欠定盲源分离算法及在语音处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息和计算机技术的发展,人们对信息处理方法的要求越来越高。很多实际应用中通过传感器获得的是一些有用信号的混叠信号或带噪声的混叠信号,如何从这些隐藏在混叠信号中的原始信号分离出来,是一些应用中必须解决的问题,盲源分离技术正是在这种背景下应运而生的。该技术一经提出,便引起了许多学者的广泛关注和重视。作为一种新的数据处理方法,盲源分离技术是人工神经网络、统计信号处理、信息理论、计算机学科等相结合的产物,在生物医学、医疗图像、语音信号处理、通信系统、信息检索等方面都具有非常重要的实际应用价值。
     盲源分离技术就是在信源信号和混叠过程均未知的情况下,仅根据少量的先验信息,从观测信号中恢复或估计出信源信号。这一先验信息就是盲源分离中的基本假设条件一信源信号之间是相互统计独立的,这是一个很宽松的条件,因此盲源分离技术在众多的领域中获得了广泛的应用,近年来成为现代信号处理领域中的一个新的研究热点。
     在早期的盲源分离研究中,一般都要做出观测信号的数目不少于源信号的数目的假设。然而,随着对盲信号处理研究的不断深入,作为常规模型的扩展,基于欠定模型的盲信号处理算法近年来得到了广泛的关注。这类算法主要解决源信号数目多于观测信号数目情况下的问题,更接近于盲源分离实际的情况。由于在此条件下系统是不可逆的,在研究的方法上与标准的盲源分离算法也有所不同,目前基于统计概率模型的过完备描述算法和基于稀疏特征的分离算法是研究欠定盲源分离的主要方法。
     本论文系统回顾了盲源分离技术的发展历史、研究现状和相关的经典算法,围绕欠定情况下盲源分离问题的一些关键技术进行了一些探索性的研究,包括欠定情况下源信号的可分离性、信源个数的估计、信源的稀疏性处理和欠定的非线性分离方法等,提出了一系列欠定盲源分离的算法,这些内容属于扩展的盲源分离问题,具有相当的理论意义和实际的应用价值。同时作为盲源分离技术的一个应用,在语音话者识别方面做了一定的研究工作。过完备描述算法作为一种扩展的盲源分离算法,在对信号特征刻画方面具有相当大的灵活性,不仅可以解决欠定盲源分离的问题,同时还可以得到描述信号高阶统计信息的过完备基函数。以此基函数为特征建立的基于文本无关的话者识别系统取得了很好的识别效果。本论文的主要成果概括如下:
     1.基于统计概率模型的过完备描述算法,该算法分为两步进行,首先在混叠矩阵固定的情况下对信源进行估计,然后在信源固定的情况下训练混叠矩阵。在具有二个观测信号或观测信号较少的情况下,提出了采用最短路径的方法来对信源进行估计,以提高训练速度,避免了求逆矩阵带来的运算量。
     2.在采用两步分离的欠定盲源分离算法中,混叠矩阵的精确估计是实现分离的前提,对信源作稀疏处理后,采用一新的加权势函数,在不增加运算量的前提下,低分辨率的情况即可以准确的估计出信源的个数,同时在聚类方向的邻域内采用高分辨率来精确的估计混叠矩阵。实验表明该算法可给出精确的估计,即使在观测信号中含有噪声的情况下,也可以保证很好的估计性能。
     3.在欠定盲源分离的分离方法上,传统的基于最小化L~1范数分离算法可给出确定的解,然而由于该算法是在最大化后验概率的情况下得到的,采用线性规划算法在信源稀疏性较差的情况下并不能给出理论上的最佳分离值。鉴于L~1范数分离算法的缺点,提出了两种改进的方法。第一,提出了基于在聚类方向加权的欠定盲源分离算法,该算法在寻找最佳分离矩阵时能较好的反映源信号的变化情况,在信源稀疏性较差的情况下较传统L~1范数分离算法能给出更高的信源分离信噪比,特别在信源中含有幅度较小的信源时,可避免由于L~1范数分离算法造成的分离不出小信号的情况。第二,提出了基于最小均方误差的欠定盲源分离算法,该算法在寻找最佳分离矩阵时能较好的跟踪源信号的内在变化,特别在信源稀疏性较差的情况下较传统L~1范数分离算法能给出更高的信源分离信噪比,通过对语音信号的分离并与原始语音信号对比试听,在语音的连续性和噪声方面都能达到满意的效果,具有实际应用的价值。
     4.含噪欠定盲源分离算法。由于噪声的影响将使算法的性能下降,然而在分离算法上实现去噪是非常困难的,为此含噪盲源分离算法常采用时频变换的技术,在进行分离之前先对观测信号进行滤波处理,然后考虑无噪声情况下的盲源分离。本文提出了一种新的基于高阶统计稀疏表征的欠定盲源分离算法,通过小波线性变换在变换域中对混叠信号进行分离,利用小波变换将信号能量“集中”在变换域中少数系数上的特征,既完成了对源信号的稀疏性处理,又可实现对噪声的消除,同时符合盲源分离的数学模型和先验假设,比基于二阶统计特征方法有更大的优越性,实验中取得了较好的分离效果。
     5.在话者识别应用方面。有效的特征信息一直是识别系统的关键,有效的话者特征同样是话者识别系统的关键。对于语音信号而言,不但包含有与话者有关的物理信息,同时也包含有语义信息,研究表明这两方面的信息可以认为是相互独立的,这与盲源分离模型的假设相一致。为此我们采用盲源分离技术中的过完备描述算法,将信号表示成基函数的线性组合,算法中通过设置基函数系数的分布特性来实现信号的分解,若假定系数具有稀疏的特性,即设置系数的分布为超高斯分布,则分解得到的基函数可准确地描述信号的高阶统计结构信息。该特征可用于语音信号处理中的话者识别和语音识别系统中,通过话者大量语音的学习获得与话者对应的特征信息,实验表明该特征具有较好的识别性能。
     综上所述,本论文针对目前欠定情况下的盲源分离算法存在的问题,以概率统计、稀疏处理和时频变换等技术为核心,对欠定盲源分离算法进行了较为深入的研究,并与实际应用相结合,成功的应用于语音信号处理中。论文最后总结了该研究领域亟待解决的一些问题和下一步的研究重点,同时对该领域的发展趋势进行了展望。
With the development of information and computer technique,there is a high demand for methods of signal processing.In many applications,only the mixing signals or the mixing signals with noise of the source signals can be obtained by the sensors,how to separate the original source signals from the mixing signals is the problem that must to be solved in some applications,the technique of blind source separation(BSS) is being developed under this circumstance.Many researchers have devoted themselves to this area when the technique was put forward.As a new method of data processing,BSS is the result of the combination of the artifical neural network,statistical signal processing,information theory and computer science.And will be of great value in a lot of applications such as biomedicine,medical image,speech signal processing,communication system, information retrieval and so on.
     The technique of BSS is to recover or estimate the original signals from several observed mixed signals according to less prior information without any knowledge of the sources and channels.The prior information is the basic hypothesis of the blind source separation,i.e.the sources in the mixing signals are independent each other.This condition is not strict so the technique of BSS has wide applicaions in many areas,and recently,it has been one of the most active research areas in the modern signal processnig.
     In the earlier research of the BSS,generally,to simplify the research work, BSS methods mostly concentrate on the overcomplete case or complete case,that is,the number of observed signals is not less than that of source signals.However, with the development of the blind signal processing,as the extension of the standard BSS,underdetermined BSS has attracted a great deal of attention recently, in this case,the number of observed signals is less than that of source signals, because the system is not linearly invertible,so the research method is different from that of the standard BSS,recently the main method of the underdetermined BSS is based on the overcomplete representation and the sparse representation.
     This dissertation reviews the development of BSS,the current research status, the related theory and classic algorithms systematically,lots of exploratory research work has been done around the key techniques of underdetermined BSS, which include the separability,the estimation of the number of sources,the handling of the signal sparseness and nonlinear separation method and so on,some separation algorithms has been proposed,these contents are belong to extended BSS,and has considerable theoretical value and practical value.Also,as the application of BSS,we have done some research work on speaker recognition。Overcomplete representation is an extended BSS algorithm,it has a great flexibility in capturing the structures of the signal,not only can solve the underdetermined BSS,but also can obtain the basis functions which describe the high order statistical information of the signal.Base on these basis functions,a text Independent speaker recognition system was built,experiments result shows that this kind of features can gives better recognition rate.The main contributions of this dissertation are consists of the following parts:
     1.In the algorithm of overcomplete representation,the algorithm can be divided into two steps,frist estimating the sources when the mixing matrix is fixed, then training the mixing matrix when the sources are fixed.In the case of two or not too many observed mixing signals,the shortest path decomposition is proposed to estimate the source signals in the frist step,which can enhance the training speed and can avoid the computation of the invertable matrix.
     2.In the two steps algorithm of underdetermined BSS,the accurate mixing matrix estimation is the precondition for separation,after sparse processing,a new weighted potential function has been used,in the lower resolution we can estimate the number of sources accurately,also in the neighborhood of the clustering directions,higher resolution is used to estimate the mixing matrix.Experiments results show that this method can give better estimation even if the observed signals are contaminated by noise.
     3.In the separation method of underdetermined case,the traditional method of minimization of L~1 norm can give the certain solutions,this algorithm was obtained at the maximum aposteriori probability(MAP) of source signals,and can not achieves the theoretical optimal value when using the linear programming method, especially when the sourse signal is not sparse enough.Two methods are proposed to overcome the disadvantage of the L~1 norm method.First,a weighted algorithm at the clustering directions is proposed,this method can described the sources better and can gives higher SNR than that of L~1 norm method,especially can avoid the separation failure when small amplitude source in observed signals.Second a least mean square error algorithm is proposed,this method can trace the inner variety of the sources when searching the optimal separation sub-matrix,also can gives higher SNR than that of L~1 norm method,by comparison with sources,the separating performance is satisfied and have the practical value.
     4.Algorithm of noisy underdetermined BSS.Noise can influence the algorithm performance,however,algorithm of BSS with denoising is difficult to implement,for this reason,time-frequency transform are usually used to denoise the observed signal before separation.An algorithm based on higher order statistical sparse feature is proposed,which utilizes the "concentration" feature of wavelet transform to denoise.After the wavelet transform,the information of signal is concentrate on less wavelet coefficients,this not only achieved sparse processing,but also achieved denoising in wavelet domain.Also this method is suitable for BSS model and BSS prior hypothesis,and has an advantage than that of method which based on second order statistical sparse feature,experiment result show better separation performance.
     5.The application in speaker recognition.Effective features are always the key problem in recognition systems,also in the speaker recognition system.For speech signal,not only include the physical informations of speaker,but also include the semantic information of speech,research results have shown that these two kinds of informations can be considered to be independent each other,this feature is very suitable to BSS model.We use the technique of the overcomplete representation to divided signal into linear combination of basis functions according to setting the distribution of the coefficients of the basis functions,if the coefficients are sparse or have the super-gaussian distribution,the obtained basis functions can describe the higher order statistical structure of the signal.These basis functions can be used in the speaker recognition system or speech recognition system,after training large numbers of speech signal,we can get the basis functions which is correlative to the speaker information,experiment result shown the feature is effective.
     In sum,around the probability statistical method,sparse handling,nonlinear separation and time frequency transform techniques,underdetermined BSS method are investigated in this dissertation,combined with the application,BSS technique has successfully used in speech signal processing.Finally,the problems to be solved related to this research area and future research topics are summarized,furthermore, the prospect of the developing tendency is analyzed as well.
引文
[1]Hyv(a|¨)rinen A,Karhunen J,Oja E.Independent component analysis[M].New York:John Wiley & Sons,Inc,2001.
    [2]Lee Te-won,Independent component analysis.Theory and application[M].Kluwer academic publishers,1998.
    [3]Lisha Sun,Ying Liu,Beadle P J.Independent component analysis of EEG signals[C].Proceedings of 2005 IEEE International Workshop on VLSI Design and Video Technology,Suzhou,China,2005:219-222.
    [4]Romero S,Mananas M A,Riba J,et al.Evaluation of an automatic ocular filtering method for awake spontaneous EEG signals based on independent component analysis[C].Proceedings of 26th Annual International Conference of the Engineering in Medicine and Biology Society(EMBC'04),2004,vol.1:925-928.
    [5]Yamazaki A,Tajima T,Matsuoka K.Convolutive independent component analysis of EEG data[C].SICE 2003 Annual Conference,2003,vol.2:1227-1231.
    [6]Mckeown M J,Jung T P,Makeig S,et al.Spatially independent activity patterns in functional MRI data during the stroop corlor-naming task[J].Proc Natl Acad Sci,1998,95:803-810.
    [7]Hyv(a|¨)rinen A,Hoyer P.Independent subspace analysis shows emergence of phase and shift invariant features from natural images[C].Proceedings of IEEE International Joint Conference on Neural Networks(IJCNN'99),1999,vol.2:1059-1064.
    [8]孙建德,刘琚,基于独立分量分析的盲视频水印方案[J].电子学报,2004,32(9):1507-1510.
    [9]胡慧博,刘琚,孙建德,基于ICA的抗拷贝攻击的数字水印方案[J].电子与信息学报,2005,27(7):1035-1038.
    [10]A.Cichocki and S.Amari.Adaptive blind signal and image processing[M]. John Wiley, New York, 2003.
    [11] He Zhenya, Liu Ju, Yang Luxi. Blind separation of images using edge worth expansion based ICA algorithm [J]. Chinese Journal of Electronics, 1999, 8(3):278-282.
    [12] Karhunen J, Hyvarinen A. Application of neural blind separation to signal and image processing [C]. Proc ICASSP [C]. Munich, Germany, 1997: 131-134.
    [13] J. Hurri, A.Hyvarinen, et al., Image Feature Extraction Using Independent Component Analysis [C]. Proc. of 1996 IEEE Nordic Signal Processing Symposium, 1996: 475-478.
    [14] A. J. Bell and T. J. Sejnowski. Edges are the Independent Components of Natural Scenes [C]. Advances in Neural Information Processing Systems, 1996: 831-837.
    [15] M.S. Bartlett, J.R. Movellan, and T.J. Sejnowski, Face Recognition by Independent Component Analysis [J]. IEEE Trans. Neural Networks, 2002, 13(6): 1450-1464.
    [16] Gonzalez-Serrano et al., Independent Component Analysis Applied to Digital Image Watermark [C]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001, 3:1997 - 2000.
    [17] Chengjun Liu, Enhanced independent component analysis and its application to content based face image retrieval [J]. IEEE Transactions on Systems, Man and Cybernetics, 2004, 34(2): 1117 - 1127.
    [18] 刘琚,孙建德,基于ICA的数字水印的方法[J].电子学报,2004,32(4):657-660.
    [19] Caihua Zhao, Ju Liu, Jing Li, Changbin Xu. An Effective Method on Blind Speech Separation in Strong Noisy Environment [C]. Proceedings of the 2005 IEEE International Workshop on VLSI Design and Video Technology (IWVDVT'05), China, May 28-30, 2005: 211-214.
    [20] Te-Won Lee, Gil-din Jang, The Statistical Structures of Male and Female Speech Signals [C]. in Proc. ICASSP, Salt Lack City, Utah, May 2001:1-4.
    [21]Jong-Hawn Lee,Ho-Young Jung,Speech Feature Extraction Using Independent Component Analysis[C],in Proc.ICASSP,vol.3,Istanbul,Turkey,June,2000:1631-1634.
    [22]Anthony J Bell,Terrence J Sejnowski,Learning the Higher-order structure of a nature sound[C],Network Computation in Neural System,1996:261-266.
    [23]O.Ylimaz and S.Rickard,Blind separation of speech mixtures via time-frequency masking[J],IEEE Trans.Signal Processing,July 2004,52(7):1830-1847,
    [24]S.Araki,S.Makino,H.Sawada,and R.Mukai.Underdetermined blind separation of convolutive mixtures of speech with directivity pattern based mask and ica[C],in Proc.ICA2004.September 2004:898-905.
    [25]Potamitis I,Fakotakis N,Kokkinakis G.Speech enhancement using the sparse code shrinkage technique[C].IEEE International Conference on Acoustic Speech and Signal Processing.2001:621-624.
    [26]Lee J H,Jung H Y,Lee T W,et al.Speech feature extraction using independent component analysis[C].Proc.IEEE ICASSP.2000:1631-1634.
    [27]Kotani M,Shirata Y,Maekawa S,et al.Application of independent component analysis to feature extraction of speech[C].Proc.IEEE International Joint Conference on Neural Networks.1999:2981-2984.
    [28]Lee T W,Bell A J,Orglmeister R.Blind source separation of real world signals[C].in Proc of ICNN.Houston,USA,1997:2129 -2134.
    [29]凌燮亭,近场宽带信号源的盲分离[J].电子学报,1996,24(7):87-92.
    [30]何振亚,刘琚,杨绿溪等,盲均衡和信道参数估计的一种ICA和进化计算方法[J],中国科学(E辑),2000,30(1):1-7.
    [31]何振亚,陈宇欣,用Hopfield网络实现盲波束形成[J].通信学报,1999,20(12):86-91.
    [32]Ilin A,Valpola H,Oja E,Semiblind Source Separation of Climate Data Detects El Nino as the Component with the Highest Interannual Variability[C].Proceedings of 2005 International Joint Conference on Neural Networks (IJCNN'05), Montreal, Canada, 2005, vol.3:1722-1727.
    [33] Cardoso J F, Souloumiac A. Blind beamforming for non-Gaussian signals [J]. IEE Proc.-F, 1993, 140(6):362-370.
    [34] Van der Kouwe A J W, Wang D L, Brown G J. A comparison of auditory and blind separation techniques for speech segregation [J]. IEEE Trans. on speech and audio proceeding. 2001, 9(3): 189-195.
    [35] Makeig S, Jung T P, Bell A.J, et al. Blind separation of auditory event related brain responses into independent components [J]. Proc. Natl Acad Sci, 1997, 94: 10979-10984.
    [36] Chengjun Liu, H. Wechsler, Independent Component Analysis of Gabor Features for Face Recognition [J], IEEE Transactions on Neural Networks, 2003, 14(4): 919-928.
    [37] Guoxia Sun, Ju Liu, et al.. Locally Salient Feature Extraction Using ica for Content-Based face image retrieval. International Conference on Innovative Computing, Information and Control, 2006:644 - 647.
    [38] C. Jutten and J. Herault, Blind separation of sources. part I: An adaptive algorithm based on neuromimetic architecture [J], Signal Processing, 1991, 24(1): 1-10.
    [39] E. Sorouchyari, Blind separation of sources, part 111: Stability analysis [J], Signal Processing, 1991, 24(1):21-29,.
    [40] P. Comon, C. Jutten and J. Herault, Blind separation of sources. part 11: Problems Statement [J], Signal Processing, 1991, 24(1): 11-20.
    [41] Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution [J]. Neural Computation, 1995, 7(6): 1129-1159.
    [42] Cardoso J F, Souloumiac A. Blind beamforming for non-Gaussian signals [J]. IEE Proc.-F, 1993, 140(6): 362-370.
    [43] Hyvarinen A, Oja E. A fast fixed-point algorithm for independent component analysis [J]. Neural Computation, 9(7), 1997:1483-1492.
    [44] Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis [J]. IEEE Trans. on Neural Networks, 1999. 10(3):626-634.
    [45] Tong L, Liu R, Soon V C, et al. Indeterminacy and identifiability of blind identification [J]. IEEE Trans. on Circuits and systems, 1991, 38(5):499-506.
    [46] P. Comon, Independent component analysis, a new concept? [J], signal processing, 1994, 36(2):287-314.
    [47] Amria S.I., Cichocki A., Adaptive blind signal processing-neural network approaches [J], IEEE Proc. 1998, 86(10):2026-2048.
    [48] Stone J.V. Blind source separation using temporal predictability [J]. Neural Computation, 2001, 13(7): 1559-1574.
    [49] Pearlmutter B A, Parra L C. A context-sensitive generalization of ICA [C]. Proc. Of ICONIP, 1996, pp: 151-157.
    [50] M. Zibulevsky and B. A. Pearlmutter. Blind Source Separation by Sparse Decomposition in a Signal Dictionary [J], Neural Comput., 2001, 13(4):863-882.
    [51] T. W. Lee, M. S. Lewicki, M. Girolami, and T. J. Sejnowski. Blind source separation of more sources than mixtures using overcomplete representations [J], IEEE Signal Process. Letters, 1999, 6(4):87-90.
    [52] M.S. Lewicki and T. J. Sejnowski. Learning overcomplete representations [J] networks, Neural Comput., 2000:337-365.
    [53] P. Bofill and M. Zibulevsky. Underdetermined blind source separation using sparse representations [J], Signal Process., 2001, 81(11):2353-2362.
    [54] Y. Q. Li, C. Andrzej, S. Amari. Analysis of sparse representation and blind source separation [J]. Neural Computation, 2004:1193-1234.
    [55] F. J. Theis, W. E. Lang, C. G. Puntonet. A geometric algorithm for overcomplete linear ICA [J]. Neural computing, 2004:381-398.
    [56] Y. Li, S.I. Amari and A. Cichocki. Underdetermined blind source separation based on sparse representation [J], Signal Processing, 2006, 54(2):423-437.
    [57] D. L. Donoho and M. Elad. Maximal sparsity representation via 11-norm minimization [J]. Proc. Nat. Aca. Sci., 2003:2197-2202.
    [58] M. Xiao, S. Xie and Y. Fu, A statistically sparse decomposition principle for underdetermined blind source separation [J]. Intelligent Signal Processing and Communication Systems, 2005:165-168.
    [59] Juha Karvanen, Andrzej Cichoki. Measuring sparseness of noise signals[C]. Proceedings of Fourth International Symposium on Independent Component Analysis and Blind Signal Separation. ICA2003, Nara, Japan, April, 2003:125-130.
    [60] Kenneth Kreutz-Delgado, Joseph F. Murray, Bhaskar D.Rao. Dictionary learning algorithm for sparse representation [J]. Neural Computation, 2003, 15(2):349-396.
    [61] Yuanqing Li, Andrzej Cichocki, Shun-ichi Amari. Sparse Component Analysis for blind source separation with less sensors than sources [C]. Fourth International Symposium on Independent Component Analysis and Blind Signal Separation, Nara, Japan, ICA2003.
    [62] Pau Bofill, Michael Zibulevsky. Blind separation of more sources than mixtures using sparsity of their short time Fourier transform [C]. Proceedings of the International Workshop on Independent Component Analysis and Blind Signal Separation, Helsinki, Finland, 2000:87-92.
    [63] M.Davies, N. Mitianoudis. Simple mixture model for sparse over-complete ICA [J]. IEE proceedings in Vision, Image and Signal Processing, 2004. 151(1): p35-43.
    [64] Mark Girolami, A variational method for learning sparse and over-complete representations [J]. Neural Computation 2001:2517-2532.
    [65] Te-Won Lee, Michael S.Lewicki, Mark Girolami, Terrence J.Sejnowski. Blind source separation of more sources than mixtures using overcomplete representations [J]. IEEE Signal Processing Letters, 1999, 4(4).
    [66] Ozgur Yilmaz, Scott Rickard. Blind separation of speech mixtures via Time frequency masking [J]. IEEE Transactions on Signal Processing, 2004, vol.52(7).
    [67]Robert Gavelin,Harald Klomp,Clinton Priddle,Mats Uddenfeldt.Blind source separation;http://student.signal.uu.se/~adapt0405,Uppsala University,2004.
    [68]F.Abrard,Y.Deville,and P.R.White,A new source separation approach for instantaneous mixtures based on time-frequency analysis[J],Proceedings of ECMS,Toulouse,France,May,2001.
    [69]O.Ylimaz and S.Rickard,Blind separation of speech mixtures via time-frequency masking[J],IEEE Trans.Signal Processing,2004,52(7):pp.1830-1847
    [70]He Zhenya,Liu Ju,Yang Luxi.Blind separation of images using edge worth expansion based ICA algorithm[J].Chinese Journal of Electronics,1999,8(3):278-282.
    [71]He Zhenya,Yang Luxi,Liu Ju.Blind source separation using cluster based multivariate density estimation algorithm[J].IEEE Trans on Signal Processing,2000,48(2):575-579.
    [72]刘琚,梅良模,何振亚,一种盲信号分离的信息理论方法[J].山东大学学报,1998,34(4):398-403.
    [73]刘琚,鲁子奕,何振亚,梅良模,基于信息论准则的盲源分离方法[J].应用科学学报,1999,17(2):156-162.
    [74]刘琚,何振亚,利用高阶累积量和独立分量分析网络进行盲均衡与系统辨识[J].数据采集与处理,1998,13(3):201-205.
    [75]刘琚,何振亚,梅良模,一种基于ICA和过采样技术的盲反卷积方法[J].现代雷达,1998:41-52,
    [76]刘琚,梅良模,王太君,何振亚,一种基于非平稳特性的前馈神经网络盲源分离方法[J].山东大学学报,1999,34(3):298-303.
    [77]刘琚,聂开宝,何振亚,线性混迭信号中独立源的盲提取[J].应用科学学报,2001,19(3):24-29.
    [78]冯大政,史维祥,一种自适应信号盲分离和盲辨识的有效算法[J].西安 交通大学学报,1998,32(5):76-79.
    [79]虞晓,胡光锐,基于统计估计的盲信号分离算法[J].上海交通大学学报,1999,33(5):566-569.
    [80]华荣,苏中义,基于遗传算法过程信号的盲分离[J].上海交通大学学报.2001,35(2):319-322.
    [81]林家骏,乐慧丰,俞金寿,过程信号的盲分离[J].华东理工大学学报,1999,25(5):510-513.
    [82]林家骏,乐慧丰,俞金寿,过程信号的盲分离及应用[J].化工自动化及仪表,1999,16(5):25-27.
    [83]虞晓,胡光锐,基于神经网络的非线性盲信号分离[J].上海交通大学学报,1999,33(9):1093-1096.
    [84]戴宪华,基于累积量极值的非线性系统盲反卷积[J].电子学报,2000,28(9):70-73.
    [85]冯大政,史维祥,有效的自适应波达方向盲估计算法[J].电子学报,1999,27(3):23-26.
    [86]刘宏伟,张守宏,廖桂生,一种基于信号谱自相关特性的盲波束形成方法[J].西安电子科技大学学报,1997,24(1):58-65.
    [87]Caihua Zhao,Ju Liu,Jing Li,Changbin Xu.An Effective Method on Blind Speech Separation in Strong Noisy Environment[C].Proceedings of the 2005IEEE International Workshop on VLSI Design and Video Technology (IWVDVT'05),Suzhou,China,May 28-30,2005:211-214.
    [88]Bronstein,Michael M,Bronstein,Alexander M.Zibulevsky,Michael,Zeevi,Yehoshua Y.Blind deconvolution of images using optimal sparse representations.IEEE Transactions on Image Processing,June,2005,14(6),pp:726-736.
    [89]Belouchrani A,Abed-Maraim K,Cardoso J F,et al.A blind source separation technique using second-order statistics[J].IEEE Transactions on Signal Processing,1997,45(2):434-444.
    [90]Rahbar K.,Reilly James P.A frequency domain method for blind source separation of convolutive audio mixtures.IEEE Transactions on Speech and Audio Processing,2005,13(5),pp:832-844.
    [91]Ming Xiao,Shengli Xie,Yuli Fu.A statistically sparse decomposition principle for underdetermined blind source separation.2005 International Symposium on Intelligent Signal Processing and Communication Systems,ISPACS 2005,2005,pp:165-168.
    [92]孙国霞,基于无监督成分分析的图像检索方法研究[D].山东大学博士论文,2007.
    [93]Amari S,Cichocki A,Yang H H.A new learning algorithm for blind signal separation[C].Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,vol.8,1996:657-663.
    [94]He Zhenya,Yang Luxi,Liu Ju.Blind source separation using cluster based multivariate density estimation algorithm[J].IEEE Trans on Signal Processing,48(2),2000:575-579.
    [95]A.Jourjine,S.Rickard,and O.Yilmaz,Blind Separation of disjoint orthogonal signals:Demixing N sources from 2 mixtures[C],in Proc.IEEE ICASSP,vol.5,Istanbul,Turkey,2000:2985-2988.
    [96]Ren Ren,Shi-Hua Zhu,Yong-Qiao Luo,Da-Nan Ren,Er-lin Zeng.Nonlinear signals separation of adaptive natural gradient learning[C].2005 International Conference on Machine Learning and Cybernetics,ICMLC 2005,pp:2771-2776.
    [97]Lee T W,Girolami M,Sejnowski T J.Independent component analysis using an extended informax algorithm for mixed subGaussian and superGaussian sources[J].Neural Computation,1999,11(2):417-441.
    [98]Tanaka T,Cichocki A.Subband decomposition independent component analysis and new performance criteria[C].Proceedings of IEEE ICASSP,vol.5,2004:541-544.
    [99]Paraschiv-Ionescu A,Jutten C,Aminian K,et al.Wavelet de-nosing for highly noisy source separation[C].IEEE International Symposium on Circuits and Systems, 2002, vol.1:201 -204.
    [100] H. Sawada, R. Mukai, S. Araki and S. Makino. A robust and precise method for solving the permutation problem of frequency domain blind source separation [C], in Proc. IVA 2003:505-510.
    [101] Snoussi. H, Idier. J. Bayesian blind separation of generalized hyperbolic processes in noisy and underdeterminate mixtures [J]. IEEE Transactions on Signal Processing, 2006, 54(9), pp: 3257-3269.
    [102] Li Yuanqing, Amari.S, Ho.Daniel W.C, Shengli Xie. Underdetermined blind source separation based on sparse representation [J]. IEEE Transactions on Signal Processing, 2006, 54(2), pp: 423-437.
    [103] Li Hongyan, Wang Huakui, Xiao Baojin. Blind separation of noisy mixed speech signals based on wavelet transform and independent component analysis [C]. 8th International Conference on Signal Processing, ICSP 2006, pp: 4128948.
    [104] Bobin. J., Starck J.-L., Fadili J., Moudden Y. Sparsity and Morphological Diversity in Blind Source Separation [J]. IEEE Transactions on Image Processing, 2007, 16(11), pp: 2662-2674.
    [105] Cardoso J F. Informax and maximum likelihood for blind source separation [J]. IEEE Signal Processing Letters, 1997, 4(4): 112-114.
    [106] S. Amari. Neural gradient works efficiently in learning [J]. Neural Comput., 1998, vol. 10, no. 2:251-276.
    [107] H. Sawada, R. Mukai, S. Araki et al. A robust and precise method for solving the permutation problem of frequency-domain blind source separation [J]. IEEE Trans. Speech Audio Process, 2004, vol. 12, issue 5:530-538.
    [108] S. Amari, A. Hyvarinen, S. Y. Lee, et al. Blind signal separation and independent component analysis. Neuro comput. 2002, 49: 1-5.
    [109] Chang Chunqi, Fung Peter C. W., Hung Yeung Sam. On a sparse component analysis approach to blind source separation [C]. 6th International Conference, ICA2006, 2006, pp: 765-772.
    [110] A. Hyvarinen, Erkki Oja. A Fast Fixed-Point Algorithm for Independent Component Analysis [J]. Neural Computation, 1997, 9(7): 1483-1492
    [111] Jang G J, Lee T W, Oh Y H. Single-channel signal separation using time-domain basis functions [J]. Signal Processing. 2003, 10(6): 168-171.
    [112] Jang G J, Lee T W, Oh Y H. Single channel signal separation using MAP-based subspace decomposition [J]. Electronics Letters, 2003, 39(24): 1766-1767.
    [113] Beierholm T, Pedersen B D, Winther O. Low complexity Bayesian single channel source separation [C]. Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP'04). 2004, 5: V-529-532.
    [114] Jang G J, Lee T W, Oh Y H. A subspace approach to single channel signal separation using maximum likelihood weighting filters [A]. Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP'03), 2003, 5: V-45-48.
    [115] Moulines E, Cardoso J F, Gassiat E. Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models [C]. in Proc of ICASSP. Washington, 1998:3617-3620.
    
    [116] 刘琚,何振亚.盲源分离和盲反卷积[J].电子学报,2002,30(4):570—576.
    [117] J.Anemuller and B. Kollmeier. Amplitude modulation decorrelation for convolutive blind source separation [C]. In Proc. Int. Conf. ICA and BSS, June 2000:215-220.
    [118] Platt C, Faggin F. Networks for the separation of sources that are superimposed and delayed [J]. Advances in Neural Information Processing Systems, 1993,4:730-737.
    [119] Thi H N, Jutten C. Blind source separation for convolutive mixtures [J]. Signal Processing, 1995, 45(2): 209-229.
    [120] Tokkola K. Blind separation of convolved sources based on information maximization [C]. Proceedings of IEEE Workshop on Neural Networks for Signal Processing. Kyoto, Japan, 1996: 423-432.
    [121] Tokkola K. Blind separation of delayed sources based on information maximization [C]. Proc. of ICASSP. 1996: 3509-3512.
    [122] Lee T W, Bell A.J, Lambert R H. Blind separation of delayed and convolved sources [J]. Advances in Neural Information Processing Systems, 1997, 9:758-764.
    [123] P. Smaragdis. Blind separation of convolved mixtures in the frequency domain [J]. Neural Comput., 1998, vol. 22:21-34.
    [124] L. Schobben and W. Sommen. A frequency domain blind signal separation method based on decorrelation. IEEE Trans. on Signal Processing, 2002, 50: 1855-1865.
    [125] H. Buchner, R. Aichner and W. Kellermann. A generalization of a class of blind source separation algorithms for convolutive mixtures. Proc. ICA'03, 2003:945-950.
    [126] Burel G. Blind separation of sources: A nonlinear neural algorithm [J]. Neural Networks, 1992, 5: 937-947.
    [127] Pajunen P, Hyvarinen A, Karhunen J. Nonlinear blind source separation by self-organizing maps [C]. Progress in Neural Information Processing, Springer, Berlin, 1996, 2: 1207-1210.
    [128] Yang H H, Amari S, Cichocki A. Information back-propagation for blind separation of sources from non-linear mixture [C]. Proc. ICNN, Houston, 1997: 2141-2146.
    [129] Taleb A, Jutten C. Source separation in post nonlinear mixtures: An entropy-based algorithm [C]. Proc. of ICASSP. 1998: 2089-2092.
    [130] Hyvarinen A, Oja E. Independent component analysis by general nonlinear Hebbian-like learning rules [J]. Signal Processing, 1998, 64(3):301-313.
    [131] C.Juten and J.Heault. Independent component analysis versus principal component analysis. Signal Processing IV: Theo. and Appl. Elsevier publishers, 1988:643-646.
    [132]Daubechies,Ⅰ.The wavelet transform,time-frequency localization,and signal analysis.IEEE transactions on Information Theory,1990,36(5):961-1004.
    [133]S.Chen,D.L.Donoho,and M.A.Saunders.Atomic decomposition by basis pursuit[J],SIAMJ.Sci.Comput.,1998,20(1):33-61.
    [134]Olshausen,B.A.and Field,D.J.Emergence of simple-cell receptive-field properties by learning a sparse code for natural images.Nature,1996,381:607-609.
    [135]杨福生,洪波著.独立分量分析的原理与应用[M].北京:清华大学出版社,2006.1.
    [136]彭玉华.小波变换与工程应用[M].北京:科学出版社,1999.
    [137]Moreau E.Pesquet J-C.,Thirion-Moreau N.Convolutive blind signal separation based on asymmetrical contrast functions[J].IEEE Transactions on Signal Processing,2007,55(1),pp:356-371.
    [138]Lee Ⅰ.,Kim T.,Lee Te-Won.Fast fixed-point independent vector analysis algorithms for convolutive blind source separation[J].Signal Processing,2007,87(8),pp:1859-1871.
    [139]Shi Zhenwei,Zhang Changshui.Nonlinear innovation to blind source separation.Neurocomputing,2007,71(1),pp:406-410.
    [140]Sawada,H.,Araki S.,Makino,S.A two-stage frequency-domain blind source separation method for underdetermined convolutive mixtures[C].2007IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,WASPAA2007,pp:139-142.
    [141]Li Yuanqing,Amari S-Ⅰ.,et al.Underdetermined blind source separation based on sparse representation[J].IEEE Transactions on Signal Processing,2006,54(2),pp:423-437.
    [142]Li Yuanqing,Amari S-Ⅰ.,Cichocki A,Guan C.Probability estimation for recoverability analysis of blind source separation based on sparse representation[J].IEEE Transactions on Information Theory,2006,52(7),pp:3139-3152.
    [143]赵力.语音信号处理[M].北京:机械工业出版社,2003.
    [144]张雄伟,陈亮,杨吉斌.现代语音处理技术及应用[M].北京:机械工业出版社,2003.
    [145]蔡莲红,黄德智,蔡锐,现代语音技术基础与应用[M].北京:清华大学出版社,pp.79-100,2003.、
    [146]张伟,欠定混叠语音信号盲分离方法研究.山东大学硕士论文,2007.
    [147]Chien Jen-Tzung,Chen Bo-Cheng.A new independent component analysis for speech recognition and separation.IEEE Transactions on Audio,Speech and Language Processing,2006,14(4),pp:1245-1254.
    [148]Duchateau J.,Leroy T.,Demuynck K.,Van Hamme H.East speaker adaptation using non-negative matrix factorization[C].2008 IEEE International Conference on Acoustics,Speech and Signal Processing,ICASSP,2008,pp:4269-4272.
    [149]Jung,Ho-Young,Park,M.,Kim,H-R,Hahn M.Speaker adaptation using ICA-based feature transformation[J].ETRI Journal,2002,24(6),pp:469-472.
    [150]Jang G.-J.,Lee T.-W.,Oh,Y.-H.Learning statistically efficient features for speaker recognition[C].IEEE International Conference on Acoustics,Speech and Signal Processing - Proceedings,2001,vol1,pp:437-440.
    [151]Senturk,A.,Gurgen Fikret S.The usage of independent component analysis for robust speaker verification[C].Proceedings of the IASTED International Conference on Artificial Intelligence and Applications,AIA 2006,pp:136-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700