声信号在准多孔介质中的传播及害虫弱声信号特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
储粮害虫声测报技术是近年来生物声学学科中一个新的研究领域。与传统的储粮害虫检测方法相比,害虫的声测报技术作为一种快速、实用的新方法,正日益受到重视。在国外,通过监测储粮害虫声信号能够实现对储粮害虫侵害程度的量化,但在害虫声信号识别害虫种类方面的工作却鲜有报道。在国内,这一领域的研究基本处于空白。为了深入研究和有效监测粮堆内部深层害虫发出声信号的传播特性,本文首次采用驻波管法,对声信号在不同种类、不同厚度粮食中传播特性进行了检测和分析,并且进一步推广、发展了多孔介质中声传播理论,建立了粮食中声波传播模型。在声信号识别害虫种类方面进行了探索性的研究,对五种主要储粮害虫弱声信号(爬行声信号)进行了特征分析及识别,这一研究内容为有针对性地采取灭虫措施提供了依据,有利于及早确定防治对策,降低储粮损失。
     为了有效地研究储粮害虫所产生声信号在各种粮食中的传播特性,本文采用驻波管法,对十一种不同种类粮食在不同堆积厚度情况下的吸声性能进行了实验研究,粮食吸声特性与其颗粒的大小、形状、排列方式及粮食堆积厚度等有关,存在一定的规律,得出如下结论:同一厚度下,颗粒大的粮食较颗粒小的吸声性能差,颗粒由大到小,吸声系数峰值频率向低频方向移动;球形颗粒粮食较长形颗粒吸声性能差。粮食厚度也是影响其吸声性能的一个重要因素,粮食厚度增加,吸收频带加宽,低频吸声系数增大,最大吸收峰个数增加,并向低频方向移动。大颗粒粮食的平均吸声系数普遍较小颗粒的平均吸声系数小,颗粒大的随厚度继续增厚,平均吸声系数增加的趋势却很弱,而颗粒小的随厚度增厚,其平均吸声系数一直呈增大的趋势。粮食吸声性能与其颗粒形状、大小有关,而受粮食品种影响甚微。
     本文提出了粮食的吸声机理模型:当声波入射到粮堆表面时,认为主要由两种机理引起声波的衰减:一种是多孔性吸声机理。首次建立了准多孔介质的概念,可将堆积的粮食看作准多孔介质(颗粒介质),透入粮食内部的声波在孔隙中传播时,由于粘滞性和导热性的效应,把声能逐渐变成热能耗散。另一种吸声机理来自亥姆霍兹共振腔。一定厚度的粮食可看作是一种组合式共振吸声结构,每层认为由许多个单独亥姆霍兹共振腔并联而成,而层与层的共振腔为串联关系,表现为共振性吸收,出现了共振吸收峰。因而,粮食吸声性能介于多孔介质和共振吸
    
    声结构之间,是在上述两种机理的共同作用下,实现对声波的吸收。
     本文以广义出叭理论为基础,对Bi叶理论中忽略双相介质间热效应的问题
    进行了修改,将Johnson的多孔介质中声传播模型进行了推广改进,将其用于准
    多孔介质中,建立了粮食颗粒中声波传播理论模型,利用这一模型对粮食吸声系
    数的理论计算值与驻波管法测得实验值吻合较好。
     考虑准多孔介质声传播中存在空气与颗粒间的粘滞力和惯性力,推导出准多
    孔介质中孔隙动态曲折度函数表达式。进一步考虑准多孔介质声传播中同时还存
    在空气与颗粒间的热效应,推导出准多孔介质中空气动态压缩率函数表达式。给
    出了准多孔介质中吸声系数的理论计算公式,它是动态曲折度和动态压缩率的函
    数。
     利用准多孔介质中声传播模型,计算了堆积一定厚度的黄豆的吸声系数理论
    值。将粮食中孔隙看作既有圆柱形又有狭缝状是本文建立的一个新模型,这一模
    型与实际符合较好。
     本文研究分析了五种主要储粮害虫弱声信号。害虫声信号采集系统由日本产
    TEAC*;四通道录音机(数字记录仪)记录害虫爬行声信号,数字示波器将声信号
    转变为数字信号送计算机存储,由MATLAB软件对数据文件进行信号处理,包括信
    号的再现、放大、滤波、小波去噪、功率谱分析等工作。
     由五种害虫时域信号可见,信号间差异比较明显,杂拟谷盗爬行声脉冲最密
    集,赤拟谷盗次之,谷羹最次,这可能与害虫爬行时速度快慢有关,锯谷盗和长
    头谷盗是两种体积较小、爬行较快的害虫,其爬行声信号较难采集,但从去噪后
    的时域图中仍然可见到保留下来的信号成分,由于两者爬行较快,信号都表现得
    较为杂乱、无规律。五种害虫声信号功率谱幅值(能量)也明显不同,幅值由大
    到小依次为赤拟谷盗、杂拟谷盗、谷蠢、锯谷盗、长头谷盗。认为害虫爬行声能
    量与其体重成正比,体重大的害虫具有较大的振动能量。五种害虫声信号的峰值
    频率和主要频域范围也存在差异。五种害虫时域及频域信号的差异是害虫种类差
    异的表现。
The technique of detection acoustic signals of pests in stored grain represents the newly emerging field of Insect Acoustics in recent years. Compared with traditional inspection methods, the newly technique is a quick and practical method which is attracting increasing attention. It already can quantify the infestation in USA by detection the acoustic signals of pests that feed inside grain kernels. But there have been relatively few research efforts in identification the species of grain pests by the acoustic signals. To detect the sound produced by pest activity inside the grain it is necessary to understand the propagation properties of sound in various types of grain. This paper describes some experimental investigations of propagation properties of sound in various types and thickness of grain samples using the method of standing wave tube for the first time, extends the sound propagation theory in porous media and develops the sound propagation model in grain, analyzes and identifies the cree
    ping sound signals of five species of pests. These researches provide us a basis for forecasting the pests in grain in earlier stage, accurately utilizing pesticides, improving the efficiency of prevention and reducing the loss of stored grain.
    The sound absorption properties of various types and thickness of grain are measured by means of the standing wave tube technique. The following conclusions can be drawn: For the same thickness the larger grains has a smaller sound absorption coefficient than the smaller grains. The kernel in spheroid has a smaller sound absorption coefficient than in non-spheroid. The thickness of grain sample is an important factor effecting on the sound absorption coefficient. The average sound absorption coefficients of larger grains are smaller than the small grains in general. The properties of sound absorption coefficient of grain are in close relationship with the shape and size of kernel, and have no relation with the texture of solid grain.
    We consider there are two kinds of mechanism causing the attenuation of sound in grain. One kind of mechanism regards the grain as quasi-porous media. It was the viscous resistance and heat conduction in the narrow passageways between the grain kernels that convert the sound energy into heat energy and lose it. The other kind of
    
    
    mechanism regards the grain as a combined resonator. We regard every layer of grain as a lot of Helmholtz resonators in parallel, and regard different layer of grains as the paralleling resonators in series. The grain is a combined resonator in series and parallel.
    Based Biot's theory of acoustic propagation in porous media this paper applies Johnson's model to grain media. Considering the viscous interaction between the kernel and the air inside the grain the paper shows the dynamic tortuosity function in grain. Considering the thermal exchanges between the kernel and the air the paper shows the dynamic permeability function in grain. We consider the pores in grain both cylindrical pore and parallel slits. Further there has been the formula of the sound absorption coefficient of grain. The agreement between calculation and measurement is good.
    This paper analyzes and identifies the creeping sound signals of five species of pests. We collect the signals using a recording. The signals are transformed into digital signals and sent to a computer. Digital signal processing includes amplifying the sound signals, low-pass filtering, wavelet transform for de-noise and analyzing power spectra using MATLAB software. For different species of pests the acoustic characteristics are different in time domain and frequency domain. In time domain it is different in the number of sound pulse. In frequency domain it is different in the amplitude and main peak frequency range. These differences may be caused by the weight and creeping speed of different species of pests.
引文
[1]唐为民,文昌贵,刘仁华等,试论我国储粮技术的发展方向,粮食储藏,1992,21(5),17-25.
    [2]蒋中柱,刘晓夫,粮食储藏技术的现状及展望,粮食储藏,1992,21(3),22-27.
    [3]姚渭,小麦散装粮堆昆虫群落组成及结构分析,中国粮油学报,1992,7(3),6-13.
    [4]姚渭,陈川,王育杰,大麦散装粮堆仓库昆虫群落组成及结构分析,西北大学学报,1993,23(3),241-245.
    [5]姚渭,傅剑萍,蔡敏春,散装粮堆储粮昆虫种群动态微机远距离监测系统研究进展,微机发展,1994,1,37-39.
    [6]蒋小龙,几种诱捕器对储粮害虫诱捕效果研究,郑州粮食学院学报,1995,16(1),89-96.
    [7]蒋庆慈,黄辅元,姜武峰,几种主要储粮害虫对磷化氢、马拉硫磷抗药性及对策技术研究,郑州粮食学院学报,1995,16(3),79-87.
    [8]王殿轩,朱广有,侯泽华,防虫灵和几种惰性粉对储粮害虫作用的比较研究,郑州粮食学院学报,1995,16(4),33-37.
    [9]檀先昌,近十五年我国储粮害虫防治研究的进展,粮食储藏,1995,Z1,63-76.
    [10]吕季璋,钟丽玉,放射线辐照防治储粮害虫的研究,粮食储藏,1995,Z1,86-89.
    [11]梁永生,诱捕器在储粮害虫防治中的应用,粮食储藏,1995,Z1,89-92.
    [12]沈兆鹏,隐蔽和非隐蔽储粮害虫检测技术进展,粮食储藏,1995,Z1,96-100.
    [13]姜武峰,应用中草药防治储粮害虫的研究,粮食储藏,1995,Z1,182.
    [14]黄建国,话仓虫,粮食科技与经济,1995,4,25-26.
    [15]张学兵,浅谈储粮害虫的经济损害水平和经济阈限,粮食科技与经济,1996,5,35-36.
    [16]胡维国,张立力,常见储粮害虫实验种群生命表数据库管理系统的研究,陕西粮油科技,1996,21(2),58-60.
    [17]张国梁,对储粮害虫化学防治现状的探讨,粮食储藏,1996,25(1),14-15.
    [18]张国梁,储粮害虫防护剂使用现状与展望,粮食储藏,1996,25(4),27-31.
    [19]付昌斌,张兴,利用植物性物质防治储粮害虫研究进展,粮食储藏,1996,
    
    25(5),6-12.
    [20]黄建国,三种象虫的鉴定与防治方法,粮食科技与经济,1996,1,12-13.
    [21]刘金华,张聚元,章梅,谈粮食储藏与数学,粮食科技与经济,1996,4,39-41.
    [22]王泽林,储粮有害生物的生存、消长与环境条件的关系,粮食科技与经济,1996,4,37-38.
    [23]李海水,储粮害虫防治对策之管见,西部粮油科技,1997,22(3),41-43.
    [24]沈兆鹏,储粮害虫防治新方法——生物防治法,粮食储藏,1997,26(2),26-30.
    [25]沈兆鹏,八大储粮大害虫———五象三蠹,天津粮油科技,1997,66(2),14-15.
    [26]吴得明,浦海根,谷蠹的生物学特性与防治方法,粮食储藏,1997,26(2),30-36.
    [27]孟朝良,谷蠹已成为储粮害虫防治的主要对象,四川粮油科技,1998,57(1),41-42.
    [28]曹崇炬,胡晓东,胡新胜等,储粮害虫危害损失的调查,植物检疫,1998,12(6),337.
    [29]蒋中柱,李友根,聂守明,当今世界储粮技术状况及21世纪展望,粮食科技与经济,1998,6,21-23.
    [30]云昌杰,粮食储藏技术的回顾与展望,粮食科技与经济,1998,6,24-26.
    [31]黄木姣,汪肇平,澳大利亚散装储运现代化技术设备考察报告,粮食科技与经济,1998,2,30-33.
    [32]季红旗,沈正宇,储粮害虫监测器的研究与应用,粮食流通技术,1999,4,17-19.
    [33]姜武峰,马文斌,向金平等,植物防护剂安粮仙防治储粮害虫的研究,粮食储藏,1999,28(5),19-22.
    [34]万拯群,当前我国科学保粮问题之我见,粮食储藏,1999,28(1),25-29.
    [35]蒋中柱,建国50年来储粮技术的发展历程,粮食科技与经济,1999,5,5-7.
    [36]靳祖训,中国粮食储藏科学研究迅速发展的五十年,粮食储藏,1999,28(4),3-12.
    [37]李隆术,靳祖训,中国粮食储藏科学研究若干重大成就,粮食储藏,1999,28(6),3-12.
    [38]陈萍,林玉辉,几种害虫诱捕方法应用效果的调查,粮食储藏,1999,28(6),25-28.
    
    
    [39]沈兆鹏,用信息素监控储粮害虫,四川粮油科技,1999,61(1),34-36.
    [40]滕召胜,郁文贤,李继锋,储粮参数综合测试专家系统,计算机工程与应用,1999,11,108-109.
    [41]白明杰,党保华,曹阳等,赤拟谷盗生活史参数变化的研究,粮食储藏,1999,28(3),8-14.
    [42]唐为民,张旭晶,巫幼华等,国内外储粮害虫防治技术研究的新进展(1),四川粮油科技,2000,67(3),29-31.
    [43]唐为民,张旭晶,巫幼华等,国内外储粮害虫防治技术研究的新进展(2),四川粮油科技,2000,68(4),36-39.
    [44]孙明常,温钦豪,莫炳文,钢板仓储粮害虫陷阱诱捕技术研究,粮食储藏,2000,29(5),20-23.
    [45]徐昉,邱道尹,沈宪章,粮仓害虫的特征提取与分类的研究,郑州工业大学学报,2000,21(4),62-65.
    [46]丁声俊,我国周边国家粮食流通体制政策和储备综述及启示(上),粮食科技与经济,2000,1,26-30.
    [47]丁声俊,我国周边国家粮食流通体制政策和储备综述及启示(中),粮食科技与经济,2000,2,23-26.
    [48]梁权,引人注目的储粮害虫防治研究进展述评,粮食储藏,2001,30(1),6-11.
    [49]郭敏,尚志远,储粮害虫声信号的检测和应用,物理,2001,30(1),39-42.
    [50]姚渭,王艳,刘晓农,储粮害虫钻孔行为初步研究,粮食储藏,2001,30(2),8-9.
    [51]蒋中柱,化学信息素在储粮害虫综合防治中的应用,粮食科技与经济,2001,2,32-34.
    [52]万拯群,对当前储粮技术与粮仓建设的浅见,粮食储藏,2001,30(1),46-48.
    [53]李隆术,储藏产品保护基础科学的探讨,粮食储藏,2001,30(1),3-5.
    [54]郭红,石林,如何提高LYLDC-1A粮情测控系统的数据采集与传输性能,粮食储藏,2001,30(1),32-34.
    [55]何忠,淡色库蚊的飞翔声,昆虫学报,1984,27(4),472-475.
    [56]徐启丰,蚊虫与声音,生物学动态,1984,2,15-20.
    [57]何忠,陈念丽,北京地区五种常见鸣虫的鸣声结构,动物学报,1985,31(4),324-330.
    [58]吴福桢,冯平章,何忠,北京及银川常见蟋蟀鸣叫习性与种类鉴定,昆虫学
    
    报,1986,29(1),62-66.
    [59]彩万志,昆虫的发音及其在分类上的应用,昆虫知识,1988,25(1),41-44.
    [60]何忠,陈念丽,席瑞华,非洲蝼蛄的鸣声结构及声引诱,动物学报,1989,35(1),73-81.
    [61]程惊秋,楝星天牛胸部摩擦和鞘翅振动发声及其声学特性的研究,昆虫学报,1993,36(2),150-157.
    [62]姜仕仁,丁平,诸葛阳,嵊泗岛和杭州地区白头鹎鸣声特征比较研究,动物学研究,1994,15(3),19-27.
    [63]雷仲仁,李莉,闵一健等,不同地区黑蚱蝉的形态结构与鸣声比较研究,西北农业学报,1994,3(2),48-52.
    [64]雷仲仁,周尧,李莉,蝉鸣特征及其在分类学上的意义,昆虫分类学报,1994,16(1),51-58.
    [65]雷仲仁,李莉,王缉健,蟪蛄的发音器构造及鸣声分析,西北农业大学学报,1994,22(2),23-27.
    [66]吉敬合,韩春琏,马志远,一种画眉雌性鸣声波形和频谱特征,山西大学学报(自然科学版),1995,18(3),280-284.
    [67]姜仕仁,丁平,施青松等,动物呜叫声计算机分析,生态学杂志,1995,14(5),1-7.
    [68]姜仕仁,丁平,诸葛阳,三种蛙鸣声特征比较研究,动物学研究,1995,16(1),75-81.
    [69]曹立民,郑哲民,廉振民,东北地区跃度蝗属鸣声结构的比较研究(直翅目,网翅蝗科),昆虫分类学报,1995,17(1),70-74.
    [70]蒋锦昌,杨新宇,唐欢,蝉类用于声通讯的鸣声特性及其飞行趋声范围的估计,声学学报(中文版),1995,20(3),226-231.
    [71]俞清,刘如笋,鸟声研究介绍----国内外综述,动物学杂志,1995,30(1),52-55.
    [72]何忠,蝼蛄的声学通讯,生物学通报,1995,30(12),6-7.
    [73]姜仕仁,丁平,李建华,红腹锦鸡鸣声声谱分析,动物学研究,1996,17(4),403-409.
    [74]姜仕仁,丁平,邬艳春等,竹鸡鸣声特征分析,浙江大学学报(自然科学版),1996,23(2),188-193.
    [75]何其超,房斌,龙建忠等,草原鼠兔呜叫声的观察和声学特征分析,声学学报,1996,21(4),679-684.
    
    
    [76]王丁,长江江豚声信号及其声行为的初步研究,水生生物学报,1996,20(2),127-133.
    [77]蒋锦昌,杨新宇,刘向群,蟪蛄蝉的两种行为叫声及其发声机制的分析,声学学报,1996,21(4),313-318.
    [78]刘如笋,丁文宁,赵欣如,丽色噪鹛鸣声的语图结构初步研究,动物学报,1997,43(增刊),69-72.
    [79]刘如笋,俞清,丁文宁等,橙翅噪鹛的声行为,动物学报,1997,43(增刊),73-78.
    [80]雷仲仁,蒋锦昌,李莉等,不同地区蟪蛄蝉求偶鸣声的比较,昆虫学报,1997,40(4),349-357.
    [81]张志涛,昆虫声通讯浅述与稻飞虱鸣声研究,生命科学,1997,9(5),227—230.
    [82]程明华,黄凤鹏,于新胜,威德尔海豹发声的信号特征初步研究,极地研究,1998,10(4),272-281.
    [83]李恺,郑哲民,棺头蟋属六种常见蟋蟀鸣声特征分析与种类鉴定(直翅目,蟋蟀总科),昆虫分类学报,1999,21(1),17-21.
    [84]雷富民,鸟类鸣声结构地理变异及其分类学意义,动物分类学报,1999,24(2),232-240.
    [85]雷富民,鸟类鸣声在鸟类系统学研究中的作用初探,动物分类学报,1999,24(4),461-466.
    [86]李恺,廉振民,湖北省三种蟋蟀鸣声结构分析(直翅目,蟋蟀总科),昆虫分类学报,1999,21(3),187-190.
    [87]许兰英,齐孟鹗,黄、渤海两种鱼噪声谱的水下观测,海洋科学,1999,4,13-14.
    [88]王丁,王克雄,赤松友成等,白鱀豚哨叫声的研究,海洋与湖沼,1999,30(4),349-354.
    [89]邰发道,王廷正,闵一建,棕色田鼠的发声及其频谱分析,动物学研究,1999,20(4),278-283.
    [90]张树义,赵辉华,冯江等,蝙蝠回声定位与捕食对策的研究,动物学杂志,1999,34(6),47-50.
    [91]常岩林,昆虫的鸣声通讯,生物学通报,2000,35(2),11-12.
    [92]加米拉,乌旭,汪大伟等,朱雀鸣声声谱与语图的初步分析,东北师大学报(自然科学版),2000,32(1),71-73.
    [93]杨培林,常岩林,芦荣胜,日本条螽鸣声特征的初步研究,广西科学院学报,
    
    2000,16(3),138-141.
    [94]韩春琏,陕方,曹家林,大熊猫“唔”叫声的时域和频域特征,声学学报,2000,25(4),264-270.
    [95]蒋锦昌,杨新宇,陈浩,黑蚱蝉的叫声模式和神经肌肉活动特征,声学学报,2000,25(5),429-434.
    [96]石福明,杨培林,蒋书楠,鼻优草螽和苍白优草螽鸣声和发声器的研究,动物学研究,2001,22(2),89-92.
    [97]李金钢,王廷正,何建平等,甘肃鼢鼠的震动通讯,兽类学报,2001,21(2),153-154.
    [98]李金钢,何建平,王廷正等,甘肃鼢鼠鸣声声谱分析,动物学研究,2000,21(6),458-462.
    [99]张树义,王立新,人工神经网络在蝙蝠回声定位叫声识别方面的应用,动物学杂志,2001,36(4),74-77.
    [100]韩春琏,陕方,曹家林,大熊猫的吠叫声特征与家狗的吠声比较,声学学报,2001,26(3),264-271.
    [101]张宗茂,顾熙棠,双层微穿孔板吸声结构设计中的共振和反共振频率计算,噪声与振动控制,1994,1,13-17.
    [102]胡颂纯,朱芳英,钟祥璋,矿渣棉板吸声性能的研究,噪声与振动控制,1994,3,29-30.
    [103]胡颂纯,钟祥璋,纤维型多孔吸声材料流阻的研究,声学技术,1994,13(3),139-143.
    [104]陈瑞英,王宜怀,冯德旺,十种主要用材吸声性能的实验研究,福建林学院学报,1994,14(4),306-310.
    [105]陆风华,李竹园,郑渝,矿棉吸声体吸声特性的研究,噪声与振动控制,1994,4,37-41.
    [106]汤道敏,无机纤维吸声材料声学基本常数的测定,噪声与振动控制,1995,6,23-24.
    [107]陈瑞英,王宜怀,冯德旺,木材吸声系数与入射声波频率关系的回归分析,浙江林学院学报,1995,12(1),31-35.
    [108]黄险峰,凌成功,微穿孔板吸声结构的机理及应用探讨,广西土木建筑,1995,20(3),111-117.
    [109]钟祥璋,周海鹰,硬质矿棉板的吸声研究,噪声与振动控制,1996,1,18-21.
    [110]张彦,周心艳,李旭祥,发泡聚合物——无机物复合吸声材料的研究,噪
    
    声与振动控制,1996,3,33-35.
    [111]赵书兰,朱荣凯,张凤敏,橡胶改性即阻燃泡沫材料吸声性能的研究,橡胶工业,1997,44(12),711-714.
    [112]李明俊,孙世宏,邓民生,不锈钢纤维棉、毡吸声性能探讨,南昌航空工业学院学报,1997,1,76-80.
    [113]昌晶,刘达德,田新浩等,硅酸铝棉吸声性能的研究,噪声与振动控制,1997,2,26-27.
    [114]任润桃,DAM复合型阻尼吸声穿孔板吸声性能的研究,噪声与振动控制,1997,4,18-20.
    [115]谢浩,试析在建筑声学中吸声与隔声的区别,广西土木建筑,1997,22(2),53-55.
    [116]钟祥璋,罗小利,冬利,覆面层对玻璃棉吸声性能的影响,应用声学,1997,17(4),41-43.
    [117]钟祥璋,刘明明,吸声泡沫玻璃的吸声特性,新型建筑材料,1998,3,27-29,
    [118]刘克,丁辉,无纤维吸声材料研究进展,物理,1998,27(9),537-540.
    [119]曾晓冬,李旭祥,席莺等,聚氯乙烯——岩棉复合发泡吸声材料的研制,化工新型材料,1998,5,37-38.
    [120]许庆彦,陈玉勇,李庆春,加压渗流铸造多孔铝合金及其吸声性能,铸造,1998,4,1-4.
    [121]席莺,李旭祥,方志刚,PVC/NBR/无机物混合发泡吸声材料,功能高分子学报,1998,11(4),547-549.
    [122]许庆彦,陈玉勇,李庆春,铸造多孔铝合金的吸声性能,中国有色金属学报,1998,8(4),611-616.
    [123]程桂萍,陈宏灯,何德坪,多孔铝在不同介质中的吸声性能,噪声与振动控制,1998,5,29-31.
    [124]冬利,罗小华,钟祥璋,SoundTex吸声无纺布的吸声特性,噪声与振动控制,1998,532-34.
    [125]许庆彦,陈玉勇,李庆春,多孔铝合金材料吸声性能的研究,宇航材料工艺,1998,2,39-43.
    [126]程桂萍,陈宏灯,何德坪,孔结构对多孔铝吸声性能的影响,机械工程材料,1999,23(5),30-31.
    [127]毛东兴,洪宗辉,王佐民,高效吸声泡沫玻璃声学性能的实验研究,噪声与振动控制,1999,3,30-31.
    
    
    [128]徐志云,黄其柏,姚本炎,阻抗复合吸声结构的理论与声学特性研究,华中理工大学学报,1999,27(1),53-55.
    [129]钟祥璋,祝培生,莫方朔,超轻硅酸铝棉板吸声性能的研究,新型建筑材料,1999,5,40-42.
    [130]毛东兴,王佐民,双层微穿孔结构扩散场吸声特性,声学技术,1999,18(2),61-65.
    [131]毛东兴,洪宗辉,聚氰胺酯泡沫材料吸声性能及其低频拓展,噪声与振动控制,1999,2,27-29.
    [132]王月,泡沫铝的吸声特性及影响因素,材料开发与应用,1999,14(4),15-18.
    [133]钱军民,李旭祥,茅素芬,PVC/EPR/岩棉发泡复合材料吸声性能的研究,功能材料,1999,30(6),663-667.
    [134]罗延忠,微穿孔吸声特性的数值分析,辽宁工程技术大学学报(自然科学版),1999,18(5),525-527.
    [135]兰晓霞,赵书兰,谭学杰等,EPR改性即微穿孔板吸声性能的研究,橡胶工业,1999,46(10),598-601.
    [136]兰晓霞,赵书兰,谭学杰等,改性PP基吸声体吸声性能的研究,化学与粘合,1999,4,167-169.
    [137]杨文斌,李良,薄板空间吸声体吸声性能的研究,河北建筑科技学院学报(自然科学版),1999,16(2),22-25.
    [138]张燕,崔喆,陈花玲,金属纤维材料的吸声特性及应用研究,噪声与振动控制,1999,5,32-36.
    [139]钱军民,李旭祥,聚合物基复合泡沫材料的吸声机理,噪声与振动控制,2000,2,41-43.
    [140]王月,付自来,真空渗流法制备的通孔泡沫铝的吸声性能,材料开发与应用,2000,15(3),12-15.
    [141]钱军民,李旭祥,聚合物---岩棉发泡复合材料吸声性能的研究,材料开发与应用,2000,15(3),16-18.
    [142]彭小云,吴雪峰,微穿孔金属板空间吸声体的吸声特性,华东交通大学学报,2000,17(1),12-16.
    [143]彭小云,微穿孔板吸声体的实验研究,华东交通大学学报,2000,17(2),55-59.
    [144]吴小清,王登峰,徐诚,吸声材料的当量声阻率,农业机械学报,2000,
    
    31(2),19-21.
    [145]马大猷,刘克,微穿孔吸声体随机入射吸声性能,声学学报(中文版),2000,25(4),289-296.
    [146]毛东兴,王佐民,微缝板结构的吸声理论及类比设计,同济大学学报(自然科学版),2000,28(3),316-319.
    [147]焦风雷,杨传成,杨建军,微穿孔板吸声体的准确理论和计算机辅助设计,噪声与振动控制,2000,1,18-21.
    [148]于晓强,李耀先,王静媛等,聚合物材料的吸音系数----温度----频率三元关系的研究,高等学校化学学报,2000,21(1),144-147.
    [149]张永锋,马玲俊,崔昭霞,泡沫镍吸声性能的研究,噪声与振动控制,2001,2,30-33.
    [150]余欢,方立高,严青松,多孔泡沫铝的制备及其吸声性能测定,热加工工艺,2001,1,36.
    [151]席莺,李旭祥,方志刚,聚氯乙烯基混合吸声材料的研究,高分子材料科学与工程,2001,17(2),129-132.
    [152]王月,孔结构对通孔泡沫铝水声吸声性能的影响,材料开发与应用,2001,16(4),16-18
    [153]钱军民,李旭祥,聚合物---无机纤维复合泡沫材料吸声性能的研究,高分子材料科学与工程,2001,17(4),145-148.
    [154]钱军民,李旭祥,EPR改性PVC泡沫材料吸声性能的研究,橡胶工业,2001,48(8),463-465.
    [155]钱祖文,多孔介质中的声传播及其研究进展,物理,1995,24(9),534-538.
    [156]乔文孝,吴文虬,王耀俊,多孔介质声学研究进展,物理学进展,1996,16(3-4),386-395.
    [157]刘仲一,韩其玉,多孔介质声波传播,石油大学学报,1994,18(6),30-35.
    [158]刘占芳,严波,多孔材料中声波的传播与演化,应用力学学报,1999,16(1),30-46.
    [159]诸国桢,流体饱和多孔介质中的声波,应用声学,1994,13(4),1-6.
    [160]刘银斌,李幼铭,吴如山,横向各向同性多孔介质中的地震波传播,地球物理学报,1994,37(4),499-514.
    [161]汪越胜,章梓茂,横观各向同性液体饱和多孔介质中平面波的传播,力学学报,1997,29(3),257-268.
    [162]姚武川,姚天任,经典谱估计方法的MATLAB分析,华中理工大学学报,2000,
    
    28(4),45-47.
    [163]樊启斌,李虹,MATLAB语言的功能、特点及其应用,测绘信息与工程,2000,4,29-32.
    [164]张延华,面向多科学的新一代程序设计语言---MATLAB5.1概述,计算机应用研究,1998,6,4-8.
    [165]李莹,孙汪典,基于MATLAB的实验信号处理,暨南大学学报(自然科学版),2001,22(1),26-30.
    [166]顾小军,钱苏翔,朱夏青,基于MATLAB的信号分析系统,嘉兴学院学报,2001,13(3),74-76.
    [167]潘伟,郭秦,王汉功,MATLAB语言及其应用程序接口,微型电脑应用,2001,17(1),43-46.
    [168]张延华,高技术计算环境---MATLAB5.2应用工具箱现状及发展,计算机应用研究,1999,7,3-6.
    [169]严荣国,薛重德,一种基于声卡和MATLAB的信号采集和分析的方法,淮海工学院学报,2001,10(1),11-14.
    [170]陶明璋,吴明光,Windows环境下应用MATLAB的软件开发技术,微机发展,1996,5,32-35.
    [171]戴军,MATLAB软件在信号处理中的应用,吉首大学学报(自然科学版),1997,18(4),54-55.
    [172]王利亚,蔡文生,印春生等,一种有效提取弱信号的新方法,高等学校化学学报,2000,21(1),53-55.
    [173]马华,王玲,谈谈傅立叶与傅立叶分析,高等数学研究,1999,4,46-47.
    [174]刘进明,应怀樵,频率在FFT谱上位置对加窗泄露的影响,应用力学学报,1998,15(2),25-31.
    [175]陈奎孚,焦群英,高小榕,提高FFT谱质量的一种新方法,振动、测试与诊断,1998,18(3),216-220.
    [176]陆桂芳,信号的采样及其频谱的计算机辅助分析,五邑大学学报,1997,11(1),40-44.
    [177]侯朝焕,声信号处理新进展,物理学进展,1996,16(3),578—584.
    [178]Hagstrum DW, Reed C, Kenkel P, Management of stored wheat insect pests in the USA, Integrated Pest Management Review, 1999, 4(2), 127-142.
    [179]Hagstrum DW, Flinn PW, Subramanyam Bh, Predicting Insect Density from Probe Trap Catch in Farm-stored Wheat, Journal of Stored Products Research,
    
    1998, 34(4), 251-262.
    [180]Throne JE, Hagstrum DW, Nawrot J, Computer model for simulating almond moth (Lepidoptera: Pyralidae) population dynamics, Environmental Entomology, 1998, 27(2),344-354.
    [181]Hagstrom DW, Subramanyam Bh, Flinn PW ,Nonlinearity of a generic variance-mean equation for stored-grain insect sampling data, Environmental Entomology, 1997, 26(6),1213-1223.
    [182]Hagstnnn DW, Monitoring and predicting population growth of Rhyzopertha dominica (Coleoptera: Bostrichidae) over a range of environmental conditions, Environmental Entomology, 1996, 25(6), 1354-1359.
    [183]Subramanyam B, Hagstrum DW, Schenk TC ,Sampling adult beetles (Coleoptera) associated with stored grain: Comparing detection and mean trap catch efficiency of two types of probe traps, Environmental Entomology, 1993, 22(1),33-42.
    [184]Subramanyam B, Hagstrom DW, Predicting development times of six stored-product moth species(Lepidoptera: Pyralidae) in relation to temperature, relative humidity, and diet, European Journal of Entomology, 1993, 90(1),51-64.
    [185]Flinn PW, Hagstrum DW, Muir WE, Spatial model for simulating changes in temperature and insect population dynamics in stored grain, Environmental Entomology, 1992, 21(6),1351-1356.
    [186]Hagstrom DW, Milliken GA, Modeling differences in insect developmental times between constant and fluctuating temperatures, Annals of the Entomological Society of America, 1991, 84(4),369-379.
    [187]Flinn PW, Hagstrom DW, Simulations comparing the effectiveness of various stored-grain management practices used to control Rhyzopertha dominica (Coleoptera: Bostrichidae), Environmental Entomology, 1990, 19(3), 725-729.
    [188]Hagstrum DW, Flinn PW, Simulations comparing insect species differences in response to wheat storage conditions and management practices, Journal of Economic Entomology, 1990, 83(6), 2469-2475.
    [189]Hagstrum DW, Flinn PW, Subramanyam B, Interpretation of trap catch for detection and estimation of stored-product insect populations, Journal of the Kansas Entomological Society, 1990, 63(4), 500-505.
    [190]Cupems GW, Fargo WS, Flinn PW, Variables affecting capture of stored-grain insects in probe traps, Journal of the Kansas Entomological Society, 1990,
    
    63(4),486-489.
    [191]Hagstrum DW, Infestation by Cryptolestes ferrugineus (Coleoptera: Cucujidae) of newly harvested wheat stored on three Kansas farms, Journal of Economic Entomology, 1989, 82(2), 655-659.
    [192]Hagstrum DW, Throne JE, Predictability of stored-wheat insect population trends from life history traits, Environmental Entomology, 1989, 18(4),660-664.
    [193]Lhaloui S, Hagstrum DW, Keith DL, Combined influence of temperature and moisture on red flour beetle(Coleoptera: Tenebrionidae) reproduction on whole grain wheat, Journal of Economic Entomology, 1988, 81(2), 488-489.
    [194]Hagstrum DW, Meagher RL, Smith LB, Sampling statistics and detection or estimation of diverse populations of stored-product insects, Environmental Entomology, 1988, 17(2),377-380.
    [195]Hagstrom DW, Milliken GA, Quantitative analysis of temperature, moisture, and diet factors affecting insect developmem, Annals of the Entomological Society of America, 1988, 81(4),539-546.
    [196]Lippert GE, Hagstrum DW, Detection or estimation of insect populations in bulk-stored wheat with probe traps, Journal of Economic Entomology, 1987, 80(3),601-604.
    [197]Hagstrum DW, Seasonal variation of stored wheat environment and insect populations, Environmental Entomology, 1987, 16(1),77-83.
    [198]Hagstrum DW, Preharvest infestation of cowpeas by the cowpea weevil (Coleoptera: Bruchidae) and population trends during storage in Florida, Journal of Economic Entomology, 1985, 78(2),358-361.
    [199]Hagstrum DW, Milliken GA, Waddell MS, Insect distribution in bulk-stored wheat in relation to detection or estimation of abundance, Environmental Entomology, 1985, 14(6),655-661.
    [200]Hagstrum DW, Growth of Ephestia cautella (Walker) population under conditions found in an empty peanut warehouse and response to variations in the distribution of larval food, Environmental Entomology, 1984, 13(1), 171-174.
    [201]Hagstrum DW, Self-provisioning with paralyzed hosts and age, density, and concealment of hosts as factors influencing parasitization of Ephestia cautella (Walker) (Lepidoptera: Pyralidae) by Bracon hebetor Say (Hymenoptera: Braconidae), Environmental Entomology, 1983, 12(6),1727-1732.
    
    
    [202]Principe Jose C, Zahalka Abir, Noisy desired signal in transient detection using neural networks, PROC SPIE INT SOC OPT ENG., SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, BELLINGHAM, WA (USA), 1993, 2036,292-300.
    [203]Shuman D, Coffelt JA, Vick KW, Quantitative acoustical detection of larvae feeding inside kernels of grain, Journal of Economic Entomology, 1993, 86(3),933-938.
    [204]Mankin RW, Mayer MS, Grant AJ, Sensitivity of Trichoplusia ni (Huebner) pheromone receptor neurons: Relationships between neural thresholds and behavioral responses, Journal of Comparative Physiology, A, 1991, 168(6), 739-747.
    [205]Vick KW, Mankin RW, Cogburn RR ,Review of pheromone-baited sticky traps for detection of stored-product insects, Journal of the Kansas Entomological Society, 1990, 63(4), 526-532.
    [206]Mankin RW, Grant AJ, Mayer MS ,A microcomputer-controlled response measurement and analysis system for insect olfactory receptor neurons, Journal of Neuroscience Methods, 1987, 20(4),307-322.
    [207]Lewis VR, Alternative control strategies for termites, Journal of Agricultural Entomology, 1997, 14(3),291-307.
    [208]Lemaster RL, Beall FC, Lewis VR, Detection of termites with acoustic emission, Forest Products Journal, 1997, 47(2),75-79.
    [209]Lewis VR, Haverty MI, Evaluation of six techniques for control of the western drywood termite (Isoptera: Kalotermitidae) in structures,Journal of Economic Entomology, 1996, 89(4),922-934.
    [210]Dahlsten DL, Dreistadt SH, Hajek AE, Pest management in the urban forest, California Agriculture, 1985, 39(1-2),21-22.
    [211]Volney WJA, Milstead JE, Lewis VR, Effect of food quality, larval density, and photoperiod on the feeding rate of the California oakworm (Lepidoptera: Dioptidae), Environmental Entomology, 1983, 12(3),792-798.
    [212]White NDG; Arbogast RT, Fields PG, The development and use of pitfall and probe traps for capturing insects in stored grain, Journal of the Kansas Entomological society, 1990, 63(4),506-525.
    [213]Petitt FL, Shuman DS, Wietlisbach DO, An automated system for collection
    
    and counting of parasitized leafminer (Diptera: Agromyzidae) larvae, Florida Entomologist, 1996, 79(3),450-454.
    [214]Shuman D, Coffelt JA, Weaver DK, Computer-based electronic fall-through probe insect counter for monitoring infestation in stored products, Transactions of the ASAE, 1996, 39(5), 1773-1780.
    [215]Jansson RK, Heath RR, Coffelt JA ,Temporal and spatial patterns of sweetpotato weevil (Coleoptera: Curculionidae) counts in pheromone-baited traps in white-fleshed sweet potato fields in Southern Florida, Environmental Entomology, 1989, 18(4),691-697.
    [216]Greenfield MD, Coffelt JA, Reproductive behaviour of the lesser waxmoth, Achroia grisella(Pyralidae: Galleriinae): Signalling, pair formation, male interactions, and mate guarding, Behaviour, 1983, 84(3-4),287-314.
    [217]Zayas IY, Flinn PW ,Detection of insects in bulk wheat samples with machine vision, Transactions of the American Society of Agricultural Engineers, 1998, 41(3),883-888.
    [218]Brenner RJ, Focks DA, Arbogast RT ,Practical Use of Spatial Analysis in Precision Targeting for Integrated Pest Management, American Entomologist, 1998, 44(2),79-101.
    [219]Weaver DK, Dunkel FV, Ntezumbanza L, The efficacy of linalool, a major component of freshly-milled Ocimum canum Sims (Lamiaceae), for protection against postharvest damage by certain stored product Coleoptera, J. STORED PROD. RES., 1991, 27(4),213-220.
    [220]Weaver DK, McFarlane JE, The effect of larval density on growth and development of Tenebrio molitor, Journal of Insect Physiology, 1990, 36(7),531-536.
    [221]Arbogast RT, Weaver DK, Kendra PE, Implications of spatial distribution of insect populations in storage ecosystems, Environmental Entomology, 1998, 27(2), 202-216.
    [222]Weaver DK, McFarlane JE, The effect of larval density on growth and development of Tenebrio molitor, Journal of insect physiology, 1990, 36 (7),531-536.
    [223]Shaw KL, Further acoustic diversity in Hawaiian forests: two new species of Hawaiian cricket (Orthoptera: Gryllidae: Trigonidiinae Laupala), Zoological
    
    Journal of the Linnean Society,2000,129(1),73-91.
    [224]Martin SD, Gray DA, Cade WH, Fine-scale temperature effects on cricket calling song, Canadian Journal of Zoology/Revue Canadien de Zoologic, 2000,78(5), 706-712.
    [225]Sun L, Wilczynski W, Rand AS, Ryan MJ ,Trade-off in short- and long-distance communication in tungara(Physalaemus pustulosus) and cricket (Acris crepitans) frogs,Behavioral Ecology,2000,11(1),102-109.
    [226]Prestwich KN, Lenihan KM, Martin DM, The control of carrier frequency in cricket calls: a refutation of the subalar-tegminal resonance/auditory feedback model, Journal of Experimental Biology, 2000, 203(3), 585-596.
    [227]Kolluru GR, Variation and Repeatability of Calling Behavior in Crickets Subject to a Phonotactic Parasitoid Fly, Journal of Insect Behavior, 1999, 12(5), 611-664.
    [228]Burmeister S, Wilczynski W, Ryan MJ,Temporal call changes and prior experience affect graded signalling in the cricket frog,Animal Behaviour, 1999,57(3),611-618.
    [229]Farris HE, Forrest TG, Hoy RR, The effect of ultrasound on the attractiveness of acoustic mating signals, Physiological Entomology, 1998, 23(4),322-328.
    [230]Hedrick A, Weber T, Variance in female responses to the fine structure of male song in the field cricket, Gryllus integer, Behavioral Ecology, 1998,9(6),582-591.
    [231]Chu J, Marler CA, Wilczynski W, The Effects of Arginine Vasotocin on the Calling Behavior of Male Cricket Frogs in Changing Social Contexts, Hormones and Behavior, 1998,34(3),248-261.
    [232]Desutter-Grandcolas L, Broad-frequency modulation in cricket (Orthoptera, Grylloidea) calling songs: two convergent cases and a functional hypothesis, Canadian Journal of Zoology/Revue Canadien de Zoologie, 1998, 76(12),2148-2163.
    [233]Mousseau TA, Howard DJ, Genetic variation in cricket calling song across a hybrid zone between two sibling species,Evolution, 1998,52(4), 1104-1110.
    [234]Bailey W J, Haythornthwaite S, Risks of calling by the field cricket Teleogryllus oceanicus, potential predation by Australian long-eared bats, Journal of Zoology, 1998, 244(4),505-513.
    [235]Hill PSM, Environmental and social influences on calling effort in the prairie mole cricket (Gryllotalpa major), Behavioral Ecology, 1998, 9(1), 101-108.
    
    
    [236]Zuk M, Rotenberry JT, Simmons LW ,Calling songs of field crickets (Teleogryllus oceanicus) with and without phonotactic parasitoid infection Evolution, 1998,52(1), 166-171.
    [237]Farris HE, Forrest TG, Hoy RR, The effects of calling song spacing and intensity on the attraction of flying crickets (Orthoptera: Gryllidae: Nemobiinae), Journal of Insect Behavior, 1997, 10(5), 639-653.
    [238]Doherty JA, Howard DJ, Lack of preference for conspeciflc calling songs in female cricket, Animal Behaviour, 1996, 51(5), 981-990.
    [239]Rotenberry JT, Zuk M, Simmons LW, Hayes C, Phonotactic parasitoids and cricket song structure: An evaluation of alternative hypotheses, Evolutionary Ecology, 1996,10(3),233-243.
    [240]Cade WH, Ciceran M, Murray A-M ,Temporal patterns of parasitoid fly (Ormia ochracea) attraction to field cricket song (Gryllus integer), Canadian Journal of Zoology/Revue Canadien de Zoologie, 1996,74(2),393-395.
    [241]Wagner WE Jr, Convergent song preferences between female field crickets and acoustically orienting parasitoid flies, Behavioral Ecology, 1996,7(3),279-285.
    [242]Crnokrak P, Roff DA, Fitness differences associated with calling behaviour in the two wing morphs of male sand crickets, Gryllus firmus, Animal Behaviour, 1995,50 (6),1475-1481.
    [243]Olvido AE, Mousseau TA, Effect of rearing environment on calling-song plasticity in the striped ground cricket, Evolution, 1995,49(6), 1271-1277.
    [244]Horseman G; Huber F, Sound localisation in crickets, Ⅱ. Modelling the role of a simple neural network in the prothoracic ganglion, Journal of Comparative Physiology, A, 1994,175(4),399-413.
    [245]Horseman G; Huber F, Sound localisation in crickets, Ⅰ. Contralateral inhibition of an ascending auditory interneuron (AN1) in the cricket Gryllus bimaculatus ,Journal of Comparative Physiology, A, 1994,175(4),389-398.
    [246]Rowell GA, Cade WH, Simulation of alternative male reproductive behavior: Calling and satelliie behavior in field crickets, Ecological Modelling, 1993, 65(3),265-280.
    [247]Toms RB, Incidental effects and evolution of sound-producing organs in tree crickets (Orthoptera: Oecanthidae), International Journal of Insect Morphology and Embryology, 1993,22(2-4),207-216.
    
    
    [248] Pollack GS, El-Feghaly E, Calling song recognition in the cricket Teleogryllus oceanicus: Comparison of the effects of stimulus intensity and sound spectrum on selectivity for temporal pattern, Journal of Comparative Physiology, A, 1993,171(6),759-765.
    [249] Zuk M, Simmons LW, Cupp L, Calling characteristics of parasitized and unparasitized populations of the field cricket Teleogryllus oceanicus, Behavioral Ecology and Sociobiology, 1993,33(5),339-343.
    [250] Souroukis K, Cade WH, Rowell G, Factors that possibly influence variation in the calling song of field crickets: Temperature, time, and male size, age, and wing morphology, Canadian Journal of Zoology/Revue Canadien de Zoologie, 1992,70(5),950-955.
    [251] Pires A, Hoy RR ,Temperature coupling in cricket acoustic communication, Ⅰ. Field and laboratory studies of temperature effects on calling song production and recognition in Gryllus firmus, Journal of Comparative Physiology, A, 1992, 171(1),69-78.
    [252] Pires A, Hoy RR ,Temperature coupling in cricket acoustic communication, Ⅱ. Localization of temperature effects on song production and recognition networks in Gryllus firmus, Journal of Comparative Physiology, A, 1992,171(1), 79-92.
    [253] Webb KL, Roff DA ,The quantitative genetics of sound production in Gryllus firmus, Animal Behaviour, 1992,44(5),823-832.
    [254] Brian F. G. Katz ,Acoustic absorption measurement of human hair and skin within the audible frequency range,The Journal of the Acoustical Society of America, 2000, 108(5),2238-2242.
    [255] Victor I. Passechnik, Andrej A. Anosov, Konstantin M. Bograchev ,Passive acoustic thermotomography-Correlation and noncorrelation variants,The Journal of the Acoustical Society of America, 2000,107(5),2807-2807.
    [256] Fathy B. Shenoda, Mohammed Abd-Elbasseer, Effective wide-band, low-frequency multiple resonator sound absorber, The Journal of the Acoustical Society of America, 2000, 107(5),2872-2872.
    [257] Antonio Uris, Jesus Alba, Jaime Ramis, Francisco Cervera, A finite difference method for predicting the sound absorption coefficient of a fibrous sample in a standing wave tube, Noise & Vibration Worldwide, 1999, 30(9),29-32.
    [258] David Casini, Cesare Fagotti, Andrea Poggi, Simone Secchi, Measurements of the
    
    acoustic absorption coefficient of double-layer asphalts: Analysis of variability, The Journal of the Acoustical Society of America, 1999, 105(2), 1374-1374.
    [259] Tian J. Lu ,Sound absorption of cellular metals with semiopen cells,The Journal of the Acoustical Society of America,2000,108(4), 1697-1709.
    [260] Gardner Bryce K, Tandon Mridul K, Kang Yeon J, Bolton J S ,Design of foam materials to maximize acoustical absorption using FEA.NOISE-CON 98; Proceedings of the 16th National Conference on Noise Control Engineering, Ypsilanti, MI, Apr. 5-9, 1998, Poughkeepsie, NY, Noise Control Foundation, 1998, 615-620.
    [261] Xu Qingyan, Chen Yuyong, Li Qingchun ,Study on sound-absorbent property of porous aluminum alloy, Aerospace Materials & Technology, 1998,28(2),39-43.
    [262] Zhang Y, He D ,The investigation of the aluminium alloy foam's underwater sound absorption properties,Materials for Mechanical Engineering (China) (People's Republic of China), 1995,19(3),53-54.
    [263] Ren Xinmin, Qi Yirang, Xu Longjiang, Investigation of the attenuation of photoacoustic pulses due to sound absorption in liquids, Journal of Ocean University of Qingdao/Qingdao Haiyang Daxue Xuebao, Qingdao, 1995, 25(4),529-533.
    [264] Watanabe Toshio, Yamada Shinji, Sound attenuation through absorption by vegetation, Journal of the Acoustical Society of Japan (E) (English translation of Nippon Onkyo Gakkaishi), 1996,17(4), 175-182.
    [265] Rebillard P, Allard J-F, Depollier C, Effect of a porous facing on the impedance and the absorption coefficient of a layer of porous material, Journal of Sound and Vibration, 1992, 156(3),541-555.
    [266] Guignouard P, Meisser M, Allard JF ,Prediction and measurement of the acoustical impedance and absorption coefficient at oblique incidence of porous layers with perforated facings, Noise Control Engineering Journal, 1991, 36(3),129-135.
    [267] Burks JA, Spencer ER ,Measurement of normal incidence absorption coefficient using sound intensity, 1989 International Conference on Noise Engineering, Newport Beach, CA (USA), 4-6 Dec 1989.
    [268] Giampaoli E, Gerges SNY, Low frequency sound absorption by cavity resonator masonry blocks, Noise Control Engineering Journal, 1989, 33(3), 131-138.
    
    
    [269] Nobile MA ,Measurement of absorption coefficient and acoustic impedance in a hemi-anechoic space using a transfer function method, 1987 NATIONAL CONFERENCE ON NOISE CONTROL ENGINEERING-NOISE CON'87., 1987, 611-616.
    [270] Gimenez de Paz JC ,Glass wool as acoustic material:predictve model, Bol. Soc. Esp. Ceram. 1990, 29(2),83-86.
    [271] Putland Gavin R ,Acoustical properties of air versus temperature and pressure, J AUDIO ENG SOC, 1994, 42(11),927-933.
    [272] Garai Massimo ,Measurement of the sound-absorption coefficient in sim: the reflection method using periodic pseudorandom sequences of maximum length,Applied Acoustics, 1993, 39(1-2), 119-139.
    [273] Swenson George WJr ,Standing-wave facility for low-frequency impedance absorption measurement,Applied Acoustics, 1993, 40(4),355-362.
    [274] Kaatze U, Wehrmann B, Pottel R ,Acoustical absorption spectroscopy of liquids between 0.15 and 3000 MHz: Ⅰ. High resolution ultrasonic resonator method, J. PHYS. E: SCI. INSTRUM., 1987, 20,1025-1030.
    [275] Benedetto G; Brosio E, Spagnolo R ,Effect of Stationary Diffusers in the Measurement of Sound Absorption Coefficients in a Reverberation Room: An Experimental Study, Applied Acoustics, 1981, 14(1),49-63.
    [276] Chung JY, Blaser DA, Transfer Function Method of Measuring In-Duct Acoustic Properties,Ⅱ.Experiment. Journal of the Acoustical Society of America, 1980, 68(3),914-921.
    [277] Chung JY, Blaser DA, Transfer Function Method of Measuring In-Duct Acoustic Properties,Ⅰ.Theory. Journal of the Acoustical Society of America, 1980, 68(3),907-913.
    [278] Soto PF, Herraez M, Gonzalez A, Acoustic Impedance and Absorption Coefficient Measurements of Porous Materials Used in the Automotive Industry, Polymer Testing (UK), 1994,13(1),77-88.
    [279] Guignouard P, Meisser M, Allard JF, Prediction and measurement of the acoustical impedance and absorption coefficient at oblique incidence of porous layers with perforated facings, Noise Control Engineering Journal, 1991,36(3),129-135.
    [280] Berengier M, Hamet JF, Bar P, Acoustical properties of porous asphalts.
    
    Theoretical and environmental aspects, TRANSP RES REC, 1990,1265,9-24.
    [281] Rebillard P, Allard J-F, Depollier C, Effect of a porous facing on the impedance and the absorption coefficient of a layer of porous material,Journal of Sound and Vibration, 1992, 156(3), 541-555.
    [282] Utsuno H, Tanaka T, Morisawa Y ,Prediction of normal sound absorption coefficient for multi layer sound absorbing materials by using the boundary element method, TRANS. JAPAN SOC. MECH. ENG. (SER. C)., 1990, 56(532),3248-3252.
    [283] Shirahatti US, Munjal ML ,Acoustic characterization of porous ceramic tiles, Noise Control Engineering Journal, 1987,28(1),26-32.
    [284] Belov SV, Terekhin AS, Balantsev SK ,Acoustic characteristics of porous bronze,SOV. POWDER METALLURGY & METAL CERAMICS.,1983, 22(1), 20-23.
    [285] Pavlikhin GP, Nikolaev AN, Balantsev SK, Hydraulic and Acoustic Properties of Porous Metals,Poroshk. Metall., 1980,7,95-99.
    [286] Guignouard P, Meisser M, Allard JF ,Prediction and measurement of the acoustical impedance and absorption coefficient at oblique incidence of porous layers with perforated facings,Noise Control Engineering Journal, 1991, 36(3),129-135.
    [287] Swenson George WJr, Standing-wave facility for low-frequency impedance absorption measurement,Applied Acoustics, 1993,40(4),355-362.
    [288] Ondet AM, Melon M ,Study of the acoustic behaviour of sound-absorbing materials for possible use in the food industry, Cahiers de notes documentaires-Hygiene et securite du travail 1st Quarter, 1996, 162,19-31.
    [289] Jean F. Allard,Michel Henry, Julian Tizianel et al, Sound propagation in air-saturated random packings of beads,The Journal of the Acoustical Society of America, 1998,104(4),2004-2007.
    [290] Julian Tizianel,Jean F. Allard,Bernard Castagnede et al, Transport parameters and sound propagation in an air-saturated sand, Journal of applied physics, 1999, 86(10),5829-5834.
    [291] Denis Lafarge,Pavel Lemarinier, Jean F. Allard et al, Dynamic compressibility of air in porous structures at audible frequencies, The Journal of the Acoustical Society of America, 1995,102(4), 1995-2006.
    
    
    [292] L.L.Beranek, Acoustic impedance of porous materials, The Journal of the Acoustical Society of America, 1942,13,248-260.
    [293] C.Zwikker, C.W. Kosten, Sound Absorbing Materials(Elsevier, New York. 1949).
    [294] Y. Champoux,J.F. Allard, Dynamic tortuosity and bulk modulus in air-saturated porous media, J.Appl.Phys., 1991,70,1975-1979.
    [295] D.L.Johnson,J.Koplik,L.M, Schwartz, New pore parameter characterizing transport in porous media, Phys. Rev. Lett., 1986,57,2564-2567.
    [296] D.L.Johnson,J.Koplik,R.Dashen, Theory of dynamic permeability and tortuosity in fluid saturated porous media, J.Fluid Mech., 1987,176,379-402.
    [297] V. Tamow, Measurement of Sound propagation in glass wool, The Journal of the Acoustical Society of America, 1995,97,2272-2281.
    [298] M-Y. Zhou, P.Sheng, First-Principles calculations of dynamic permeability in porous media, Phys.Rev. B, 1989,39,12027-12039.
    [299] L.M.Schwartz,N.Martys,D.P.Beutz, Cross-properties relations and permeability estimation in model porous media, Phys. Rev. E, 1993,48,4584-4591.
    [300] S.Pride,A.Gangi,F.D.Morgan, Deriving the equations of motion for porous isotropic midia, The Journal of the Acoustical Society of America, 1992,92, 3278-3290.
    [301] C.Straley, A.Matteson,S.Feng. Magnetic resonance, digital analysis, and permeability of pouous media, Appl. Phys, Lett, 1987, 51, 1146-1148.
    [302] D.L.Johnson,T.J.Plona, Acoustic slow waves and the consolidation transition, The Journal of the Acoustical Society of America, 1982,72,556-565.
    [303] D.L.Johnson,T.J.Plona, Tortuosity and acoustic slow waves, Phys.Rev. Lett., 1982,49,1840-1844.
    [304] R.J.S.Brown, Connection between formation factor for electrical resistivity and fluid-solid coupling factor in Biot's equations for acoustic waves in fluid-filled media, Geophys,1980,45,1269-1275.
    [305] D.L.Johnson,P.N.Sen, Multiple scattering of acoustic waves with application to the index of refraction of fou(?) sound, Phys Rev. B, 1981,24,2486-2496.
    [306] L.D.Landau,E.M.Lifshitz, Fluid Mechanics,Pergamon, 1959.
    [307] L.D.Landau,E.M.Lifshitz, E(?)odynamics of Continuous Media, Pergamon, 1960.
    [308] A.E.Scheidegger, Physics of Flow Through Porous Media, University of Toronto Press, 1974.
    
    
    [309] M.J.Brennan,W.M.To, Acoustic properties of rigid-frame porous materials—an engineering perspective, Applied Acoustics, 2001, 62, 793-811.
    [310] M.A.Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅰ.low frequency range, The Journal of the Acoustical Society of America, 1956,28(2),168-178.
    [311] Mankin RW, Shuman D, Coffelt JA, Acoustic counting of adult insects with differing rates and intensities of sound production in stored wheat, Journal of Economic Entomology, 1997, 90(4), 1032-1038.
    [312] Mankin RW, Shuman D, Coffelt JA ,Noise shielding of acoustic devices for insect detection, Journal of Economic Entomology, 1996, 89(5), 1301-1308.
    [313] Hagstrum DW, Flinn PW, Shuman D, Automated monitoring using acoustical sensors for insects in farm-stored wheat,Journal of Economic Entomology, 1996, 89(1),211-217.
    [314] Mankin RW, Shuman D, Weaver DK, Thermal Treatments to Increase Acoustic Detectability of Sitophilus oryzae (Coleoptera: Curculionidae) in Stored Grain, Journal of Economic Entomology, 1999, 92(2),453-462.
    [315] Hagstrom DW, Flinn PW, Comparison of acoustical detection of several species of stored-grain beetles (Coleoptera: Curculionidae, Tenebfionidae, Bostrichidae, Cucujidae) over a range of temperatures,Journal of Economic Entomology, 1993,86(4), 1271-1278.
    [316] Hagstrum DW, Vick KW, Flinn PW, Automated acoustical monitoring of Tribolium castaneum(Coleoptera: Tenebrionidae) populations in stored wheat, Journal of Economic Entomology, 1991, 84(5),1604-1608.
    [317] Sharp JL, Thalman RK, Webb JC, Flexible acoustical device to detect feeding sounds of Caribbean fruit fly (Diptera: Tephritidae) larvae in mango, Cultivar Francis, Journal of Economic Entomology, 1988, 81(1),406-409.
    [318] Hansen J, Webb JC, Armstrong JW, Acoustical detection of Oriental fruit fly (Diptera: Tephritidae) larvae in papaya, Journal of Economic Entomology, 1988, 81(3),963-965.
    [319] Vick KW, Webb JC, Weaver BA, Sound detection of stored-product insects that feed inside kernels of grain, Journal of Economic Entomology, 1988, 81(5),1489-1493.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700