联合循环电站在线性能计算软件开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
清洁、高效是人们衡量发电技术先进与否的两条最重要标准。以天然气、煤层气为燃料的联合循环——“燃气联合循环”发电集清洁(能源)、高效(发电方式)于一身,成为当今世界愈加受到青睐的实用发电技术。
    本文以华能重庆燃机电厂(108.25MW)为研究对象,应用理论分析和人工神经网络相结合方法,对蒸汽--燃气轮机联合循环进行变工况性能计算,并以此为基础开发出一套适用于工况监测的软件系统,以提高联合循环电站的营运水平,获取最大经济效益。
    本文进行了以下的主要工作:
    ①建立理论模型,根据对象的实际设备的特点和理论关系推导压气机、燃烧室、燃气轮机、余热锅炉、汽轮机的静态数学模型;根据本研究的实际情况,在建立各部件模型时,对已有特性曲线的部件,采用多项式拟合的方法,得到较为准确的特性,而对部分没有曲线的特性,则采用神经网络的方法建立模型。
    ②进行了大量的现场实验,测试在不同条件下系统各节点的参数,并以此作为修正理论模型的依据;
    ③根据现场实测数据和理论模型,计算理论模型中的各种参数;
    ④分析并确定了本软件从已有网络设备获取信息的方法。
    通过本文研究取得了如下成果:
    ①在阅读了大量文献资料的基础上,对以燃气轮机为核心的多种发电厂系统结构进行了分析,并分析了我国电力工业结构调整的方向;
    ②根据研究对象的实际系统结构,给出了系统中各设备的效率计算关系,并根据实际设备的性能曲线,拟合了相应的计算公式,其离线计算结果正确,并为实现在线计算奠定了基础;
    ③首次将人工神经网络的理论及其基本特征引入并应用于燃气--蒸汽联合循环电站的系统故障诊断和变工况性能分析和计算中。以此为理论基础,结合实际系统和文献资料,给出了影响联合循环电站经济性的各主要设备的常见故障原因、故障现象,构造了相应的故障诊断模型,应用神经网络方法率先提出并建立了相应的故障诊断系统和软件系统。
Cleanness and high efficiency are the two important standards by which people determine whether a power generation technology is advanced or not. The combined cycle power generation burning natural gas and coal-based gas has become a practical power generation technology which is more and more popular world-wide for its both advantages of cleanness (energy) and high efficiency ( method of power generation).
    
    This essay, which researches into Huaneng Chongqing Gas Turbine Power Plant (108.25MW) as its object of study, carries out calculations on the variable rated performance of the steam-gas turbine combined operation, utilizing an integrated method of theoretic analytics and artificial neural net. A set of software system applicable to monitoring of plant performance has been developed based on the calculations, which is used to raise the efficiency of a combined cycle plant to achieve largest possible economic profit.
    
    This essay has touched upon the following work:
    
    1. Has built up theoretic models including static mathematic models of air compressor, combustion chamber, gas turbine, waste heat recovery boiler and steam turbine which are deduced according to the feature and theory of the equipment of the object of study. Upon establishment of each model based on the actual conditions, a method of multiple imitation and combination is applied to parts which have already got characteristic curves to have achieved quite accurate curves whilst the method of neural net is applied to the parts which have no characteristic curves for establishment of models.
    2. Has carried out a lot of on-site tests to test parameters of each system section under different conditions, which is used as a basis for correction of theoretic models.
    3. Has calculated various parameters in the theoretic models according to the tested datum on site and the theoretic models.
    4. Has analyzed and determined the method for this software system to obtain information from existing network equipment.
    
    This essay has achieved the following findings via its research:
    
    Has analyzed various power plant structures centered by a gas-steam turbine unit based on its references to large amount of technical documentation, it has also
    
    1. analyzed possible ways of restructuring of China's power industry.
    2. Has worked out the relationship of efficiency calculation of each equipment in the system according to the actual system structure of the object of study. Corresponding calculation formulas is imitated and combined in accordance with the characteristic curves of the actual equipment, and the 0ff-site calculation appear to be correct which plays a good foundation for on-site calculation.
    3. Has for first time applied the theory of artificial neural net and its basic characteristics to the calculation on system fault detection and variable rated performance of a gas-steam turbine combined cycle power plant, Based on this theory while incorporating the information from the actual system and technical documentation, the essay has also outlined causes and phenomenon of normal faults of the main equipment which influence the efficiency of a combined cycle power plant, and has structured fault detection model accordingly. Thus corresponding fault detection system and a software system are proposed and established for the first time via utilization of the method of neural net.
引文
[1] 郑健超.来电力技术的发展趋势浅析.国务院发展研究信息网.2001-12-05
    [2] 杨志荣.论我国能源·电力的未来发展.国务院发展研究信息网.2002-02-07
    [3] 姜绍俊.21世纪电力工业发展的领域及布局.国务院发展研究信息网.2001-11-08
    [4] 张位平.中国天然气市场发展展望.国务院发展研究信息网.2001-12-30
    [5] 戴金星.可燃冰:未来能源.国务院发展研究信息网. 2002-03-20
    [6] 王铭忠.我国的天然气、煤层气资源与联合循环发电.国务院发展研究信息网.2001-09-21
    [7] 人民日报.我国"十五"能源发展重点专项规划.国务院发展研究信息网.2001-08-15
    [8] 中国机电日报. 天然气:我国能源后起之秀. 国务院发展研究信息网. 2001-01-11
    [9] Brian K Schimmoller. Combined cycles: Exploding the cookie cutter myth. Power Engineering. Barrington. Aug 2000.104(8). 34-38
    [10] Frederick C Scherr.Jack A Fuller. Costs of atmospheric fluidized-bed combustors for electric power generation.The Energy Journal. Cambridge. 2002. 23(1).117-132
    [11] R John Briggs. Jim Kuretski Jr. Cyclic conditions challenge HRSG design and operation. Power Engineering. Barrington. May 2000. 104(5). 43-46
    [12] Leo R Aalund. Environment refining needs put focus on IGCC. Oil & Gas Journal; Tulsa; Oct 19. 1998. 96(42). PP40-42
    [13] Robert Swanekamp. Gas Turbines Continue To Dominate New Construction Low emissions and lower building costs are still decisive. ENR. New York. December 3. 2001. 247(23).35-40
    [14] Douglas J Smith. IGCC: The 21st century's answer for the clean burning of coal .Power Engineering; Barrington. Nov 2000. 104(11).53-58
    [15] Rodney R Gay. Shrikant Chickerur. Ivan Johnson. Robert Bell. Optimization software aids project planning and combined-cycle plant operation. Power Engineering. Barrington. May 2001. 105(5). 33-36
    [16] Andy Roberts. Coal:2000 in review and a look ahead. Coal Age. Overland Park. Jan 2001. 106 (1). 37
    [17] N Cai. T Yu. J Xiao. G Welford. Thermal performance study for the coal-fired combined cycle with gasification and fluidized bed combustion. Proceedings of the Institution of Mechanical Engineers. London. 2001. 215(4). 421
    [18] Alexander A A Cabooter; Daslav Brkic; Daniel C Cooperberg; Karol Sep. IGCC is environmentally friendly choice in Polish refinery. Oil & Gas Journal; Tulsa; Feb 26. 2001. 99(9).58-63
    R Carapellucci.G Cau; D Cocco. Performance of integrated gasification combined cycle power
    
    [19] plants integrated with methanol synthesis processes. Proceedings of the Institution of Mechanical Engineers. London; 2001. 215(3). 347
    [20] Franco Vigliano.Project finance: An overview of the market at the beginning of year 2000. International Financial Law Review. London. Mar 2000. 25-28
    [21] Brian K Schimmoller. echnology drives change. Power Engineering.Barrington.Jul 1998. 102(7).6
    [22] Anonymous.Total refinery to get France's first IGCC unit. Oil & Gas Journal Tulsa. Sep 7. 1998. 96(36).44
    [23] Michael Valenti. Trash and burn. Mechanical Engineering. New York. Nov 2000. 122(11). 80-84
    [24] Yu F Vasyuchkov. B M Vorobjev. K Vasioutchkov. Unconventional mining technologies for clean and efficient power generation. Mining Engineering. Littleton. Apr 1998. 50(4). 65
    [25] Bury St. Edmunds. Can coal make a comeback Mechanical Engineering Publications. Ltd. Feb 27. 2002.Neil Wilks.15(4).28-31
    [26] V Ganapathy .21st century package boilers will be larger and more environmentally friendly. Power Engineering. Barrington. Aug 2001. 105(8). 48-52
    [27] Jeff Share. Neale touts distributed generation to meet bottlenecks. Pipeline & Gas Journal. Dallas. Jul 2001. 228(7). 20
    [28] 清华大学电力工程系燃气轮机教研组著.燃气轮机 (上、下册) .水利电力出版社.1978.4
    [29] 焦树建著.燃气—蒸汽联合循环.机械工业出版社.2000.2
    [30] 吴仲华著.燃气的热力性质表.科学出版社.1959.9
    [31] 华能重庆燃机电厂燃气——蒸汽联合循环发电机组性能保证试验报告.1991.11
    [32] 段立强等.整体煤气化联合循环(IGCC)技术进展.燃气轮机技术.13(1).2000.3
    [33] 林汝谋等.燃气轮机火电动力技术发展.燃气轮机技术.8(3).1995.9
    [34] 王震华.联合循环效率突破60%的技术措施.燃气轮机技术.9(1).1996.3
    [35] 程应军等.燃气蒸汽联合循环技术的发展.热能动力工程.13(5).1998.9
    [36] 蔡睿贤.排气全燃型联合循环设计点性能简明估计公式.工程热物理学报.15(3).1994.8
    [37] 张娜等.单轴恒速回热燃气轮机的变工况解析特性及初步经济分析.工程热物理学报.20(3).1999.5
    [38] 张娜等.单轴燃气轮机联合循环变工况典型解析特性.工程热物理学报.21(5).2000.9
    [39] 蔡睿贤.典型联合循环的性能简明示式. 工程热物理学报. 16(2). 1995.5
    [40] 王永青等.一种新的热力循环性能的估算方法和HAT循环的性能估算公式.热能动力工程. 13(5)1998.9
    张娜等.小功率单轴燃气轮机及其功热并供装置变工况典型解析特性.航空动力学
    
    [41] 报.14(4).1999.10
    [42] 黄晓光等.MS6001燃气轮机特性计算及安全监测评估系统软件实现.动力工程.20(6).2000.12.
    [43] 张娜等.压气机特性通用数学表达式.工程热物理学报.17(1).1996.2
    [44] 卢韶光等.燃气透平稳态全工况特性通用模型.工程热物理学报.17(4).1996.11
    [45] 赵士杭等.PFBC联合循环中燃气轮机的变工况性能.热能动力工程.11(2).1996.3
    [46] 崔茂佩.压缩机特性线的系数拟合法.热能动力工程.14(1).1999.1
    [47] 杨勇平等.100MW级IGCC机组设计工况下的性能计算.现代电力.16(2).1999.3
    [48] 李宇红.不同运行方式下燃气轮机部分负荷性能的比较.燃气轮机技术.12(1).1999.3
    [49] 李淑英等.改进的双流循环燃气轮机热力学分析.哈尔滨工程大学学报.18(4).1997.8
    [50] 邓世敏等.联合循环蒸汽系统局部变动的定量分析研究.西安交通大学学报.31(5).1997.5
    [51] 黄文波等.联合循环中余热锅炉及其热力特性分析.燃气轮机技术.9(4).1996.12.
    [52] 孙奉仲等.燃汽—蒸汽联合循环发电厂的循环热效率分析.山东工业大学学报.27(4).1997.12
    [53] 孙奉仲等.试论燃气轮机性能对燃气-蒸汽联合循环的影响.出东电力技术.1997.4
    [54] 曾祥耙.燃气—蒸汽联合循环汽轮机参数匹配探讨.能源研究与利用.1998.4
    [55] 卢岗跃等.燃油品质对燃气轮机运行的影响分析.浙江电力.2000.5
    [56] 谢志武等.燃气轮机稳态性能仿真的面向对象设计与实现.上海交通大学学报.32(7).1998.7
    [57] 苟建兵等.余热锅炉可视化模块建模研究.清华大学学报.39(3).1999.3
    [58] 江丽霞等.整体煤气化联合循环系统特性分析.工程热物理学报.21(1).2000.1
    [59] 赵丽凤等.整体煤气化湿空气透平(IGHAT)循环性能分析.工程热物理学报. 21(4).2000.7
    [60] 邓世敏等.IGCC系统模拟分析研究.动力工程.20(5).2000.10
    [61] 钊丽等.焦截热气化燃煤联合循环系统的数学模型研究.工程热物理学报.20(1).1999.1
    [62] 郑莉莉等.IGCC中布雷顿循环特性和优化的研究.工程热物理学报.20(6).1999.11
    [63] 江丽霞等.IGCC中燃气轮机全工况网络特性.工程热物理学报.21(6).2000.11
    [64] [焦李成等.神经网络研究的进展和展望.电子学报.10(1).109-112
    [65] 焦李成.神经网络计算.西安电子科技大学出版社.1995
    [66] 胡守仁等.神经网络导论.国防科技大学出版社.1993
    [67] 胡守仁等.神经网络应用技术.国防科技大学出版社.1993
    [68] 黄凤岗等.模式识别.哈尔滨工程大学出版社.1998
    [69] T. Heppenstall .Advanced gas turbine cycles for power generation:a critical review. Applied Thermal Engineering. 1998. 18. 837-846
    [70] Feng Xu. D. Yogi Goswami. Sunil S. Bhagwat.A combined power/cooling cycle.Energy . 2000. 25. 233-246
    E. Riensche . E. Achenbach. D. Froning. M.R. Haines. W.K. Heidug. A. Lokurlu .S. von
    
    [71] Andrian .Clean combined-cycle SOFC power plant - cell modelling and process analysis. Journal of Power Sources.2000.86. 404-410
    [72] T.S. Kim. H.J. Park. S.T. Ro . Characteristics of transient operation of a dual-pressure bottoming system for the combined cycle power plant .Energy.2001.26.905-918
    [73] Barry Naughten . Economic assessment of combined cycle gas turbines in Australia Some effects of microeconomic reform and technological change .Energy Policy
    [74] DANIELE FIASCHI, GIAMPAOLO MANFRIDA .EXERGY ANALYSIS OF THE SEMI-CLOSED GAS TURBINE COMBINED CYCLE (SCGT/CC). Energy Convers. Mgmt 1998. 39(18). 1643-1652.
    [75] T.W. Song , J.L. Sohn , J.H. Kim,T.S.Kim, S.T. Ro. Exergy-based performance analysis of the heavy-duty gas turbine in part-load operating conditions .Exergy. 2 (2002) 105-112
    [76] Santanu Bandyopadhyay,N.C. Bera. Souvik Bhattacharyya. Thermoeconomic optimization of combined cycle power Plants. Energy Conversion & Management .42 (2001) 359-371
    [77] Alberto Traverso,Aristide F. Massardo. Thermoeconmic analysis of mixed gas-steam cycles. Applied Thermal Engineering.2002.22.1-21
    [78] M. Mostafavi, A. Alaktiwi, B. Agnew. Thermodynamic analysis of combined open-cycle-twin-shaft gas turbine (Brayton cycle) and exhaust gas operated absorption refrigeration unit.Applied Thermal Engineering. 1998. 18.847-856
    [79] Ulrika Claeson Colpier, Deborah Cornland . The economics of the combined cycle gas turbine an experience curve analysis .Energy Policy. 2002.30.309-316
    [80] I.O.Marrero.A.M.Lefsaker.A.Razanni.K.J.Kim.Second law analysis and optimization of a combined triple power cycle. Energy Conversion & Management . 2002.43.557-573
    [81] P.A. Pilavachi .Power generation with gas turbine systems and combined heat and power. Applied Thermal Engineering . 2000.20.1421-1429
    T.S. Kim,S.T.Ro.Power augmentation of combined cycle power plants using cold energy of liquefied natural gas. Energy. 2000.25.841-85

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700