fluctuations in turbulent soap films. Physical Review Letters.2002,88(19):1941011-1941014.
    [94]Hidema, R., Yatabe, Z., Shoji, M., et al. Image analysis of thickness in flowing soap films. I:Effects of polymer. Experiments in Fluids.2010,49:725-732.
    [95]沙勇,李樟云,江桂仙,等.竖直流动皂膜中解吸导致的Marangoni对流观察.化工学报.2010,61(5):1123-1126.
    [96]Lhuissier, H., Villermaux, E. Soap films burst like flapping flags. Physical Review Letters.2009,103(5).
    [97]Muller, F., Bohley, C., Stannarius, R. Second sound in bursting freely suspended smectic-A films. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics. 2009,79(4).
    [98]Bremond, N., Villermaux, E. Bursting thin liquid films. Journal of Fluid Mechanics. 2005,524:121-130.
    [99]Stannarius, R., Muller, F. Comparison of the rupture dynamics of smectic bubbles and soap bubbles. Liquid Crystals.2009,36:133-145.
    [100]Jaszkowski, D., Rzeszut, J. Interference colours of soap bubbles. Visual Computer. 2003,19:252-270.
    [101]Huibers, P. D. T., Shah, D. O. Multispectral determination of soap film thickness. Langmuir.1997,13(22):5995-5998.
    [102]Tebaldi, M., Angel, L., Bolognini, N., et al. Speckle interferometric technique to assess soap films. Optics Communications.2004,229(1-6):29-37.
    [103]Kariyasaki, A., Yamasaki, Y, Kagawa, M., et al. Measurement of Liquid Film Thickness by a Fringe Method. Heat Transfer Engineering.2008,30(1-2):28-36.
    [104]Wang, X., Qiu, H. Fringe probing of gas-liquid interfacial film in a microcapillary tube. Applied Optics.2005,44:4648-4653.
    [105]Daily, M. Proof of the double bubble curvature conjecture. Journal of Geometric Analysis.2007,17:75-85.
    [106]Kak, A. C., Slaney, M. Principles of computerized tomographic imaging. New York: IEEE Press,1988.
    [107]卢晶,熊倩,周怀春.TPD法测量高速空气流乙烯非预混火焰适用性研究.工程热物理学报.2009,30(7):1229-1232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700