机器油液微流控检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油液分析是对机械设备的润滑和液压传动状态进行监测的重要手段,能有效的诊断机械设备的磨损故障和监测油液使用中性能的变化。本文从满足机械设备状态监测和故障诊断的需要出发,借助微机电系统技术和图像测量技术,发展了基于微流控芯片的油液检测系统,不仅能在实验室中实现机器油液的快速、简便和综合分析,而且具有实现油液在线监测的潜力。论文对芯片设计和加工、油液—颗粒的微管道流动理论、油液—颗粒微流动成像模型、运动颗粒图像分析、颗粒分离检测和油液粘度测量技术进行了研究。主要内容如下:
     1分析和总结了目前国内外机器油液在线和离线两方面的检测技术的发展状况和趋势,以及微流控技术的进展,提出了微流控技术应用于油液分析的思想,分析了微流控技术和图像检测技术在油液分析中应用的优势和前景。
     2介绍了油液检测微流控芯片的特点和加工过程,设计了气力驱动的芯片检测综合伺服系统和动态目标显微数字成像的观测方法。
     3进行了芯片微管道内油液及颗粒运动的理论分析,并发展了数字粒子图像测速技术,对微管道内的流场进行了实验测量。
     4建立了显微镜下油液中运动颗粒的数字成像模型,分析了显微镜、摄像机、微流控检测芯片的参数以及油液流速对颗粒成像的影响,构成了研究微流动颗粒图像处理方法的基础。
     5对微流动颗粒图像的特征进行了总结,根据颗粒的运动特性发展了基于基准帧差分的目标提取方法,以运动模糊模型为基础讨论了颗粒目标的模糊恢复以及参数测量与识别的问题,对于严重退化的油液颗粒图像,以磨损颗粒图谱库为基础进行了模拟,研究了各参数在图像严重退化条件下的变化特性,建立了图像严重退化条件下的磨粒分类和识别体系。
     6对微流动条件下油液和颗粒的控制技术进行了研究,探讨了污染颗粒在磁场和流场的作用下的运动规律,设计了油液污染物综合检测微流控芯片,提出了根据不同观测点图像集计算污染度、铁磁性颗粒和非铁磁性颗粒各具体分类下的浓度的方法;分析了微管道内两相层流的运动参数和油液粘度的关系,并进行了初步实验。
     7解决了油液污染物综合分析系统实用化中的几个关键问题,介绍了软件系统的结构,并同传统仪器进行了对比实验。
Oil analysis is the important means for monitoring the lubrication and hydraulic transmission condition of machinery equipment, which can effectively diagnose abrasion faults and monitor variability of oil performance of machinery equipments during using. For the requiements of condition monitoring and fault diagnosis of the machinery equipments and by dint of technologies of Micro Electro-Mechanical Systems and image measurement, the oil microfluidic detection system is developed in the thesis, which not only can realize the rapid, simple and integrated analysis, but also has the potential ability of on-line oil monitoring. The research involves the study on the design and machining of chips, motion theory of oil-particle in microchannel, microflow imaging model of oil-particle, moving particle image analysis, particles seperation detetion and oil viscosity measurement. The main contents are listed as follows.
     1 Analyzing and summarizing national and foreign machinery oil detection technology developing condition including off-line and on-line systems, and the development of micro-fluidic technology. The idea of applying microfluidic technology to oil analysis is put forward, and the advantages and foreground of application of microfluidic technology and image technique in oil analysis are analyzed.
     2 Introducing the characteristics and machining process of oil detection microfluidic chip, and designing the chip dection pneumatic driving intergrating servo system and observing means.
     3 The theoretical analysis about oil and particle movement in detection chip’s microchannel is carried out, and digital particle image velocity technology is delepoved for measurement of microchannel flow field.
     4 Establishing microscopical digital imaging model of moving particle in oil, and analyzing affection of various parameters of microscope, vidicon, microfluidic detection chip and oil speed to particle imaging, which construts the foundation of study on the image process methods of micro-flow particle.
     5 Summarizing the characteristics of images of micro-flow particles, and according as the moving characteristics of particles developing the object extraction methods based on reference frame, and based on the motion-blurred model discussing the problems of restoration of particle images, parameter measurement and type recognition. For the severely degraded oil images, simulating it based on standard debris atlas and studying the variability of various parameters of debrises in severely degraded image. At last constructing debris classfication and recognition system.
     6 Studying the controlling technology of oil and particles in microflow. Exploring the motion principle of contamination particles affected by both magnetic field and oil flow, and designing oil contamination integrating detection microfluidic chip, and bringing forward the method of calculating oil contamination, ferromagnetic particle and non-ferromagnetic particle's concentrations under their particular classes according to the image gathers from defferent observation spot. Analyzing the relation between the motion parameter and viscosity of two-phase laminar flow, and carrying out the primary experiments.
     7 Solving several important problems during the practical system development, and introducing the framework of software. Contrasting the system with conventional apparatuses by experiments.
引文
[1]韩彤. 2005年世界空难及飞行事故一览.中国民航, 2006,V62(2):38-40.
    [2] Marcus Bengtsson, Erik Olsson, Peter Funk, et. al. Technical Design of Condition Based Maintenance System - A Case Study using Sound analysis and Case-Based Reasoning. Proceedings of the 8th Maintenance and Reliability Conference, 2004,5.
    [3] D. Troyer, James C. Fitch. Oil Analysis Basics. 1999.
    [4] Tony Hayzen,Ray Garvey. Measuring Wear, Contamination, and Chemistry with OilViewTM Minilab. Computation systems, Inc.
    [5]李生华,金元生,陈大融.基于油液诊断与预报的机敏机器系统的概念与技术.国外分析仪器,2002,3:1-9.
    [6]刘混举,张洪俊,张福珍.油液的污染监控及其控制.山西机械, 1996,3: 17.
    [7]贺建军,夏晖,易尚德.润滑油综合监测系统及应用.石油工业技术监督, 2001, V17(7): 10-11.
    [8]赵大庆.液压泵污染磨损与控制.北京:煤炭工业出版社,1993,53~63.
    [9]蒋元星.润滑油监测技术及其在船上的应用.润滑与密封.2005,4: 193-195.
    [10] Vichai Srimong Kolkul. Why a Proactive Maintenance Program for Hydraulic oil is Part of Statistical Process Control.Lubrication Engineering. 1997. V53(4):10-14. [ 11 ] Federico E. Lantos. Method for Decreasing and Monitoring the Level of Contamination of Residual Fuel Used for Diesel Engines and Gas Turbines. Condition Monitoring'97:158-161. [ 12 ] James c. Fitch,Stuart.Bents.Applying Satellite Communication Technology to Condition-Based Maintenance for Mobil Equipment.Condition Monitoring'94:129-140.
    [13]萧汉梁.铁谱技术及其在机械监测诊断中的应用.北京:人民交通出版社,1993.
    [14] Roylance B J, et al. Wear studies through particle size distribution. Wear, 1983(90): 113-147.
    [15] Raadnui, S. and Roylance, B.J. Wear debris examination-An essential tool for maintenance engineer. Research and Development Journal of the Engineering Institue of Thailand, 1994, 4(1):1-16.
    [16] Z.Peng and T.B. Kirk. Numerical characterization of surface textures of wearparticles of machine condition monitoring, present at(CM) 2 forum,Queensland, Australia, 1997.
    [17] Z.Peng, T.B. Kirk. Computer image analysis of wear particles in three-dimensions for machine condition monitoring,Wear, 1998(223):157-166.
    [18] A.D. Thomas, et al. Computer image analysis for identification of wear particles, Wear , 1991(142):213-226.
    [19] A.Albidewi,et al. Determination of particle shape by image analysis-the basis for developing an expert system. Proc.Int.Conf. On Condition Monitoring, Stadhall, Erding, Germany,1991:411-422.
    [20] B.J.Roylance, I.A.Albidewi, A.R. Luxmoore and A.L.Price. The development of a computer-aided systematic particle analysis procedure-CASPA, Lub.Eng., Dec, 1992: 940-946.
    [21] K.K.Yeung,et al .Development of computer-aided image analysis for filter debris analysis. Lubrication Engineering,1994,4:293-299.
    [22]吴振锋,左洪福,孙有朝.磨粒分析技术及其在发动机故障诊断中的应用.航空动力学报,2001,V16(4):316-322.
    [23]金占明,邵荷生.磨料磨损磨屑的计算机图像分析方法研究.润滑与密封,1990,6:10-18.
    [24]于达仁,张志强,汪洪滨等.红外透平油污染度在线监测仪的研制.汽轮机技术,1999,V41(5):292-294.
    [25]涂群章,龚烈航,王敬涛等.一种油液污染度在线监测方法—电导测定法.矿山机械,2000,5:59-60.
    [26]夏至新.液压系统污染控制.北京:机械工业出版社, 1992,12.
    [27] David C. Schalcosky and Carl S. Byington. Advances in Real Time Oil Analysis. Practicing Oil Analysis Magazine, 2000,11:28-34.
    [28]姜旭峰,费逸伟,李华强,航空发动机滑油综合监测技术研究,润滑与密封,2005,2:110-115.
    [29] David C. Schalcosky and Carl S. Byington. Advances in Real Time Oil Analysis. Practicing Oil Analysis Magazine, 2000,11:28-34.
    [30] Nelson Irina. Compact high performance XFS instrument for on-line real-time metal analysis of lubricating oils. JOAP International Condition Monitoring Conference. Mobile, Alabama, 2000: 99-108. [ 31 ] T.J. Harveyetal. Electrostatic wear monitoring of rolling elementbearings,Wear(2007), doi:10.1016/j.wear.2006.12.073.
    [32] A. B. Vatazhin, A.M. Starik, and E.K. Kholshchevnikova,Electric Charging of Soot Particles in Aircraft Engine Exhaust Plumes,Fluid Dynamics, 2004, V39(3): 384–392.
    [33] Farooq Kal, Fowler Rob. Comparison of water measurement results in poly-ol ester based lubricating fluids determined by the coulometric Karl Fischer method and a thin film polymer capacitive water sensor. JOAP International Condition Monitoring Conference. Mobile, Alabama, 2000: 62-71.
    [34] Gebarin Sabrin Khaled, Fitch Jim. Determining proper oil and filter change intervals: can onboard automotive sensors help. Practicing Oil Analysis Magazine, 2004,1: 17-23.
    [35] Kauffman Robert E, Ameye Jo. Development and seeded fault engine test evaluation of on-line oil condition monitor ing sensors for the joint strike fighter. JOAP International Condition Monitoring Conference. Mobile, Alabama,2002: 147-156.
    [36] Hazelden Roger, Smith Kim. Novel oil condition sensors. Solihull UK: TRW Conekt, 2004.
    [37] Rowe Rebecca,Henning Patrick,Damren Rick,DiGiuseppe Tom. On-line oil condition monitor. JOAP International Condition Monitoring Conference. Mobile, Alabama, 2002:36-41.
    [38] Liu Yan,Xie Youbai. Research on an on-line ferrography. Wear, 1992, 153: 323-330.
    [39]吴勇,夏志新,张井合等.油液污染度在线自动检测系统的研制.机床与液压,1999(61):61-62.
    [40]张齐生,赵静一,姚成玉等.基于滤膜淤积法的油液污染在线监测系统.机械工程学报,2006,V42(4):152-156.
    [41]任国军,谭德荣,曲金玉.柴油机润滑油污染度的在线监测技术.内燃机, 2005, 6:36-38.
    [42]张剑锋,马希直,张优云.石英晶体微天平传感器在油品粘度中的应用研究.西安交通大学学报, 2002, V36(5):515-518.
    [43]姜磊,贝远根,李乔林等.伽马射线原油含水仪测量原理及应用.石油仪器, 1999, 13(3):16-18.
    [44]黎琼炜,毛美娟,陈勇.油液分析现状与发展方向研究.中国机械工程, 2004, 15(3):272-275.
    [45] KauffmanRE, AmeyeJ. Development and Seeded Fault Engine Test Evaluation of On-Line Oil Condition Monitoring Sensors for the Joint Strike Fighter. JOAP International Condition Monitoring Conference, Mobile, Alabama, USA, 2002.
    [46] Wilson Bary W, Silvernail Gene. Automated in-line machine fluid analysis for marine diesel and gas turbine engines. JOAP International Condition Monitoring Conference. Mobile, Alabama, 2002: 129-135.
    [47] Jarvis N L, Wohltjen H, et al. Solid-state microsensors for lubricant condition monitoring-part. Fuel Dilution Meter.Journal of the Society of Triboiogists and Lubrication Engineers, 1994,09: 689-693.
    [48] J.Reintjes, J.E. Tucker, et al. Application of LaserNet Fines to Mechanical Wear and Hydraul-ic Monitoring. DSTO International Conference on Health and Usage Monitoring. Melboure, Feb, 2001:13-21.
    [49]林秉承,秦建华.微流控芯片实验室.北京:科学出版社, 2006.
    [50] Kurosawa O., Okabe K., Washizu M. DNA analysis based on physical manipulation,Micro Electro Mechanical Systems 2000, MEMS 2000. The Thirteenth Annual International Conference on 23-27, Jan, 2000: 311–316.
    [51] Manz A, Graber N, Widmer H M. Sens. Actuators. B. 1990,B1:244.
    [52] Skeggs L. Am.J.Clin.Path .1957(27):311.
    [53] Ruzicka J, Hansen E J. Anal. Chim. Acta. 1975(78):145.
    [54] Woolley A T, Mathies R A. Anal. Chem. 1995(67): 3676.
    [55]方肇伦.微流控分析芯片的制作及应用.北京:化学工业出版社. 2005.
    [56] Fan, Z. H., Harrison, D. J. Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections. Anal. Chem. 1994(66): 177-184.
    [57] Maluf N. An introduction to Microelectromechanical Systems Engineering. Artech House, Boston, 2000.
    [58] Richard C J. Introduction to microelectronic fabrication (Modular series on solid state devices,V 5), eds. Neudeck G W, Pierret R F. Addison-Wesley Publishing Company, Massachusetts, 1993.
    [59]赵强.基于MEMS技术的微型泵的研究.中国科学院电子学研究所.2004.
    [60] Kovacs, Gregory T.A., Maluf, Nadim L, Petersen, Kurt E., Bulk Micromachining of Silicon, Proceedings of the IEEE, 1998, 86(8): 1536-1551.
    [61]罗怡,娄志峰,褚德南等.玻璃微流控芯片的制作.纳米技术与精密工程,2(1):20-23.
    [62]冯焱颖,周兆英,叶雄英等.微流体驱动与控制技术研究进展.力学进展,2002, 32(1):1-16.
    [63]沙菁契,侯丽雅,章维一等.微流体系统驱动技术的研究进展. MEMS器件与技术, 2006,12:586-591.
    [64] Shoji S, EsashiM.MicroHow devices and Systems. J Micromech Micrneng, 1994, 4: 157-171.
    [65] Gravesen P, Branebjerg J, Ole Sndergard Jensen. Microfluidics-a review. J Micromech Miciveng, 1993, 3:168-182
    [66] MANDOU M J KELLOGG G J. The labCD A contrifuge-based microfluidic platform for diagnostics J. SPIE 1998,3259:80-93.
    [67]方肇伦.微流控分析芯片.北京:科学出版社,2003.
    [68]章梓雄,董曾南.粘性流体力学.北京:清华大学出版社. 1998.
    [69]袁镒吾.粘性不可压缩流体定常层流管流及柱体的扭转.应用力学学报, 1993, V10(1):129-133.
    [70]凌智勇,丁建宁,杨继昌,等.微流动的研究现状及影响因素.江苏大学学报, 2002,11: 35-39.
    [71]郭烈锦.两相与多相流动力学.西安:西安交通大学出版社, 2002.
    [72]钟映春,谭湘强,杨宜民.微流体力学几个问题的探讨.广东工业大学学报, 2001,V18(3): 46-48.
    [73]茅泽育,罗异,赵璇.矩形断面压力管道汇流13局部能量损失.水利水电科技进展。2006,V26(3):62-66.
    [74] SERRE M L.A study of energy loss at combining pipe junction in fish bypass systems[D].Iowa:The University of Iowa,1992.
    [75]李静海,欧阳洁,高士秋等.颗粒流体复杂系统的多尺度模拟.北京:科学出版社, 2005.
    [76]刘大有.二相流体动力学.北京:高等教育出版社, 1993.9.
    [77]范洁川等.流动显示与测量.北京:机械工业出版社,1996.
    [78]刘冲,徐征,陈阳.面向典型微流控芯片的流场测速技术研究.大连理工大学学报,2004, 44(4):523-527.
    [79]杨华勇,谢海波,傅新.微流体机械全流场数字粒子图像测速技术.机械工程学报,2001,V37(10):31-35.
    [80] http://www.baslerweb.com/beitraege/beitrag_en_17807.html
    [81] http://www.ioindustries.com/pdf/cl160.pdf
    [82] S.T.Wereley, L.Gui, C.D.Meinhart. Adva- nced algorithms for microscale particle image velocimetry. Experiment in fluids. AIAA Journal 2002 V40(6):1047-1055.
    [80] Lee Seok Joo, Kim Kyunghwan, Kim Deok-Ho, Recognizing and tracking of 3D shaped micro parts using multiple visions for micromanipulation, IEEE International Symposium on Micromechatronics and Human Science, 2001: 203-210.
    [84] Thomas L.Lantz. Solving Lubrication Problems. Lubrication Engineering, 1999, 4: 23-29.
    [85] Mark R. Pavlat. Total Cleanliness Control for Hydraulic and Lubricating System in the Primary Metals Industry. Lubrication Engineering,1997,2:12-19.
    [86]左洪福.发动机磨损状态监测与故障诊断技术.北京:航空工业出版. 1996.10.
    [87]孙业英.光学显微分析.清华大学出版社, 1997.
    [88]王旭辉,郭光亚.二维匀速运动模糊图像恢复问题的研究计算机.应用2000.V20(10):25-28.
    [89] http://www.daheng-image.com/device_deca_usb.htm
    [90]吕植勇,严新平.磨粒图像背景光照不均匀分布图像预处理.润滑与密封,2005,5:34-37.
    [91]冈萨雷斯.数字图像处理第二版.阮秋琦,阮宇智译.北京:电子出版社, 2003.
    [92]刘党辉,沈兰荪.视频运动对象分割技术的研究.电路与系统学. 2002. V7(3): 77-85.
    [93]张艳彬,左洪福,涂群章.基于显微图像的油液实时分析系统中颗粒识别技术研究.机械科学与技术,2006,V25(10): 1187-1190.
    [94]夏良正.数字图像处理.南京:东南大学出版社, 1999.
    [95] Ballard, D.H., Generalizing the Hough Transform to Detect Arbitrary Patterns. Pattern Recognition, 1981, 13(2):111~122.
    [96]邹谋炎.反卷积和信号复原.北京:国防工业出版社,2001,3.
    [97] M. M. Chang, A. M. Tekalp, and A. T. Erdem, Blur identification using the bispectrum, IEEE Trans. on Signal Processing, 1991,V39(10):2323~2325.
    [98] William T. Freeman, Edward H. Adelson, The design and use of steerable filters, IEEE Trans. on PAMI, 1991,V13(9):891~906.
    [99] R. Lokhande, K. V. Arya, P. Gupta, Identification of Parameters and Restoration of Motion Blurred Images, Proc. of the ACM Symp. on Applied Computing (SAC2006), Dijon: ACM Press, 2006.
    [100]吴振锋.基于磨粒分析与信息融合的发动机磨损故障诊断技术研究.南京航空航天大学, 2001,12.
    [101]刘克,杨靖宇,权军等.离焦图像模糊辨识及复原方法研究.自动化学报,1994,V20(1):58~65.
    [102] D.P安德森.磨粒图谱.金元生,杨其明译.北京:机械工业出版社, 1987.
    [103]邹继斌,刘宝延,崔淑梅等.磁路与磁场.哈尔滨:哈尔滨工业大学出版社, 1998.
    [104]吕宽州.磁场强度H的物理意义及应用.河南科学. 2003, V21(4):397-400.
    [105]任俊,沈健,卢寿慈.颗粒分散科学与技术.北京:化学工业出版社,2005. [ 106 ] Pinto-Espinoza, Joaquin. Dynamic behavior of ferromagnetic particles in a liquid-solid magnetically assisted fluidized bed (MAFB): Theory, experiment, and CFD-DPM simulation. Oregon State University. 2003.
    [107]陈惠钊.粘度测量.北京:中国计量出版社, 2003.
    [108]关子杰.润滑油与设备故障诊断技术.北京:中国石化出版社, 2002.
    [109]林济猷.液压油概论.北京:煤炭工业出版社. 1986.
    [110] Komholz A.E., Weigl B.H., Finlayson B.A. et al. Quantitative Analysis of Molecular Interaction in a Microfluidic Channel: The T-Sensor[J]. Anal. Chem. 1999(71):5340- 5347.
    [111]张艳彬,左洪福,涂群章.实用化图像式油液污染实时检测系统研究.南京航空航天大学学报, 2006, 38(5):649-654.
    [112] ISO 4402:1991,Hydraulic fluid powerCalibration of automatic count instruments for particles suspended in liquid-method using classified AC fine test dust contaminant[S].
    [113]何斌,马天予,王运坚等. Visual C++数字图像处理.北京:人民邮电出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700