截断型人转化生长因子受体Ⅱ真核表达载体的构建和表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝纤维化在慢性肝病的病理生理过程中占重要地位,阻断其向肝硬化发展,促使其逆转具有重要意义,而转化生长因子β在该过程中起重要作用,本课题旨在利用现代分子生物学和基因工程技术构建一个没有胞内段的不能转导胞外信号的截断型人转化生长因子βII型受体的表达载体,为进一步研究其生物学效应及在肝硬化中的作用奠定基础。
     目的:构建无细胞内段基因的人转化生长因子βII型受体(ΔTβRII)的真核表达载体pEGFP/ΔTβRII,转染人胚肝细胞L02以表达融合蛋白EGFP/ΔTβRII,并检测其胞外段的生物学活性。
     方法:以质粒H2-3FF为模板,用PCR方法扩增得到人转化生长因子βII型受体(TβRII)胞外段和跨膜段的cDNA ,并在两端分别引入EcoRI和BamHI限制性内切酶位点,将该cDNA经EcoRI和BamHI双酶切、纯化回收后克隆到真核表达载体pEGFP-N2上,构建成pEGFP/ΔTβRII重组质粒。经双酶切和核酸测序鉴定,将该重组质粒由脂质体Lipofectamin2000介导转染人胚肝细胞L02,用倒置荧光显微镜观察融合蛋白EGFP的表达,加入G418筛选得到阳性克隆,并用四唑盐(MTT)比色法和流式细胞术(FCM)检测其生物学活性。
     结果:①重组质粒pEGFP/ΔTβRII经EcoRI和BamHI双酶切,得到两个阳性片断,其中小片段带与PCR产物条带在相同位置,大小分别约为619bp;大片段条带与空载体pEGFP-N2骨架在同一位置,大小约为4.7kb,符合预期结果,并经核酸测序鉴定序列正确,表明ΔTβRII已经克隆至pEGFP-N2载体中;
     ②重组质粒pEGFP/ΔTβRII转染L02人胚肝细胞24h后在荧光显微镜下观察到融合蛋白EGFP的表达,并用G418筛选得到稳定表达的阳性克隆;
     ③MTT比色结果:转染重组子的实验组OD值显著高于转染pEGFP-N2的对照组OD值(0.780±0.012 vs 0.335±0.018, p<0.05); FCM结果显示前者的G1%(63.58)明显低于后者的G1% (73.03),而增殖指数PrI值[ (S +M G2) %]前者比后者高(36.42 vs 26.98),证实融合蛋白EGFP/ΔTβRII减轻TGFβ1对L02细胞生长抑制作用。
     结论:成功构建了pEGFP/ΔTβRII重组质粒,并表达了融合蛋白EGFP/ΔTβRII,其胞外段有结合TGFβ1的活性,能显著减轻TGFβ1对L02细胞生长抑制作用,并能减轻TGFβ1对L02细胞G1~S的阻滞作用,为进一步探讨其生物学效应及在肝硬化中的作用奠定了基础。
It is significant to reverse the progress of hepatic fibrosis which paly an important role in the physiopathologic process of chronic hepatic disease. In this paper, a eukaryotic expression vector containing truncated type II human transforming growth factor was established to set foundation for further research.
     Objective: To construct a eukaryotic expression vector pEGFP/ΔTβRII without the cytoplasmic domain of the cDNA of the human transforming growth factor-beta type II receptor (TβRII), to express the fusion protein EGFP/ΔTβRII in human embryonic hepatic cell line L02 and to determine the biological activity of its extracellular domain.
     Methods: The cDNA of type II truncated receptor(ΔTβRII) that lacks the cytoplasmic domain was amplified by PCR from the plasmid H2-3FF, and two restriction sites (EcoR I and BamHI ) were introduced into it at the same time. The PCR product was inserted into the vector pEGFP-N2 to construct the eukaryotic expression plasmid pEGFP/ΔTβRII, which was identified by double enzyme digestion and DNA sequencing. The recombinant plasmid was transfected into L02 cells by cation lipoid Lipofectamine2000, and the GFP fluorescence was detected under inverted fluorescence microscope after the transfection. To obtain stable cells line, G418 was added in RPMI-1640 culture medium to screen the positive cells. The biological activity of its extracellular domain was examined by MTT assay and flow cytometry (FCM).
     Results:①Recombinant plasmid, pEGFP/ΔTβRII, digested with EcoRI and BamHI, and two bands at 619bp and 4.7kb could be observed respectively by agarose gel electrophoresis. These results were consistent with expection and the result of DNA sequencing, which demonstrated the gene ofΔTβRII was cloned to the vector pEGFP-N2.
     ②The recombinant plasmid was transfected into the human embryonic hepatic cell line L02 by lipoid, and the specific fusion protein, EGFP, was observed by inverted fluorescence microscope 24h later. The positive clone was obtained by G418 screening.
     ③The optical density (OD) of the test group was significantly higher than that of the control group, however, decreased the G1-phase of cell cycle and improved the cell proliferation index(PrI),which demonstrated the fusion protein would attenuate the inhibitory effect of TGFβ1 on L02 cells significantly.
     Conclusion: The eukaryotic expression plasmid pEGFP/ΔTβRII has been constructed and the fusion protein EGFP/ΔTβRII was successfully expressed in cell L02. The extracellular domain of the fusion protein can bind cytokine TGFβ1 , attenuate the inhibitory effect of TGFβ1 on L02 cells significantly and these works will help to set up foundation for further research.
引文
1. 卫生部.卫生统计年鉴[M].北京:中国协和医科大学出版社,2003.
    2. 庄辉. 病毒性肝炎的流行病学. 中国计划免疫,2004 ,10 (3): 180-181.
    3. Lamireau T, Desmouliere A, Bioulac-Sage P, et al. Mechanisms of hepatic fibrogenesis. Arch Pediatr. 2002; 9(4)::392-405
    4. Mann DA, Smart DE. Transcriptional regulation of hepatic stellate cell activation. Gut 2002;50(6):891-896
    5. Lewindon PJ, Pereira TN, Hoskins AC, et al. The role of hepatic stellate cells and transforming growth factor-beta(1) in cystic fibrosis liver disease. Am J Pathol 2002;160(5):1705-1715
    6. Wells RG. Fibrogenesis. V. TGF-beta signaling pathways. Am J Physiol Gastrointest Liver Physiol. 2000; 279(5): G845-850.
    7. Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med. 2006; 10(1): 76-99.
    8. Okazaki I, Watanabe T, Hozawa S, et al. Reversibility of hepatic fibrosis: from the first report of collagenase in the liver to the possibility of gene therapy for recovery. Keio J Med 2001;50(2):58-65
    9. Benyon RC, Iredale JP. Is liver fibrosis reversible? Gut. 2000 Apr;46(4):443-6. Gut. 2000; 6(4): 43-46
    10. Chin D, Boyle GM, Parsons PG, et al. What is transforming growth factor-beta (TGF-beta)? Br J Plast Surg. 2004, 57(3):215-221.
    11. Schnur J, Olah J, Szepesi A, et al.. Thioacetamide-induced hepatic fibrosis in transforming growth factor beta-1 transgenic mice. Eur J Gastroenterol Hepatol. 2004, 16(2):127-133.
    12. Ueberham E, Low R, Ueberham U, et al. Conditional tetracycline-regulated expression of TGF-beta1 in liver of transgenic mice leads to reversible intermediary fibrosis. Hepatology. 2003, 37(5):1067-1078.
    13. Yang YA, Dukhanina O, Tang B. Lifetime exposure to a soluble TGF-betaantagonist protects mice against metastasis without adverse side effects. J Clin Invest. 2002, 109(12):1607-1615.
    14. Nakamura T, Sakata R, Ueno T, et al . Inhibition of transforming growth factor beta prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine treated rats. Hepatology, 2000, 32(2): 247 - 255
    15. Biswas S, Chytil A, Washington K, et al. Transforming growth factor beta receptor type II inactivation promotes the establishment and progression of colon cancer. Cancer Res. 2004, 64(14):4687-4692.
    16. Lin HY, Wang XF, Ng-Eaton E, et al. Expression cloning of the TGF-beta type II receptor, a functional transmembrane serine/threonine kinase. Cell. 1992, 68(4):775-785.
    17. Dooley S, Delvoux B, Lahme B, et al. Modulation of transforminggrowth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology, 2000, 31:1094-1106
    18.Gressner AM, Chunfang G. A cascade mechanism of fat storing cellactivation forms the basis of the fibrogenic reaction of the liver. Verh Dtsch Ges Pathol, 1995, 79: 1-14.
    19. Philips N, Keller T, Gonzalez S. TGF beta-like regulation of matrixmetallop roteinases by anti-transforming growth factor-beta, and anti-transforming growth factor-beta 1 antibodies in dermal fibroblasts:implications for wound healing. Wound Repair Regen, 2004, 12:53-59.
    20. Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med. 2006; 10(1): 76-99.
    21. Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev, 2005;19(23):2783-27810.
    22. Cody CW, Prasher DC, Westler WM. et al. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry. 1993; 32 (5):1212-1218.
    23. Cormack BP, Valdivia RH, Falkow S. FACS-optimized mutants of the greenfluorescent protein (GFP). Gene. 1996; 173 (1 Spec No):33-38..
    24. Marshall J, Molloy R, Moss GW, et al. Application of the green fluorescent protein in cell biology and biotechnology. Neuron. 1995; 14(2): 211-215.
    25. Gerdes HH, Kaether C. Green fluorescent protein: applications in cell biology. FEBS Lett. 1996 ; 389(1): 44-47.
    26. Kato M, Yamanouchi K, Ikawa M, et al. Efficient selection of transgenic mouse embryos using EGFP as a marker gene. Mol Reprod Dev. 1999; 54(1):43-48.
    27. Kiem HP, Rasko JE, Morris J, et al. Ex vivo selection for oncoretrovirally transduced green fluorescent protein-expressing CD34-enriched cells increases short-term engraftment of transduced cells in baboons. Hum Gene Ther. 2002; 13(8): 891-89.
    28. Rex TS, Peet JA, Surace EM, et al. The distribution, concentration, and toxicity of enhanced green fluorescent protein in retinal cells after genomic or somatic (virus-mediated) gene transfer. Mol Vis. 2005; 11:1236-45.
    29. Rizzuto R, Brini M, Pizzo P, et al. Chimeric green fluorescent protein, as a tool for visualizing subcellular organells in living cells. Curr Biol. 1995; 5(6):635-642.
    30. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987; 15(20): 8125-8148.
    31. Moriuchi A, Hirono S, Ido A, et al. Additive and inhibitory effects of simultaneous treatment with growth factors on DNA synthesis through MAPK pathway and G1 cyclins in rat hepatocytes. Biochem Biophys Res Commun. 2001; 280(1): 368-73.
    32. Nozato E, Shiraishi M, Nishimaki T. Up-regulation of hepatocyte growth factor caused by an over-expression of transforming growth factor beta, in the rat model of fulminant hepatic failure. J Surg Res. 2003; 115(2): 226-34.
    33. Mizuguchi T, Kamohara Y, Hui T, et a Regulation of c-met expression in rats with acute hepatic failure. J Surg Res. 2001; 9(2): 85-96.
    1.Lamireau T, Desmouliere A, Bioulac-Sage P, et al. Mechanisms of hepatic fibrogenesis. Arch Pediatr. 2002; 9(4)::392-405
    2 Mann DA, Smart DE. Transcriptional regulation of hepatic stellate cell activation. Gut 2002;50(6):891-896
    3 Lewindon PJ, Pereira TN, Hoskins AC, et al. The role of hepatic stellate cells and transforming growth factor-beta(1) in cystic fibrosis liver disease. Am J Pathol 2002;160(5):1705-1715
    4.Wells RG. Fibrogenesis. V. TGF-beta signaling pathways. Am J Physiol Gastrointest Liver Physiol. 2000; 279(5): G845-850.
    5.Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med. 2006; 10(1): 76-99.
    6.Okazaki I, Watanabe T, Hozawa S, et al. Reversibility of hepatic fibrosis: from the first report of collagenase in the liver to the possibility of gene therapy for recovery. Keio J Med 2001;50(2):58-65
    7.Gleizes PE, Munger JS, Nunes I, et al. TGF-beta latency: biological significance and mechanisms of activation. Stem Cells. 1997;15(3):190-7.
    8. Khalil N. TGF-beta: from latent to active.Microbes Infect. 1999; 1(15):1255-1263..
    9.Franzen P, Heldin CH, Miyazono K. The GS domain of the transforming growth factor-beta type I receptor is important in signal transduction. Biochem Biophys Res Commun. 1995; 207(2):682-689.
    10.Wrana JL, Attisano L, Wieser R, et al. Mechanism of activation of the TGF-βreceptors. Nature.1994; 370(6488):341-347
    11.de Caestecker M. The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev. 2004, 15(1): 1-11.
    12.Massague J, Wotton D. Transcriptional control by the TGFβ/Smad signaling system. EMBO J. 2000; 19(8): 1745-1754.
    13. Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev. 2005; 19(23):2783-810.
    14.Correia JJ, Chacko BM, Lam SS, et al . Sedimentation studies reveal a direct role of phosphorylation in Smad3:Smad4 homo- and hetero-trimerization. Biochemistry. 2001; 40(5):1473-1482.
    15.Piek E, Heldin CH, Ten Dijke P. Specificity, diversity, and regulation in TGF-β superfamily signaling. FASEB J. 1999; 13(15):2105-2124.
    16.Miyazono K. Signal transduction by bone morphogenetic protein receptors :functional roles of Smad proteins. Bone.1999; 25(1) :91-93.
    17.Li D, Friedman SL. Liver fibrogenesis and the role of hepatic stellate cells: new insights and prospects for therapy. J Gastroenterol Hepatol. 1999; 14(7):618-633.
    18.Dooley S, Delvoux B, Lahme B, et al. Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology. 2000; 31(5):1094-1106.
    19.Gressner AM. Transdifferentiation of hepatic stellate cells (Ito cells) to myofibroblasts: a key event in hepatic fibrogenesis. Kidney Int Suppl. 1996; 54: S39-45.
    20.Sanderson N, Factor V, Nagy P, et al. Hepatic expression of mature transforming growth factorβ1 in transgenic mice results in multiple tissue lesinos. Pro Natl Acad Sci USA. 1995; 92(7):2572-2576
    21.Poncelet AC, Schnaper HW. Sp1 and Smad proteins cooperate to mediate transforming growth factor-beta1-induced alpha2(I) collagen expression in human glomerular mesangial cells. J Biol Chem. 2001; 276(10): 6983-6992.
    22. Chadjichristos C, Ghayor C, Kypriotou M, et al. Sp1 and Sp3 transcription factors mediate interleukin-1 beta down-regulation of human type II collagen gene expression in articular chondrocytes. J Biol Chem. 2003; 278(41):39762-39772.
    23.Lindahl GE, Chambers RC, Papakrivopoulou J, et al. Activation of fibroblast procollagen alpha1(I) transcription by mechanical strainis transforming growth factor-beta-dependent and involves increased binding of CCAAT-binding factor ( CBF /NF2Y) at the proximal promoter. J Biol Chem. 2002; 277(8): 6153-6161.
    24.Kanamaru Y, Nakao A, Tanaka Y, et al. Involvement of p300 in TGF-beta /Smad-pathway-mediated alpha2(I) collagen expression in mouse mesangial cells.Nephron Exp Nephrol. 2003; 95(1): e36-42.
    25.Philips N, Keller T, Gonzalez S. TGF beta2like regulation of matrixmetallop roteinases by anti-transforming growth factor-beta, and anti-transforming growth factor-beta 1 antibodies in dermal fibroblasts:implications for wound healing. Wound Repair Regen. 2004; 12(1):53-59.
    26 梁志清,徐新保. TGF2β1 受体及其信号转导分子 smad4 在大鼠纤维化肝脏的表达及意义. 重庆医学. 2002; 31(7): 546-547.
    27.Gressner AM, Weiskirchen R, Breitkopf K, et al . Roles of TGF-eta inhepatic fibrosis. Front Biosci. 2002; 7: d793-807.
    28.Schnabl B, Kweon YO, Frederick JP, et al . The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology. 2001; 34 (1) :89-100.
    29.张国,王天才. smad3、smad7 基因表达与肝纤维化发病关系研究. 中华消化杂志. 2002; 22(11) :11647-11650.
    30.梁志清,何振平. 贮脂细胞TGF-β1 反义基因转移及对细胞外基质合成的抑制作用. 中华医学杂志.1998; 78(11): 850-852.
    31.Sato M, Kakubari M, Kawamura M, et al . The decrease in total collagen fibers in the liver by hepatocyte growth factor after formation of cirrhosis induced by thioacetamide. Biochem Pharmacol . 2000; 59 (6) :681- 690
    32.Ueki T, Kaneda Y, Tsutsui H, et al . Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nat Med. 1999 ; 5(2):226-230.
    33.Baroni GS, D'Ambrosio L, Curto P, et al. Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. Hepatology. 1996; 23(5) :1189-1199.
    34.Toyonaga T, Hino O, Sugai S, et al. Chronic active hepatitis in transgenic mice expressing interferon-gamma in the liver. Proc Natl Acad Sci U S A. 1994; 91(2):614-8.
    35.张立煌,姚航平,曹雪涛,等. 中华传染病杂志.1999; 17(3): 166-168
    36.Kolb M, Margetts PJ, Sime PJ, et al . Proteoglycans decorin and biglycan differentially modulate TGF-beta-mediated fibrotic responses in the lung.Am J Physiol Lung Cell Mol Physiol , 2001 , 280(6) :L1327 -L1334
    37.Shimizukawa M, Ebina M, Narumi K, et al. Intratracheal gene transfer of decorinreduces subpleural fibroproliferation induced by bleomycin. Am J Physiol Lung Cell Mol Physiol. 2003; 284(3): L526-532.
    38. Isaka Y, Brees DK, Ikegaya K, et al Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nat Med. 1996; 2(4): 418-423.
    39.蒋炜,王吉耀. 反义转化生长因子βⅡ型受体表达质粒对实验性肝纤维化的影响. 中华肝脏病杂志. 2004; 12(3):137-140.
    40.蒋炜, 王吉耀, 杨长青, 等. 反义转化生长因子 βⅠ型受体表达质粒对大鼠肝星状细胞功能的影响. 肝脏. 2004; 9(3): 145-147
    41.Qi Z, Atsuchi N, Ooshima A, et al. Blockade of type beta trans forming growth factor signaling prevents liver fibrosis and dysfunction in the rat . Proc Natl Acad Sci USA. 1999; 96(5): 2345-2349.
    42.Nakamura T, Sakata R, Ueno T, et al. Inhibition of transforming growth factor beta prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine treated rats.Hepatology ,2000 ,32(2) :247-255.
    43.Nakamura T, Ueno T, Sakamoto M, et al. Suppression of transforming growth factor-beta results in upregulation of transcription of regeneration factors after chronic liver injury. J Hepatol. 2004 Dec;41(6):974-82.
    44.George J, Roulot D, Koteliansky VE, et al. In vivo inhibition ofrat stellate cell activation by soluble transforming growth factor beta type Ⅱreceptor :a potential new therapy for hepatic fibrosis. Proc Natl Acad Sci USA. 1999; 96(22) :12719-12724.
    45.Ueno H , Sakamoto T , Nakamura T , et al. A soluble transforming growth factor beta receptor expressed in muscle prevents liver fibrogenesis and dysfunction in rats. Hum Geno Ther. 2000; 11(1) :33-42.
    46.Nakamuta M, Morizono S, Tsuruta S, et al. Remote delivery and expression of soluble type II TGF-beta receptor in muscle prevents hepatic fibrosis in rats. Int J Mol Med. 2005; 16(1): 59-64.
    47.Cui X, Shimizu I, Lu G,et al. Inhibitory effect of a soluble transforming growth factor beta type II receptor on the activation of rat hepatic stellate cells in primary culture. J Hepatol. 2003; 39(5): 731-7.
    48.Dooley S , Streckert M , Delvoux B , et al. Expression of Smads during in vitro transdifferentiation of hepatic stellate cells to myofibroblasts. Biochem Biophys Res Commun. 2001; 283(3): 554-562.
    49.罗海峰, 吴志勇, 邱江锋, 等. 特异性 siRNA 抑制肝星状细胞 Smad2 表达. 外科理论与实践. 2004; 9(4): 295-298.
    50.徐新保, 冷希圣, 杨晓,等. 阻断 TGF-β1 信号传导在减缓四氯化碳乙醇诱导的小鼠肝细胞癌发展中的作用. 中华医学杂志. 2004; 84 (13): 1122-1125.
    51.Dooley S, Hamzavi J, Breitkopf K, et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology. 2003 ; 125(1): 178-91.
    52.Nakao A , Fujii M , Matsumura R , et al. Transient gene transfer and expression of Smad prevents bleomycin2induced lung fibrosis in mice. J Clin Invest. 1999; 104(1):5-11
    53.Hou CC ,Wang WH ,Huang XR, et a. Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-beta signaling and fibrosis in rat remnant kidney.. Am J Patho. 2005; 166(3):761-771.
    54.Rockey DC. Gene therapy for hepatic fibrosis-bringing treatment into the new millennium Hepatology. 1999 ; 30(3):816-818.
    55.Yang YA, Dukhanina O, Tang B. Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest. 2002; 109(12):1607-1615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700