番茄病害早期快速诊断与生理信息快速检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精细农业技术作为农业信息化和农业现代化发展最前沿的领域之一,是当今世界发展现代农业,实现农业可持续发展的关键和核心技术。精细农业要求快速、准确、数字化和定位化的获取农业生产和管理信息,而农作物生长过程信息的快速、准确、动态获取和监控方法和技术需求尤为紧迫。传统的实验室化学测量分析已经不能满足农业对信息快速、准确、动态、高效获取的要求。本研究针对农作物信息快速检测技术的急迫需求,以番茄为研究对象,应用高光谱成像技术系统建立番茄病害的早期诊断识别方法和模型,并实现病害胁迫下番茄叶片生理信息的快速检测,为番茄栽培的精细化管理和病害综合防治提供新的技术支撑,对番茄的精细化生产和种植具有重要意义。本研究主要成果包括:
     (1)建立了番茄茎秆灰霉病早期诊断的光谱识别模型和图像识别模型,构建了番茄茎秆病害早期诊断的数据预处理、特征信息提取、线性和非线性识别模型的优化分析路径,为番茄茎秆病害的早期诊断识别提供了有效方法。系统地比较了不同光谱预处理下的全谱偏最小二乘法(PLS)模型,并应用载荷系数法提取特征波长,建立了番茄茎秆灰霉病诊断识别的优化模型。得出的最优光谱判别模型为特征波长-最小二乘-支持向量机(EW-LS-SVM)模型,对预测集样本的正确识别率达到100%。应用概率统计滤波和二阶概率统计滤波提取了高光谱图像的纹理特征信息,建立了PLS判别模型,对预测集样本的正确识别率为97.37%。通过遗传算法-偏最小二乘法(GA-PLS)提取特征纹理,建立了PLS和SVM判别模型,最优模型GA-PLS-PLS模型对预测集样本的准确识别率为92.11%。
     (2)建立了番茄叶片三种病害(灰霉病、菌核病和早疫病)胁迫的光谱同步诊断方法和模型。提取了高光谱数据在400-900nnm范围的可见/近红外光谱信息,系统比较了多种光谱预处理方法、PLS和极限学习机(ELM)识别模型,得出的最优模型为全谱ELM模型(Detrending),对预测集样本三种病害同步诊断的正确识别率为94.20%。应用GA-PLS提取的特征波段,并建立了番茄叶片三种病害同步诊断的PLS、误差反向传输神经网络(BPNN)、SVM和ELM模型,总体效果为ELM模型较好,对预测集样本的准确识别率均接近90%。
     (3)建立了基于高光谱图像信息的番茄叶片三种病害(灰霉病、菌核病和早疫病)同步诊断模型和两种病害相互识别模型。采用GA-PLS确定特征波长图像,并应用概率统计滤波和二阶概率统计滤波提取纹理特征,系统地比较了PLS、BPNN、SVM和ELM四种建模方法的诊断识别效果。结果表明:对灰霉病、早疫病和健康叶片的诊断识别、以及对灰霉病、菌核病和健康叶片的诊断识别的正确识别率均大于90%;对菌核病、早疫病和健康叶片的诊断识别、以及三种病害同步诊断识别的正确识别率低于80%。
     (4)建立了的番茄叶片灰霉病胁迫下过氧化物酶(POD)活力的快速检测模型。比较了全谱PLS和ELM模型对番茄叶片POD的快速检测,最优模型为全谱ELM模型(MSC),对预测集样本预测结果的相关系数r=0.8297,预测集均方根误差RMSEP=983.7830;通过GA-PLS方法,提取了21个番茄叶片POD预测的特征波长,建立了GA-PLS-PLS、GA-PLS-MLR和GA-PLS-ELM模型,得出最优模型为GA-PLS-ELM (SG)模型,对预测集样本的预测结果为r=0.8647,RMSEP=465.9880。结果表明:基于光谱技术进行灰霉病胁迫下番茄叶片POD的快速检测是可行的,为番茄叶片生理指标的动态快速检测提供了新的方法。
Precision agriculture and digital agriculture are the most frontier technologies in modern agriculture, and they are also the key and kernel technologies for the development of modern agriculture and the realization of sustainable agriculture. Precision agriculture and digital agriculture require the fast, accurate, digital and positional agricultural production and management information. However, the traditional lab and chemical measurements cannot fulfill the fast, accurate, dynamic and high efficient demand of modern agriculture. Therefore, this study is mainly focused on the tomato (Lycopersicum esculentum), and aims to develop the fast and accurate disease early diagnosis methods and physiological information detection methods of tomato under different disease stress. This study will supply a new approach for the precision management and disease prevention and treatment of tomato, which is also meaningful for the precision production and plant of tomato. The main results were achieved as follows:
     (1) The spectral recognition models and imaging recognition models were developed for the early diagnosis of gray mold disease of tomato stems. An analysis routine was developed for data preprocessing, effective and feature information extraction, linear and nonlinear recognition models, which was effective for the disease early diagnosis of tomato stems. Different spectral preprocessing methods were compared for full-spectrum partial least squares (PLS) models. Effective wavelengths (EWs) were selected by loading weights and used as input of recognition models. The optimal recognition ratio was achieved by effective wavelength-least squares-support vector machine (EW-LS-SVM) model with a correct recognition ratio of100%for validation set. Probability statistics filter and2-deravertive probability statistics filter were used for texture feature extraction of hyper-spectral imaging information. The PLS model obtained a correct recognition ratio of97.37%for validation set. Genetic algorithm-partial least squares (GA-PLS) method was applied to extract the effective texture features, and PLS and SVM models were developed for gray mold disease diagnosis of tomato stems. The optimal model was GA-PLS-PLS model and the correct recognition ratio was92.11%for validation set.
     (2) A synchronous diagnosis model using spectral information was developed for three disease of tomato, including gray mold disease, sclerotinia sclerotiorum disease and early blight disease. The visible and near infrared (400-900nm) spectral information was extracted for hyper-spectral imaging data, and different spectral preprocessing methods were compared for the development of PLS and extreme learning machine (ELM) models. The optimal model was full-spectrum ELM model (Detrending) with a correct recognition ratio of94.20%for synchronous diagnosis of three diseases. GA-PLS was applied for EW selection, and then PLS, back propagation neural networks (BPNN), SVM and ELM models were developed for disease diagnosis. The optimal results were achieved by ELM model with a correct recognition ratio near90%for validation set.
     (3) A synchronous diagnosis methods for three diseases and each of two kinds of diseases were developed using hyper-spectral imaging information. GA-PLS was used to settle the effective wavelength, and the corresponding imaging of these effective wavelengths were selected for texture feature extraction using probability statistics filter and2-deravertive probability statistics filter. Four kinds of models were developed for disease recognition, including PLS, BPNN, SVM and ELM. The results indicated that the correct recognition ratio for the combination of gray mold, early blight diseases and healthy leaves, and the combination of gray mold, sclerotinia sclerotiorum diseases and healthy leaves were over90%, which were acceptable results. However, the recognition ratio for the combination of sclerotinia sclerotiorum, early blight diseases and healthy leaves, the combination of these three diseases and healthy leaves were both less than80%.
     (4) The physiological information of peroxidase (POD) of tomato leaves under gray mold disease stress was determined using spectral technology. A comparison of full-spectrum PLS and ELM models were proceeded, and the results indicated that full-spectrum ELM model (MSC) achieved a better prediction performance with r=0.8297and root mean squares error of prediction (RMSEP)=983.7830for validation set. Moreover, GA-PLS was used to extract effective wavelengths, and21EWs were selected to develop GA-PLS-PLS, GA-PLS-MLR, GA-PLS-ELM models to determine POD of tomato leaves. The results indicated that GA-PLS-ELM model (SG) achieved an optimal prediction performance with r=0.8647and RMSEP=465.9880for validation set, which is also the best result for all developed models. The overall results demonstrated that it was feasible to detect the POD of tomato leaves under gray mold disease stress using spectral technology, which supplied a new approach for physiological parameter detection of tomato leaves.
引文
Adams M L, Philpot W D, Norvell W A.1999. Yellowness index:an application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation. International Journal of Remote Sensing,20(18):3663-3675.
    Ariana D P, Lu R F.2010. Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging. Journal of Food Engineering.96(4):583-590.
    Barnes R J, Dhanoa M S, Lister S J.1989. Standard normal variatet ransformation and de-trending of Near-Infrared diffuse reflectance spectra. Applied Spectroscopy,43(6): 772-777.
    Belasque J, Gasparoto M C G, Marcassa L G.2008. Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy. Applied Optics,47(11): 1922-1926.
    Boochs F, Kupfer G, Dockter K, et al.1990. Shape of the red edge as vitality indicator for plants. International Journal of Remote Sensing,10(11):1741-1753.
    Bravo C, Moshou D, Oberti R, et al.2004. Foliar disease detection in the field using optical sensor fusion. Agricultural Engineering International:the CIGR Journal of Scientific Research and Development, Ⅵ.
    Bravo C, Moshou D.2003. Early disease detection in wheat fields using spectral reflectance. Biosystems Engineering,84(22):37-145.
    Brereton R G, Lloyd G R,2010. Support vector machines for classification and regression. Analyst,135(2):230-267.
    Delwiche S R, Kim MS.2000. Hyperspectral imaging for detection of scab in wheat. Proceedings of SPIE,4203:13-20.
    Dhanoa M S, Lister S J, Sandersona R, et al.1994. The link between multiplicative scatter correction (MSC) and stand normal variate (SNV) transformations of NIR spectra. Journal of Near Infrared Spectroscopy,2:43-47.
    Esbensen K H.2002. Multivariate Data Analysis in Practice. Oslo:CAMO Process As
    Flusser J.2005. Moment invariants in image analysis. World Academy Science, Engineering and Technology,11:376-381.
    Geladi P, Kowalski B R.1986. Partial least-squares regression:a tutorial. Analtica Chimica Acta,185:1-17.
    Gorry P A.1990. General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method. Analytical Chemistry,62:570-573.
    Gowen A A, O'Donnell C P, Cullen P J, Downey G, Frias J M.2007. Hyperspectral imaging-an emerging process analytical tool for food quality and safety control. Trends in Food Science & Technology,18(12):590-598.
    Graeff S, Link J, Claupein W.2006. Identification of powdery mildew (Erysiphe graminis sp. Tritici) and take-all disease (Gaeumannomyces graminis sp. Tritici) in wheat (Triticum aestivum 1.) by means of leaf reflectance measurements. Central European Journal of Biology,1(2):275-288.
    Haralick R M, Shanmugam K, Dinstein I H.1973. Textural features for image classification. IEEE Transactions on SMC,3(6):610-621.
    Holland J H.1992. Adaptation in natural and artificial systems. USA:A Bradford Book.
    Huang G, Zhu Q Y, Siew C K.2006. Extreme learning machine:Theory and applications. Neurocomputing,70(1-3):489-501.
    Huang W, Lamb D W, Niu Z, et al.2007. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agriculture,8(4-5):187-197.
    Isaksson T, N(?)s T.1988. The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy. Applied Spectroscopy,42(7):1273-1284.
    Kobayashi T, Kanda E, Kitada K, et al.2001. Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners. Phytopathology,91(3):316-323.
    Kobayashi T.2001. Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners. Phytopathology,91(3):316-323.
    Leardi R, Boggia R, Terrile M.1992. Genetic algorithms as a strategy for feature selection. Journal of Chemometrics,6(5):267-281.
    Leardi R, Gonzalez A L.1998. Genetic algorithms applied to feature selection in PLS regression:how and when to use them. Chemometrics and Intelligent Laboratory Systems,1998,41,195-207.
    Leardi R.2000. Application of genetic algorithm-PLS for feature selection in spectral data sets. Journal of Chemometrics,14:643-655.
    Lenk S, Chaerle L, Pfundel E E, et al.2007. Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications. Journal of Experimental Botany, 58(4):807-814.
    Lins E C, Belasque J, Marcassa L G, et al.2009. Detection of citrus canker in citrus plants using laser induced fluorescence spectroscopy. Precision Agriculture,10(4):319-330.
    Liu F, He Y, Wang L.2008. Determination of effective wavelengths for discrimination of fruit vinegars using near infrared spectroscopy and multivariate analysis. Analytica Chimica Acta,615(1):10-17.
    Manley M, Williams P, Nilsson D, Geladi P.2009. Near infrared hyperspectral imaging for the evaluation of endosperm texture in whole yellow maize (Zea maize L.)kernels. Journal of Agriculture and Food Chemistry,57(19):8761-8769.
    Marcassa L G, Gasparoto M C G, Belasque J, et al.2006. Fluorescence spectroscopy applied to orange trees. Laser Physics,16(5):884-888.
    Moshou D, Bravo C, Oberti R, et al.2005. Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using kohonen maps. Real-Time Imaging,11(2):75-83.
    Nilsson H E.1995.Remote sensing of oil seed rape infected by Sclerotinia stem rot and verticillium wilt. Uppsala (Sweden):Sveriges Lantbrnksuniv.
    Omara F A, Arafa M M.2010. Genetic algorithms for task scheduling problem. Journal of Parallel and Distributed Computing,70(1):13-22.
    Pontius J, Hallett R, Martin M.2005. Assessing hemlock decline using visible and near-infrared spectroscopy:Indices comparison and algorithm development. Applied Spectroscopy,59(6):836-843.
    Qin Z, and Zhang M.2005. Detection of rice sheath blight for in-season disease management using multispectral remote sensing. International Journal of Applied Earth Observation and Geoinformation,7(2):115-128.
    Renner G, Ekart A.2003. Genetic algorithms in computer aided design. Computer-Aided Design,35(8),709-726.
    Sasaki Y, Okamoto T, Imou K, et al.1999. Automatic diagnosis of plant disease. Journal of the Japanese Society of Agricultural Machinery,61(2):119-126.
    Savitzky A, Golay M J E.1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry,36(8):1627-1639.
    Spinelli F, Noferini M, Costa G.2006. Near infrared spectroscopy (NIRS):Perspective of fire blight detection in asymptomatic plant material. Proceeding of 10th International Workshop on Fire Blight. Acta Horticulturae,704:87-90.
    Suykens J A K, Gestel T V, Brabanter J D.2003. Least squares support vector machines. Singapore:World Scientific Publisher.
    Xing J, Bravo C, Jancsok P T, et al.2005. Detecting bruises on 'Golden Delicious' apples using hyperspectral imaging with multiple wavebands. Biosystems Engineering,90(1): 27-36.
    Yang C M. (2010). Assessment of the severity of bacterial leaf blight in rice using canopy hyperspectral reflectance. Precision Agriculture,11(1):61-81.
    安冈善文.1985.图形处理技术在环境中的应用.电气学会杂志特集:455-458.
    柴阿丽,廖宁放,田立勋等.2010.基于高光谱成像和判别分析的黄瓜病害识别.光谱学与光谱分析,30(5):1357-1361.
    陈斌,孟祥龙,王豪.2007.连续投影算法在近红外光谱校正模型优化中的应用.分析测试学报,26(1):66-69.
    陈兵,李少昆,王克如.2007.棉花黄萎病病叶光谱特征与病情严重度的估测.中国农业科学,12:2709-2715.
    陈建勋,王晓峰.2006.植物生理学实验指导.广州:华南理工大学出版社.
    陈永明,林萍,何勇等.2009.基于遗传算法的近红外光谱橄榄油产地鉴别方法研究.光谱学与光谱分析,29(3):671-674.
    褚小立.2011.化学计量学方法与分子光谱分析技术.北京:化学工业出版社.
    邓书斌,2010ENVI遥感图像处理方法.北京:科学出版社.
    樊平声,沙国栋,陈益芹等.2012.番茄灰霉病的防治研究进展.江苏农业科学,40(4):133-135.
    方中达.1996.中国农业植物病害.北京:中国农业出版社.
    冯洁,李宏宁,杨卫平.2010.园艺作物病害的多光谱组合分类.光谱学与光谱分析,2:426-429.
    冯雷,柴荣耀,孙光明等.2009.基于多光谱成像技术的水稻叶瘟检测分级方法研究.光谱学与光谱分析,29(10):2730-2733.
    冯雷,张德荣,陈双双等.2012.基于高光谱成像技术的茄子叶片灰霉病早期检测.浙江大学学报:农业与生命科学版,38(3):311-317.
    葛婧,邵陆寿,丁克坚.2008.玉米小斑病病害程度图像检测.农业机械学报,39(1):114-117.
    韩华.2008.番茄病害的发生及防治.现代农业科技,12:142-142.
    合力.2003.番茄菌核病诊断与防治.吉林蔬菜,1:33-33.
    何飞,张效信,陈波等.2012.遗传算法反演地球等离子体层离子密度分布.地球物理学报,55(1):29-35.
    何勇,赵春江.2010.精细农业.浙江大学出版社.
    侯明生,黄俊斌.2006.农业植物病理学.北京,科学出版社.
    江道辉,李章成,周清波等.2007.条锈病影响下冬小麦叶绿素含量的高光谱估计.中国农学通报,23(1):376-380.
    姜巍,王德爽.2007.番茄灰霉病的综合防治.现代农业,8:22.
    蒋金豹, 陈云浩, 黄文江等.2007.用高光谱微分指数监测冬小麦病害的研究.光谱学与光谱分析,27(12):2475-2479.
    介大委,翟晓巧,聂琳等.2009.植原体检测和鉴定技术.河南林业科技,29(1):39-41,44.
    阚春月,王守法,杨翠云.2010.植物种传病害检测技术的研究进展.安徽农业科学,38(15):7956-7959.
    廖太林,刘建峰,叶建仁等.2001.血清学反应在植物病害检疫上的应用.林业科技开发,15(4):3-6.
    刘琛,丁能飞,傅庆林等.2010.盐胁迫对3种蔬菜幼苗抗氧化酶活性的影响.安徽农业科学,1:115-116.
    刘飞,冯雷,楼兵干.2010.基于组合模拟波段的油菜菌核病早期诊断方法研究.光谱学与光谱分析,29(7):1934-1938.
    刘木华,赵杰文,郑建鸿等.2005.农畜产品品质无损检测中高光谱图像技术的应用进展.农业机械学报, 36(9):139-143.
    刘兴库,李兆华.1993.多光谱诊断植物病害的初步研究.东北林业大学学报,21(3):106-110.
    刘占宇,黄敬峰,陶荣祥.2008.基于主成分分析和径向基网络的水稻胡麻斑病严重度估测.光谱学与光谱分析,28(9):2156-2160.
    刘占宇,石晶晶.2010.稻干尖线虫病胁迫水稻叶片波谱响应特征及识别研究.光谱学与光谱分析,3:710-714.
    刘振华,赵英时.2012.基于遗传算法的不同光照条件下植被和土壤组分温度反演.农业工程学报,28(1):161-166.
    柳才.2010.保护地番茄灰霉病发生危害特点及综合防治.吉林蔬菜,6:54.
    罗菊花,黄文江,韦朝领.2008.冬小麦条锈病害与常规胁迫的定量化识别研究—高光谱应用.自然灾害学报,17(6):115-118.
    马德贵,邵陆寿,葛婧.2008.水稻稻瘟病及水稻纹枯病病害程度图像检测.中国农学通报,24(9):485-489.
    任先培,刘刚,周在进等.2010.病斑、病斑附近烟叶和正常烟叶的FTIR研究.光谱学与光谱分析,30(8):2120-2123.
    邵登魁,裴建文,雷建明等.2006.白菜型冬油菜白粉病病程中超氧化物岐化酶和过氧化物酶及多酚氧化酶的变化.西北农业学报,5:118-122.
    司凤举,司越.2006.茄科蔬菜菌核病的发生与防治.长江蔬菜,3:26-27.
    苏玉香,杨景娟.2008.保护地番茄灰霉病的发生危害特点及综合防治技术.安徽农学通报,14(12):57-58.
    穗波信雄.1992.图像处理在植物生长信息提取中的应用.农业机械学会关西支部志,72:46-63.
    孙旭东,章海亮,欧阳爱国等.2009.遗传算法的近红外光谱建模样本集优化研究.华东交通大学学学报,26(4):74-77.
    田有文,李天来,张琳等.2010.高光谱图像技术诊断温室黄瓜病害的方法.农业工程学报,26(5):202-206.
    田有文,王晓娟.2009.基于高光谱图像技术的农产品品质无损检测.农机化研究,31(10):220-222,226.
    童庆禧.1995.电子光学遥感系统的过去、现在和未来.科学出版社.
    王海燕.2011.番茄早疫病的发生及防治.现代农村科技,23:30-30.
    王徽蓉,李卫军,刘扬阳等.2011.基于遗传算法与线性鉴别的近红外光谱玉米品种鉴别研究.光谱学与光谱分析,31(3):669-672.
    王俊文.2006.番茄病害及其综合防治技术.江西农业学报,18(4):139-139.
    王连平,王汉荣,茹水江等.2007.塑料大棚番茄早疫病发生规律初步研究.上海农业学报,23(1):62-64.
    王娜,马雅军,代光辉等.2007.番茄灰霉病分子诊断方法研究.上海交通大学学报:农业科学版,25(1):50-54.
    王娜,马雅军,王喆之等.2004.PCR相关技术方法在植物病害检测中的应用(综述).上海农业学报,20(4):112-115.
    王晓丽,周国民.2010.基于近红外光谱技术的农作物病害诊断.农机化研究,6:171-174.
    韦刚.1994.番茄菌核病及其防治.广西植保,3:31.
    魏松红,刘志恒,纪明山等.2008.基因芯片技术在植物病害中的应用.河南农业科学,3:20-22.
    吴迪,冯雷,张传清等.2007a.基于可见/近红外光谱技术的番茄叶片灰霉病检测研究.光谱学与光谱分析,27(11):2208-2211.
    吴迪,冯雷,张传清等.2007b.基于可见/近红外光谱技术的茄子叶片灰霉病早期检测研究.红外与毫米波学报,26(4):269-273.
    吴仁锋,汪志红.2009.番茄早疫病研究概述.中国植保导刊,29(3):16-18.
    谢红辉.2010.稻瘟病菌激发子诱导玉米病害防御酶活性的变化.广西热带农业,4:1-4.
    许禄,邵学广.2004.化学计量学方法.北京:科学出版社.
    杨世凤,郭建莹,王秀清等.2009.作物病害胁迫检测的研究进展.天津科技大学学报,24(5):74-78.
    杨燕涛.2003.国内保护地蔬菜灰霉病规律及防治技术研究进展.农药,42(1):6-10.
    游崇娟,王建美,田呈明.2010.植物病害检测领域的电生理学研究进展.西北林学院学报,25(1):118-122.
    张东彦,张竞成,朱大洲.2011.小麦叶片胁迫状态下的高光谱图像特征分析研究.光谱学与光谱分析,31(4):1101-1105.
    张浩,姚旭国,毛雪琴.2009.基于多光谱图像的水稻穗颈瘟严重度识别研究.湖南农业科学,1:65-68.
    章恒毅.2010.番茄病害的主要发生原因及综合防治措施.现代农业科技,19:157-157.
    赵杰文,刘剑华,陈全胜等.2008.利用高光谱图像技术检测水果轻微损伤.农业机械学报,39(1):106-109.
    赵英时.2003.遥感应用分析原理与方法.北京:科学出版社.
    朱圣盼.2007.基于计算机视觉技术的植物病害检测方法的研究[D].浙江大学.
    邹伟,方慧,刘飞等.2011.基于高光谱图像技术的油菜籽品种鉴别方法研究.浙江大学学报(农业与生命科学版),37(2):175-180.
    邹小波,赵杰文.2007.用遗传算法快速提取近红外光谱特征区域和特征波长.光学学报,27(7):1316-1321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700