CDMA2000移动台非合作定位关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CDMA蜂窝移动通信系统因其低功耗和高度的安全性而得到了广泛应用。在CDMA系统体制内,通过移动台与基站交互,可提供用户位置坐标服务,该业务称为合作定位。在系统体制外,若以第三方提供的设备、通过监听通信信号来确定移动台位置,称作非合作定位。由于CDMA系统具备高度安全性(保密性),通过无线信号来监听用户通话、或进行非合作定位,技术难度非常之大。在国家预防和打击犯罪的行动中,这就给安全部门提出了一个技术难题。作为研制CDMA非合作定位设备的基础,其理论依据与技术方法的研究成为必然途径,由此形成本文的研究主题。
     CDMA非合作定位设备属于特种仪器领域,其关键技术问题属于距离测量问题。忽略移动台在地表平面的起伏高度,其位置坐标的定位可类比为平面上的坐标测定——以此定位设备为侦测站,从空中接收移动台与基站之间的无线信号,从中计算出各侦测站与移动台之间的距离差,并按其几何关系来确定移动台的位置坐标。由此形成本文研究的关键技术问题如下:
     1、可听区域搜索问题:由于侦测站只能在特定的距离内接收到移动台的发射信号,而移动台的坐标是未知数,如何有效、快速地确定移动台所在的平面区域,成为CDMA非合作定位的一个关键问题。
     2、反向导频信道跟踪问题:测量移动台与侦测站之间的距离差,需要准确引用CDMA信号中的基准时间和系统中的长码序列片段,才能确定接收信号的有效性、并从中计算出相对时间差。由于CDMA信号体制以42阶长码作为分址和同步的基础,加上移动台上行导频信号中插入非规则的功率控制位序列、且不定期地关断发射信号,因此移动台与侦测站之间的时差测量面临瓶颈性制约难题。
     3、侦测站最优布局逼近问题:要确定移动台位置,侦测站的布局位置必须按一定的几何构型才能满足必要条件。在未知移动台坐标的前提下,探索侦测站的最优布局,成为非合作定位的关键技术问题。
     4、定位方程解算问题:移动台的位置坐标归结为定位观测方程组的解。其中时差量、侦测站的位置参量都不可避免地存在误差,容易导致常规非线性方程组解算方法出现病态问题,需要结合非合作定位问题特点,寻找更稳健的优化解算方法。
     5、定位性能上限问题:非合作定位问题的解决办法肯定是多样性的,但现有研究成果很少、且缺乏完整性,很难评判一个解决方案的优劣。按照研究测量问题的基本规则,需要定量地确定测量误差,推导出定位误差的理论上限。
     为解决上述关键技术问题,文中通过理论抽象,将复杂的CDMA系统和实际定位情景转化为相对简单的信号与系统模型和测距定位模型(方程),按照时空统一的原则和分析方法,分别给出了前四个问题的解决方案,并给出了非合作定位误差的克拉美罗下限(CRLB)作为第五个问题的答案。
     从理论回到实践,文中介绍了自行设计的CDMA非合作定位试验样机系统。通过室内假设性条件测试,验证了上述解决方案的可行性;通过长沙、成都、重庆三地的实际使用,检验了系统及解决方案的实用性。实际系统及其理论研究成果已通过科技成果鉴定,得到了本专业领域专家的充分肯定。
CDMA cellular mobile communication system is widely applied because of its low power consumption and high degree of safety. In a CDMA system mechanism, the position coordinates of users can be provided through interaction between the mobile station and base station, which is known as the cooperative location. Beyond the system mechanism, the technology that uses equipments provided by the third party to determine mobile station position is called non-cooperative location. As the CDMA system has high security, its level of difficulty in techniques is higher through using the wireless signal to monitor the call of users, or proceeding non-cooperative location. In the national prevention and fighting crime action, it puts forward a technical difficult problem for the security department. As the foundation of developing CDMA non-cooperative location equipments, the study of its theoretical basis and technical methods becomes a necessary approach. Thus it forms research topic of this paper.
     CDMA non-cooperative location equipment is of the special instruments field and its critical technical issues are of the ranging problem. Ignoring the undulated height of the earth's surface, the location of position coordinates can be assimilated to the determination of coordinates on the plane. Take this location equipment as detection station, receive radio signals between base station and mobile station from the air, calculate the distance difference between each detection station and mobile station, and then determine the position coordinates of mobile station according to the geometrical relationship. Thus the key technical problems in this paper are as follows:
     1、Hearable area search problem: As the detection station can only receive the transmit signal of mobile station within a specific distance and the coordinates of mobile station are unknown, it becomes a key problem of CDMA non-cooperative location that how to effectively and quickly determine the plane area where the mobile station is.
     2、Reverse pilot channel tracking problem: To determine the validity of the received signal and calculate the relative time difference, it needs to quote accurately the reference time in CDMA signals and the long code sequence fragments in the system. CDMA signal system takes the long code of 42 rank as the foundation of division access and synchronization, the uplink pilot signal of mobile station is inserted into irregular power control bit sequence and the transmit signal is shut off aperiodically, therefore time difference measurement between mobile station and detection station faces bottleneck restriction problem.
     3、Detection station optimal layout approximation problem: To determine mobile station position, the layout position of detection station must be at a stated geometry. In the unknown mobile coordinates premise, exploring the optimal layout of detection station becomes the key technical problem of non-cooperative location.
     4、Location equations calculating problem: The position coordinates of mobile station come down to the solution of location observation equations. However, the delay difference and the position parameters of detection station exist inevitably errors, which cause the ill-posed problem to the solution of general nonlinear equations. In order to look for the more robust and optimal solution method, it needs to combine the characteristics of non-cooperative location.
     5、Location performance bound problem: Solution of non-cooperative location problem must be divers, but the few existing research results, lack of integrity, are hard to be judged for good and bad. In accordance with the basic rules of the study measurement issues, it need determine the quantitative measurement errors and derive the theoretical upper limit of location errors.
     To solve the key technical problems, through the theory abstract in this paper, the complex CDMA system and actual location scene are converted into relatively simple signal and system model and ranging and location model(equation). According to the principle and analysis method of unified space and time, the solutions to solve the front four problems are given and the CRLB of non-cooperative location error is presented as the answer for the fifth problem.
     From the theory back to practice, this paper introduces the test prototype system of CDMA non-cooperative location which is designed by oneself. In the indoor hypothetical conditions, the test verified the feasibility of the solution afore mentioned. Through actually using in Changsha, Chengdu, and Chongqing, the practicability of the system and solution project gets the certification. The actual system and its theory research production has passed science and technology achievements appraisal and gets the full affirmation.
引文
[1]范平志,邓平,刘林.蜂窝网无线定位[M].北京:电子工业出版社, 2002.
    [2]常永宇,桑林,张欣等. CDMA2000-1X网络技术[M].北京:电子工业出版社, 2005.
    [3]熊瑾煜. CDMA地面移动通信用户定位技术研究[D].郑州:中国人民解放军信息工程大学, 2006.
    [4]王巍. CDMA蜂窝网络移动台无线定位技术的研究[D].长沙:国防科学技术大学, 2006.
    [5] J. Caffery. Wireless Location in CDMA Cellular Radio Systems[M]. Kluwer Academic Publisher, 1999.
    [6] J. Caffery, G. L. Stuber. Overview of Radiolocation in CDMA Cellular Systems[J]. IEEE Communications Magazine, 1998, 36(4): 38-45.
    [7]吴苗,朱涛,李方能等.无线电导航原理及应用[M].北京:国防工业出版社, 2008.
    [8]唐金元.无线电导航系统发展应用综述[J].船用导航雷达. 2010, 1: 1-6.
    [9]谭述森.卫星导航定位工程[M].北京:国防工业出版社, 2007.
    [10] Richard A. Poisel,屈晓旭等译.电子战目标定位方法[M].北京:电子工业出版社, 2008.
    [11] Richard A. Poisel,吴汉平等译.通信电子战系统导论[M].北京:电子工业出版社, 2003.
    [12]田孝华. DS_CDMA蜂窝网中无线定位与参数估计技术[D].西安:西安电子科技大学, 2003.
    [13] T. S. Rappaport, J. H. Reed, B. D. Woerner. Position location using wireless conmmunications on highways of the future[J]. IEEE Communications Magazine, 1996, 34(10): 33-41.
    [14] FCC Docket No. 94-102. Revision of the Commission’s Rulew to Ensue Compatibility with Enhanced 911 Emergency Calling Systems[EB/OL]. http://www.fcc.gov/e911, 1996.
    [15] FCC Docket. FACT SHEET: E911 PHASE II DECISIONS[EB/OL]. http://www.fcc.gov/e911, Oct. 2001.
    [16] 3GPP TS 22.071,“3GPP TS Group Services and System Aspects; Location Services(LCS); Services Description-stage 1”[EB/OL]. http://www.3gpp. org/ftp/specs, 200X
    [17]汪占刚. CDMA2000-1X位置服务的研究与应用[D].北京:北京邮电大学, 2009.
    [18]秦玉臻.移动位置服务发展及3G时代发展策略分析[D].北京:北京邮电大学, 2008
    [19]陈德荣.移动通信网络规划与工程设计[M].北京:北京邮电大学出版社, 2010.
    [20]杨大成.移动传播环境:理论基础·分析方法和建模技术[M].北京:机械工业出版社, 2003.
    [21]翁雪清. GPS技术在移动定位业务中的应用[J].中国科技信息, 2009, 3: 106-107.
    [22] Paulraj, C. Papadias. Space-time Processing for Wireless Communication[J]. IEEE Signal Processing Magazine, 1997, 14(6): 49-83.
    [23] M. Pent, M. A. Spirito, E. Turco. Method for Positioning GSM Mobile Stations Using Absolute Time Delay Measurements[J]. IEEE Electronics Letters, 1997, 33(24): 2019-2020.
    [24] C. Diane. Positioning GSM Telephones[J]. IEEE Communications Magazine, 1998, 36(4): 46-54,59.
    [25] 3GGP TS 25.305 V4.0.0. Functional specification of UE positioning in UTRAN (stage 2)(S). 2001.
    [26] 3GGP RAN WG1. R1-99346: recapitulation of the IPDL positioning method[S]. 1999.
    [27] 3GGP RAN WG1. R1-99b79: time aligned IP-DL positioning method[S]. Motorola, 1999.
    [28] 3GGP RAN WG1. R1-99g57: positioning method proposal[S]. Panasonic, 1999.
    [29] 3GGP RAN WG2. R2-012313: virtual signal blanking for the implement-tation of OTDOA solutions without the need for IP-DL[S]. CPS Company, 2001.
    [30]常永宇. CDMA网络中新的定位方式及其应用[J].现代电信科技, 2003, 12: 31-32,40.
    [31]徐尽,孟雷. GPSone定位技术应用[J].通信技术, 2008, 41(12): 239-240.
    [32]谷静,毛永毅.无线定位技术[J].西安邮电学院学报, 2002, 7(3): 25-27.
    [33]袁正午.蜂窝通信系统移动终端射线跟踪定位理论与方法研究[D].长沙:中南大学, 2003.
    [34]袁正午.移动通信系统——终端射线跟踪定位理论与方法[M].北京:电子工业出版社, 2007.
    [35]胡来招.无源定位[M].北京:国防工业出版社, 2004.
    [36]董淑冷,王春光. OTDOA及其增强算法的仿真分析[J].电子技术应用, 2006, 7: 122-123
    [37]王春光,许瑾. 3G定位业务中的OTDOA增强技术[J].电信科学, 2005, 8:9-12.
    [38]毛永毅,李明远,张宝军.一种NLOS环境下的TOA/AOA定位算法[J].电子与信息学报, 2009, 31(1): 37-40.
    [39] A. J. Saleh, G. Mounir, M. L. Desmond. A Joint TOA/AOA Constrained Minimization Method for Locating Wireless Devices in Non-Line-of-Sight Environment[J]. IEEE Transactions on Vehicular Technology, 2009, 58(1): 468-472.
    [40] A. Broumandan, T. Lin, J. Nielsen, et al. Practical Results of Hybrid AOA/ TDOA Geo-Location Estimation in CDMA Wireless Networks[J]. The 68th IEEE Vehicular Technology Conference, 2008: 1-5.
    [41]耿晓明,田孝华,龚晓冬.一种SADOA/AOA混合定位算法及其性能分析[J].微计算机信息, 2008, 24(4): 217-219.
    [42]翟明明.移动定位服务的现状与发展趋势[J].信息通信技术, 2009, 2: 27-32.
    [43] S. Al-Jazzar, J. Caffery. ESPRIT-based Joint AOA/Delay Estimation for CDMA Systems[C]. IEEE Communications Society WCNC 2004, 2004: 2244-2249.
    [44] S. Al-Jazzar, J. Caffery, H. R. You. Scattering Model Based Methods for TOA Location in NLOS Environments[J]. IEEE ransactions on Vehicular Technology, 2007, 56(2): 583-593.
    [45] S. Al-Jazzar, M. Ghogho, D. McLernon. A Joint TOA/AOA Constrained Minimization MethOd for Locating Wireless Devices in Non-Line-of-Sight Environment[J]. IEEE Transactions on Vehicular Technology, 2009, 58(1): 468-472
    [46] D. M. Manolakis. Efficient Solution and Performance Analysis of 3-D Position Estimation by Trilateration[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 1239-1248.
    [47] J. Y. Do, D. Bldg, Robustness of TOA and TDOA Positioning Under Suboptimal Weighting Conditions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1178-1180.
    [48] J. J. Caffery, L. S. Gordon. Subscriber Location in CDMA Cellular Networks[J]. IEEE Transactions on Vehicular Technology, 1998, 47(2): 406-416.
    [49] Cell-Loc Location Technologies Inc. Cellocate Technology[EB/OL]. http://www. cell-loc.com/how-tech.html, 2009.
    [50] TruePosition Inc. Postion: U-TDOA, A-GPS, E-CIP-AOA, Hybrid Location Solutions[EB/OL]. http://www.trueposition.com/technology/, 2010.
    [51] Qualcomm Inc. Views, opinion and insight on next-gen mobile technologies and the wireless industry[EB/OL]. http://www.qualcomm.com/blog, 2010.
    [52]重庆赛洛克公司. http://www.cell-loc.com.cn, 2009
    [53] Nokia and Eriesson. Text proposal for IPDL. 3GPP TSG_RAN WG1_RL1TSGR1[EB/OL]. http://www. 3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1.
    [54] Eriesson. Recapitulation of the IPDL Positioning Techniques. 3GPP TSG RAN WG1 TSGR1_04 (99):346[EB/OL]. http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/ TSGR1-04.
    [55] Samsung. The Performance of IPDL using burst Pilot. 3GPP TSG_RAN WGI _RL1 TSGR1[EB/OL]. http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1/. Rhee. Vehicle Location in Angular Sectors Based on Signal Strength[J]. IEEE Transactions on Vehicular Technology, 1978, 27(11): 244~258.
    [56] M. Hata, T. Nagatsu. Mobile Location Using Signal Strength Measurement in Cellular System[J]. IEEE Transactions on Vehicular Technology, 1980, 29(2): 245-251.
    [57] H. L. Song. Automatic Vehicle Location in Cellular Communications Systems[J]. IEEE Transactions on Vehicular Technology, 1990, 39(8): 992~998.
    [58] J. Caffery, L. S. Gordon. Vehicle Location and Tracking for IVHS in CDMA Microcells[C]. IEEE PIMRC’94, 1994: 1227-1231.
    [59] M. Hellebrandt. Estimating Position and Velocity of Mobiles in a Cellular Radio Network[J]. IEEE Transactions on Vehicular Technology, 1997, 46(2): 65~71.
    [60] R. Yamamoto, H. Matsutani, H. Matsuki, et al.. Position Location Technologies Using Signal Strength in Cellular Systems[C]. IEEE Vehicular Technology Conference, 2001: 2570~2574.
    [61]朱良学,朱近康.采用动台窗口宽度和二次平均算法的SSOA定位方法[J].电子与信息学报, 2002, 24(1): 60~67.
    [62] H. Laitinen, S. Juurakko, T. Lahti, et al. Experimental Evaluation of Location Methods Based on Signal-Strength Measurements[J]. IEEE Transactions on Vehicular Technology, 2007, 56(1): 287-296.
    [63] A.K.M. Mahtab Hossain, Wee Seng Soh. Cramer-Rao Bound Analysis of Localization Using Signal Strength Difference as Location Fingerprint[C]. IEEE INFOCOM’2010, 2010: 1-9.
    [64] H. Krim, M. Viberg. Two decades of array signal processing research[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94.
    [65] R. O. Schmidt. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1996, 34(3): 243-258.
    [66] R. Roy, T. Kailath. ESPRIT-Estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech and Signal Processing, 1998, 29(4): 984-995.
    [67] F. Richard. Analysis of min-norm and MUSIC with arbitrary array geometry[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(6): 976-985.
    [68] James A. Cadzow. Multiple source location-the signal subspace approach[J].IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(7): 1110-1125.
    [69] P. Stoica, A. Nehoral. MUSIC, maximum likelihood and Cramer-Rao bound[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(5): 720-741.
    [70] B. D. Rao, K. V. Hari. Performance analysis of root-music[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(12): 1939-1949.
    [71] K. Almidfa, G. V. Tsoulos, A. Nix. Performance analysis of ESPRIT, TLS-ESPRIT and Unitary-ESPRIT algorithms for DOA estimation in a W-CDMA mobile system[C]. The First International Conference on 3G Mobile Communication Technologies, 2000: 200-203.
    [72] M. Gavish, A. J. Weiss. Performance analysis of the VIA-ESPRIT algorithm[J]. IEE Proceedings F, Radar and Signal Processing 1993, 140(2): 123-128
    [73]张扬,葛利嘉,左继章.基于Y形阵的空时二维波达方向估计[J].通信学报, 2003, 24(7): 50-58.
    [74] S.V. Schell, Performance analysis of the cyclic MUSIC method of direction estimation for cyclostationary Signals[J]. IEEE Transactions on Signal Processing, 1994, 42(11): 3043-3050.
    [75]孙晓颖,陈建,林琳.基于时空处理的频率与二维DOA联合估计算法[J].通信学报, 2009, 30(8): 39-44.
    [76] Z. M. Yu, L. L. Guo, L. Qi. Blind Estimation of Multicarrier CDMA Sub-Carrier Frequencies Based on the High-Order Cyclic Cumulants[C]. The 5th International Conference on Wireless Communications, Networking and Mobile Computing, 2009: 1-5.
    [77] K. A. Gotsis, K. Siakavara, J. N. Sahalos. On the Direction of Arrival (DoA) Estimation for a Switched-Beam Antenna System Using Neural Networks[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(5): 1399-1411.
    [78] N. Fonseca, M. Coudyser, J. J. Laurin, et al. On the Design of a Compact Neural Network-Based DOA Estimation System[J] IEEE Transactions on Antennas and Propagation, 2010, 58(2): 357-366.
    [79]赵亮.蜂窝网无线定位与定位参数估计算法研究[D].成都:西南交通大学, 2008.
    [80] J. Winter, C. Wengerter. High resolution Estimation of the Time of Arrival for GSM Location[C]. The 51th IEEE Vehicular Technology Conference, 2000: 1343-1347
    [81] G. Yost, S. Panchapakesan. Improvement in Estimation of Time of Arrival from Timing Advace(TA)[J]. The 50th IEEE Vehicular Technology Conference, 1999: 111-116.
    [82] W. C. Wu, K. C. Chen. Root-MUSIC based joint identification and timing estimation of asynchronous CDMA system over Rayleigh fading channel[C] The 48th IEEE Vehicular Technology Conference. 1998: 1239-1243.
    [83] C. H. Knapp, G. C. Carter. The Generalized Correlation Method for Estimation of Time Delay[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 2006, 24(4): 320-327.
    [84] H. C. So, P. C. Ching. Performance Analysis of ETDGE-an Efficient and Unbiased TDOA Esitimator[J]. IEEE Proceedings: Radar, Sonar and Navigation, 1998, 145(6): 325-330.
    [85] W. A. Gardner, C. K. Chen. Signal-Selective TDOA Estimation for Passive Location of Man-Made Signal Sources in Highly Corruptive Environments, Part I: Theory and Method[J]. IEEE Transactions on Signal Processing, 1992, 40(5): 1168-1184.
    [86] W. A. Gardner, C. K. Chen. Signal-Selective TDOA Estimation for Passive Location of Man-Made Signal Sources in Highly Corruptive Environments, Part II: Algorithms and Performance[J]. IEEE Transactions on Signal Processing, 1992, 40(5): 1168-1184.
    [87] K. Kiasaleh. Channel-aided, decision-directed delay-locked loop for pilot symbol aided CDMA communications impaired by fast frequency-selective Rayleigh fading and user interference[J]. IEEE Transactions on Vehicular Technology, 2000, 49(4): 1392-1407
    [88] S. Thayaparan, T. S. Ng, J. Wang. The Use of Delay-Locked Loop Signals in DS/CDMA Receiver for Multiple-Access Interference Reduction[J]. IEEE Transactions on Vehicular Technology, 2006, 55(3): 980-989.
    [89] C. Y. Lo, K. C. Chen, W. H. Sheen. Non-coherent DLL and TDL PN code tracking loops in Rayleigh fading channels[C]. The 5th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 1994: 338-342.
    [90] F. X. Moncunill-Geniz, P. Pala-Schonwalder. A DSSS superregenerative receiver with tau-dither loop[C].The 7th European Conference on Wireless Technology, 2004: 349-352.
    [91] B. T. Fang. Simple solutions for hyperbolic and related position fixes[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(9): 748-753
    [92] B. Friedlander. A passive localization algorithm and its accuracy analysis[J]. IEEE J Ocean Eng, 1987, 12(1): 234-245.
    [93] J. O. Smith, J. S. Abel. The spherical interpolation method for source localization[J]. IEEE Journal of Oceanic Engineering, 1987, 12(1): 246-252.
    [94] H. C. Schau, A. Z. Robinson. Passive source location employing intersecting spherical surfaces from time-of-arrival difference[J]. IEEE Transactions onAcoustics, Speech and Signal Processing, 1987, 35(1): 1223-1225.
    [95] Y. T. Chan, K. C. Ho. A simple and efficient estimator for hyperbolic location[J]. IEEE Transactions on Signal Processing, 1994, 42(8): 1905-1915.
    [96] W. H. Foy. Position-location solutions by Taylor-series estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1976, 12(3): 187-194.
    [97]熊瑾煜,王巍,朱中梁.基于泰勒级数展开的蜂窝TDOA定位新算法[J].通信学报, 2005, 25(4): 144-150.
    [98]张令文,谈振辉.基于泰勒级数展开的蜂窝TDOA定位新算法[J].通信学报, 2007, 28(6): 7-11.
    [99] D. J. Torrieri. Statistical Theory of Passive Location Systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, 20(183): 183-198.
    [100] P. C. Chen. Mobile Position Location Estimation in Cellular Systems[D]. The State University of New Jersey, 1999.
    [101] M. P. Wylie, S. S. Wang. Robust range estimation in the presence of the non-line-of-sight error[C]. IEEE 54th Vehicular Technology Conference, 2001: 101-105.
    [102] S. S. Wbo. The NLOS Mitigation Technique for Position Location Using IS-95 CDMA Networks[J]. IEEE 52th Vehicular Technology Conference, 2000: 2556-2560
    [103] K. g. Yu, Y. J. Guo. NLOS Error Mitigation for Mobile Location Estimation in Wireless Networks[C] The 65th IEEE Vehicular Technology Conference, 2007: 1071-1075.
    [104] W. K. Chao, K. T. Lay. NLOS Measurement Identification for Mobile Positioning in Wireless Cellular Systems[C]. IEEE 65th Vehicular Technology Conference, 2007: 1965-1969.
    [105] P. C. Chen. A non-line-of-sight error mitigation algorithm in location estimation[C]. IEEE Conference of Wireless Communications and Networking, 1999: 316-320.
    [106] Y. T. Chan, W. Y. Tsui, H. C. So, et al. Time-of-Arrival Based Localization Under NLOS Conditions[J]. IEEE Transactions on Vehicular Technology, 2006, 55(1): 17-24.
    [107] S. K. Oh, C. K. Un. Simple Computation method of AP algorithm for maximum likelihood locatization of multiple sources[J]. IEEE Transactions on Signal Processing, 1992, 40(11): 2848-2854.
    [108] I. Ziskind, M. Wax. Maximum Likelihood Locatization of Multipe Source by Alternating Projection[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1998, 36(10): 1553-1560.
    [109] S. Al-Jazzar, J. J. Caffery. NLOS mitigation method for urban environments[C].IEEE 60th Vehicular Technology Conference, 2004: 5112-5115.
    [110] S. Venkatraman, J. J. Caffery, H. -R. You. Location using LOS range estimation in NLOS environments[J]. IEEE 55th Vehicular Technology Conference, 2002: 859-860.
    [111] L. Jiao, F. Y. Li, Z. Y. Xu. LCRT: A ToA Based Mobile Terminal Localization Algorithm in NLOS Environment[C] IEEE 69th Vehicular Technology Conference, 2009: 1-5.
    [112] C. Morelli, M. Nicoli, V. Rampa, et al. Hidden Markov Models for Radio Location of Moving Terminals in LOS/NLOS conditions[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2005: 877-880.
    [113] X. M. Shen, J. W. Mark, J. Ye. Mobile location estimation in cellular networks using fuzzy logic[C]. IEEE 52th Vehicular Technology Conference, 2000: 2108-2114.
    [114] Y. H. Qi, H. Kobayashi, H. Cramer-Rao lower bound for geolocation in non-line-of-sight environment[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2002: 2473-2476.
    [115] Y. H. Qi, H. Kobayashi, H. On geolocation accuracy with prior information in non-line-of-sight environment[C]. The 56th IEEE Vehicular Technology Conference, 2002: 285-288.
    [116] Y. H. Qi, H. Kobayashi, H. Suda. On time-of-arrival positioning in a multipath environment[J]. IEEE Transactions on Vehicular Technology, 2006, 55(5): 1516-1526.
    [117] Y. H. Qi, H. Kobayashi, H. Suda. Analysis of wireless geolocation in a non-line-of-sight environment[J]. IEEE Transactions on Wireless Communications, 2006, 5(3): 672-681.
    [118] S. Verdu. Minimum Probability of Error for Asynchronous Gaussian Multiple Access Channels[J]. IEEE Transactions on Information Theory, 1986, (IT-31): 85-96.
    [119] P. B. Rapajic, D. .K Borah. Adaptive MMSE maximum likelihood CDMA multiuser detection[J]. IEEE Journal on Selected Areas in Communications, 1999, 17(12): 2110-2122.
    [120] M. Li, W. A. Hamouda. Blind adaptive multiuser detection using linear parallel interference cancellation for CDMA systems[C] IEEE 59th Vehicular Technology Conference, 2004: 1683-1687.
    [121] D. J. Kim, S. J. Kang, S. R. Kwon, et al. Multiuser detection using blockwise successive interference cancellation in DS/CDMA systems[C]. IEEE 48th Vehicular Technology Conference, 1998: 1835-1838.
    [122] C. K. Sung, S. H. Moon, J. W. Choe, et al. Performance Analysis of Multiuser MIMO Systems with Zero Forcing Receivers[C]. IEEE 65th VehicularTechnology Conference, 2007: 2135-2139.
    [123] I. P. Kirteins, A. C. Kot. Performance analysis of a high resolution time delay estimation algorithm[C]. International Conference on Acoustics, Speech and Signal Processing, 1990: 2767-2770.
    [124] H. So, E. Cheng. Target Localization in Presence of Multipaths[J]. Electronic Letter, 1993, 29(3): 293-294.
    [125] R. Lotis. Joint Estimation of PN Code Delay and Multipath Using the Extended Kalman Filter[J]. IEEE Transactions on Communication, 1990, 38(10): 1677-1685.
    [126] W. H. Sheen, C. H. Tai. A noncoherent tracking loop with diversity and multipath interference cancellation for direct-sequence spread-spectrum systems[J]. IEEE Transactions on Communications, 1998, 46(11): 1516-1524.
    [127] J. C. Lin. Comments on“A noncoherent tracking loop with diversity and multipath interference cancellation for direct-sequence spread-spectrum systems”[J]. IEEE Transactions on Communications, 2004, 52(9): 1449-1452.
    [128]孔德庆,施浒立,胡超.一种基于窄相关器差分的多径误差抑制方法[J].宇航学报, 2008, 29(6): 1834-1839.
    [129] L. Li, W. H. Zhou, S. S. Tan. Tracking Accuracy of Narrow Correlator Spacing GPS Receiver[C]. The 8th International Conference on Signal Processing, 2006: 15-19.
    [130]刘荟萃,许晓勇,王飞雪.扩频测距系统中多径信号伪码跟踪误差分析及消除技术[J].全球定位系统, 2005, 30(6): 35-39.
    [131]刘荟萃.扩频测距系统中多径消除算法研究[D].长沙:国防科技大学, 2005.
    [132] S. F. Matilde, A. F. Miguel, G. A. Ana. Performance Analysis and Parameter Optimization of DLL and MEDLL in Fading Multipath Environments for Next Generation Navigation Receivers[J]. IEEE Transactions on Consumer Electronics, 2007, 53(4):1302-1308.
    [133]徐定杰,赵丕杰,姜利.扩频系统中低复杂度多径消除技术研究[J].哈尔滨工程大学学报, 2009, 30(2): 148-153.
    [134] L. Cong. Non-Line-of-Sight Error Mitigation in TDOA Mobile Location[C]. IEEE Global Telecommunication Conferencw, 2001: 680-684.
    [135] T. Kleine-Ostamann, A. Bell. A Data Fusion Architecture for Enhanced Position Estimation in Wireless Network[J]. IEEE Communications Letters, 2001, 5(8): 343-345.
    [136]邓平.蜂窝网络移动台定位技术研究[D].成都:西南交通大学, 2002.
    [137]张令文,谈振辉,张金宝.基于数据融合技术的单基站混合定位算法[J].通信学报, 2008, 29(8): 100-104.
    [138] 3GPP TS 08.71. Location Services (LCS); Serving Mobile Location Centre -Base Station System (SMLC-BSS) interface, Layer 3[S]. MOTOROLA A/S,1999.
    [139] 3GPP TS 08.31. Location Services (LCS): Serving Mobile Location Centre -Serving Mobile Location Centre (SMLC - SMLC), SMLCPP specification[S]. MOTOROLA A/S, 2000.
    [140] 3GPP TS 02.71. Location Services (LCS), Stage 1[S]. Nortel Networks (USA), 1999.
    [141]刘继武. GSM空中信号截取与移动台定位技术研究[D].南京:东南大学, 2004.
    [142]李汉强.移动通信非合作接收中的空时多天线处理[D].电子科技大学, 2006.
    [143]郄小丹. CDMA手机被动定位技术研究[D].成都:西南交通大学, 2007.
    [144]王雪霞.基于软件无线电的通信侦察接收机关键技术研究[D].哈尔滨工业大学, 2008.
    [145]邓平.蜂窝移动台无线定位若干问题研究[R].总参57所博士后研究报告, 2005.
    [146]胥飞燕,郭大江,高嵩等.基于伪基站诱发技术的震区被压埋生命体分布和搜救系统研究[J].电子元器件应用, 2009, 11(8): 34-36.
    [147]总参57所. CDMA地面移动用户定位技术研究结题报告[R]. JC7112研究报告, 2005.
    [148]总参57所.大容量鹰眼定位系统说明书[R]. 2005.
    [149]李金伦.基于SSDOA的CDMA移动台定位技术研究[D].成都:西南交通大学, 2006.
    [150]邹洁.基于多手持中继的CDMA移动终端定位方法研究[D].重庆:重庆邮电大学, 2007.
    [151]重庆赛洛克移动定位公司. CDMA CellocateTM定位系统技术方案[R], 2002.
    [152]赵军辉,李秀萍,许昌龙等. CDMA2000导频辅助的信道估计方法研究[J].电路与系统学报, 2005, 10(2): 131-134.
    [153] L. Kovavisaruch, K. C. Ho. Modified Taylor-series Method for Source and Receiver Localization Using TDOA Measurements with Erroneous Receiver Positions[C]. IEEE International Symposium on Circuits and System, 2005: 2295-2298.
    [154]黄莹.无线电伪距导航系统GDOP扩展研究[J].空间科学学报, 2009, 29(5): 540-544.
    [155] N. Levanon. Lowest GDOP in 2-D scenarios[J]. IEE Proceedings-Radar, Sonar and Navigation, 2000, 147(3): 149-155.
    [156]邓平,余立建.蜂窝系统GDOP性能分析[J].西南交通大学学报, 2005, 40(2):184-188.
    [157]卞和方,张书毕,李益斌等.误差椭圆在精密工程测量中的应用研究[J].海洋测绘, 2009, 29(1): 49-54.
    [158] P. P. Vittal. Computation of the Circular Error Probability(CEP) Integral[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(3): 1023-1024.
    [159]邬喜辉,章建辉,周武华.测时差无源定位误差分析[J].舰船电子对抗, 2009, 32(5): 45-48.
    [160]啜钢,高伟东,彭涛. CDMA2000 1x无线网络规划优化及无线资源管理[M].北京:人民邮电出版社, 2007.
    [161] 3GPP2 C.S0005-D, Upper Layer(Layer 3) Signaling Standard for cdma2000 Spread Spectrum Systems(S), 2004.
    [162]康桂霞,田辉,朱禹涛等. CDMA2000 1x无线网络技术[M].北京:人民邮电出版社, 2007.
    [163]美国高通公司, CDMA2000 1x增强型技术——将语音容量增至4倍[J].电子产品世界, 2009, 9: 10-13.
    [164]李路鹏,熊尚坤,王庆扬等. Cdma2000 1x EV_DO RevB关键技术和组网分析[J].电信科学, 2009, 8: 1-5.
    [165]啜钢. CDMA无线网络规划与优化[M].北京:机械工业出版社, 2004.
    [166]中华人民共和国信息产业部科学技术司. cdma2000空中接口技术规范——物理层[S], 2001.
    [167]冯建和,王卫东,房杰等. cdma2000网络技术与应用[M].北京:人民邮电出版社, 2010.
    [168] M. Hata, T. Nagatsu. Mobile Location Using Signal Strength Measurement in Cellular System[J]. IEEE Transactions on Vehicular Technology, 1980, 29(2): 245-252.
    [169] J. Walfishch, H. L. Bertoni. A theoretical mode of UHF propagation in urban environment[J]. IEEE Transactions on Antennas and Propagation, 1998, 36(10): 1788-1796.
    [170] K. Low. Comparison of urban propagation models with CW-measurements[C]. IEEE 42th Vehicular Technology Conference, 1992: 936-942.
    [171]蔺莹.城市地形对电波传播的影响及传播模型的修正[J].甘肃联合大学学报(自然科学版), 2007, 21(4): 52-55.
    [172]高鹏,周胜,涂国防.一种基于路测数据的传播模型校正方法[J].华中科技大学学报(自然科学版), 2010, 38(3): 12-16.
    [173]魏楚千.码分多址移动通信系统[M].北京:国防工业出版社, 2008.
    [174]张贤达.现代信号处理(第二版)[M].北京:清华大学出版社, 2002.
    [175] S. M. Kay,罗鹏飞等译.统计信号处理基础——估计与检测理论[M].北京:电子工业出版社, 2003.
    [176]张贤达.矩阵分析与应用[M].北京:清华大学出版社, 2004.
    [177]北京中网华通设计咨询有限公司. CDMA网络工程设计[M].北京:电子工业出版社, 2005.
    [178] YDC 014—2008, 800MHz CDMA 1X数字蜂窝移动通信网设备技术要求:基站子系统,中华人民共和国信息产业部科学技术司.
    [179]孙仲康,周一宇,何黎星.单多基地有源无源定位技术[M].北京:国防工业出版社, 1996.
    [180]孙仲康.定位导航与制导[M].北京:国防工业出版社, 1987.
    [181] Harry B. Lee. A Novel Procedure for Assessing the Accuracy of Hyperbolic Multilateration Systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1975, 11(1): 1-15.
    [182] Harry B. Lee. Accuracy Limitations of Hyperbolic Multilateration Systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1975, 11(1): 16-29.
    [183]陈卫东,徐善驾,王东进.距离定位中的多传感器布局分析[J].中国科学技术大学学报, 2006, 36(2): 131-136.
    [184] Y. Takaya, F. Akihiro, O. Akira. Performance evalution of modified HPSK for wideband CDMA[C]. IEEE International Symposium on Spread Spectrum Techniques and Applications, 2000: 751-755.
    [185]黄在朝,凌灵,傅海阳. 3G反向链路HPSK调制技术研究[J].重庆邮电大学学报(自然科学版), 2007, 19(1): 58-61.
    [186] M. Lee,许希斌等译. CDMA系统工程手册[M].北京:人民邮电出版社, 2001.
    [187] Viterbi,李世鹤等译. CDMA扩频通信原理[M].北京:人民邮电出版社, 1997.
    [188]袁继兵.测控信号数字处理关键技术研究[D].国防科学技术大学, 2006.
    [189]谢钢. GPS原理与接收机设计[M].北京:电子工业出版社, 2009.
    [190] M. Pratap, E. Per,罗鸣等译.全球定位系统——信号、测量与性能(第二版)[M].北京:电子工业出版社, 2008.
    [191] D. K. Elliott, J. H. Christopher,寇艳红译. GPS原理与应用(第二版)[M].北京:电子工业出版社, 2007.
    [192]张孟阳,吕保维,宋文森. GPS系统中的多径效应分析[J].电子学报, 1998, 26(3): 10-14.
    [193]陈强,黄埔堪。多径条件下的最优孔氏多用户估计[J].通信学报, 2001, 22(3):57-62.
    [194] X. Li, H. Fan. Direct blind multiuser detection for cdma in multipath without channel estimation[J]. IEEE Transactions on Signal Processing, 2001, 49(1): 63-73.
    [195]谢跃雷,欧阳缮,赖伟明.多径衰落信道下的一种盲多用户检测方法[J].通信学报, 2005, 26(2): 51-55.
    [196]沈锋,赵丕杰,徐定杰.多径干扰扩频导航信号伪码跟踪性能仿真研究[J].系统仿真学报, 2008, 20(20): 5630-5634.
    [197] Kailath. T.线性估计[M].西安:西安交通大学出版社, 2008.
    [198] Ken. L,白居宪译.时频分析:理论与应用[M].西安:西安交通大学出版社, 2000.
    [199]张文泉,齐永顺. F检验临界值和模型定阶[J].天津大学学报, 1989, 1: 91-96.
    [200] Z. Huang, J. Lu. Total least squares and equilibration algorithm for range difference location[J]. Electronics Letters, 2004, 40(5): 11-12.
    [201] K. C. Ho, X. N Lu, L. Kovavisaruch. Source Localization Using TDOA and FDOA Measurements in the presence of Receiver Location Errors: Analysis and Solution[J]. Transactions on Signal Processing, 2007, 55(2): 125-132.
    [202] W. C. Li, P. Wei, X. C. Xiao. A robust TDOA-based location method and its performance analysis[J]. Science in China Series F: Information Science, 2009, 52(5): 876–882.
    [203]王鼎,张莉,吴瑛.居于角度信息的约束总体最小二乘无源定位算法[J].中国科学E辑:信息科学, 2006, 36(8): 880-890.
    [204]张光澄,王文娟,韩红蕾.非线性最优化计算方法[M].北京:高等教育出版社, 2005.
    [205]田增山,周非,谭颖.一种新颖的CDMA移动通信系统无源定位算法[J].电波科学学报, 2008, 23(1): 162-167.
    [206]胡志刚,花向红. Levenberg-Marquarat算法及其在测量模型参数估计中的应用[J].测绘工程, 2008, 17(4): 31-34.
    [207] SAND Report, Seismic Event Location Using L-M Least Square Inversion[R], Sandia National Laboratories, 2002.
    [208]杨小牛,楼才义,徐建良.软件无线电原理与应用[M].北京:电子工业出版社, 2001.
    [209]姜柏宇,游思晴.软件无线电原理与工程应用[M].北京:电子工业出版社, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700