湍流射流的大涡模拟及其动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
射流在工程中应用非常广泛,同时也是当前湍流研究中的热点问题,因此射流的研究具有很重要的理论价值和应用前景。在湍流射流中出现的大尺度拟序结构在湍流形成、卷吸和流体掺混过程中起到主导作用,了解其产生、发展、对并、破裂等动力学演化过程具有重要意义,并对湍流射流控制有重要指导作用。
     本文综合运用湍流大涡模拟方法、湍流拟序结构理论和湍流统计理论对湍流射流中的大尺度拟序结构的动力学演化过程进行研究,开展了下列研究工作:
     详细综述了湍流自由射流、湍流横向射流和湍流射流控制的研究现状,总结了到目前为止人们对湍流射流大尺度结构的基本认识,在此基础上提出了进一步研究的问题。
     对本研究采用的湍流大涡模拟方法、可压缩湍流数值模拟算法、并行机群、POD方法和湍流统计分析方法等进行研究,得到了并行的湍流射流大涡模拟程序。
     应用湍流大涡模拟方法得到Re数为15000、网格数为258×125×125、总容量达552GB的三个湍流椭圆射流数据库。通过对自由射流、流向和展向椭圆喷嘴的湍流横向射流大尺度结构的时空演化进行分析,揭示了湍流椭圆射流的基本涡结构。应用Snapshots-POD方法对湍流横向椭圆射流进行研究,对其湍流脉动速度场进行时间序列分析、频谱分析、PDF分析以及时、空截面上的统计平均特性分析。
     研究结果表明:湍流椭圆自由射流的最显著特征是椭圆涡环的间歇产生、脱落,这些涡环一旦产生立即脱落。首次发现和提出了湍流横向椭圆射流的三维拉伸涡环模型,指出在其大尺度拟序结构中真正占主导作用的是拉伸、扭曲、沿流向扭动、展向摆动和绕x轴的转动的三维涡环,在众多实验和文献中观察到的反向涡对其实是由三维涡环头部组成。首次应用POD分析方法对上述数据库进行分析,得到湍流横向椭圓射流拟序结构的能量分布规律和各阶POD基的演化规律;应用湍流统计理论对上述数据库进行分析,揭示了湍流横向椭圆射流脉动速度的极为复杂的统计行为;加深了对湍流椭圆射流基本物理过程的非线性动力学机制的理解。
     有待进一步研究的问题是:建立基于POD模的湍流射流低维动力系统,并对其进行分析;研究基于湍流射流低维动力系统的湍流射流控制;探讨湍流横向射流中涡环间歇脱落的物理机制。
Turbulent jet is a hightly complex turbulent flow, with application in a vast array of engineering problems. It has been studied both analytically and experimentally for many decades, not only because of their wide application in technology but also because of their fundamental significance as a basic flow to the scientific research community. The large-scale coherent structures in turbulent jets play leading role in the process of turbulence generation, entrainment, and fluid mixing, therefore it is very important to understand the dynamical evolution process, such as the generation, development, collsion and breakup of the large-scale coherent structures, meanwhile it is also important to the control of turbulent jets.In this thesis, the method of large-eddy simulation of turbulence, the coherent structure theory, POD method and the statistical theory of turbulence are applied to analyze the dynamical evolution process of large-scale coherent structures in the turbulent jets. We have done the following research work:The current situation of research of turbulent free jets, turbulent jets in crossflow and control of turbulent jets are investigated in detail, the basic understand of the large-scale coherent structures of turbulent jets are summarized, and based on these understandings the problems needed further study are proposed.The numerical method of large-eddy simulation, the computational method of compressible turbulent flow, parallel cluster, POD method and the statistical analysis method of turbulence are studied, and the parallel program of large-eddy simulation of turbulent jet are obtained.Using the parallel code of large-eddy simulation, three turbulence databases of turbulence elliptic jet are obtained, with Reynolds number is 15000 and grid numbers are 258×125×125 and the total volume size is 552GB. Based on the analysis of the spatio-temporal evolution of large-scale coherent structures of free jet, turbulent jets in crossflow with stream-wise and transverse elliptic nozzles, the basic vortical structures of turbulent elliptic jet are revealed. The method of Snapshots-POD is applied to the turbulent jets
    
    in crossflow, and the analysis of time series, spectrum, PDF and the statistical average properties on the spatio-temporal sections of the fluctuation velocity field are examed in detail.The results show that the most significant feature of turbulent free jet is the intermittently generation, shed of elliptic vortex rings, and once they generate they shed immediately. The model of 3-dimensional stretching vortex ring of turbulent elliptic jet in crossflow are discovered for the first time. It is pointed out that in the evolution of turbulent jet in crossflow the 3D vortex rings, which stretching, distorting, swing in transverse direction and twisting around the stream-wise, play the leading role in the large-scale coherent structures. The counter-rotating vortex pair observed in the literature is in fact the head of the 3-dimensional vortex ring. The POD method is applied for the first time to study the above turbulence database, to obtain the energy distribution of coherent structures of turbulent elliptic jet in crossflow and the evolution process of POD bases. The statistic theory of turbulence is also used to study the turbulence database, and the very complex statistical behavior of the fluctuation velocity field of the turbulent jet in crossflow are revealed. These results are deepening the comprehension of the nonlinear dynamical mechanism of the basic physics process of turbulent elliptic jets.In the future, some issues need to be investigated further, which include: establish and study the low-dimensional dynamical system of turbulent jet, with the POD bases, the control of turbulent jet based on the low-dimensional dynamical system of turbulent jet, investigate the physics mechanism of intermittence shed-off of the vortex ring in turbulent jets in crossflow.
引文
1. Adler, D. & Baron, A., Prediction of a three-dimensional circular turbulent jet in crossflow, AIAA J., 1979, 17:168-174.
    2. Adrian, R. J., On the role of conditional averages in turbulent theory, In Turbulence in Liquids: Proc. 4th Biennial Symposium on Turbulence in Liquids(ed. G. Patteson & J. Zakin), 1977, 322-332, Science Press, Princeton.
    3. Adrian, R. J., Conditional eddies in isotropic turbulence, Phys. Fluids, 1979, 22, 2065-2070.
    4. 安智勇、符松,自然对流中人尺度结构模式的应用研究,《湍流理论-新进展及其应用》,周哲伟主编,上海大学出版社, 2000, 198-201.
    5. Andreopoulos, J. & Rodi, W., On the structure of jets in crossflow, J. Fluid Mech., 1985, 138:93-127.
    6. Arndt, R. E. A., Long, D. F. & Glauser, M. N., 1997 The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet, J. Fluid Mech., 1997, 340:1-33.
    7. Aubry, N., Holmes, P., Lumley, J. L. & Stone, E., The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Mech., 1988, 192 , 115-173.
    8. Aubry, N., Lian, W.-Y. & Titi, E. S., Preserving symmetries in the proper orthogonal decomposition, SIAM J. Sci. Comput, 1993, 14(2):483-505.
    9. Aubry, N. & Sanghi, S., Bifurcations and bursting of streaks in the turbulent wall layer, in Turbulence and coherent structures, eds. O. Metais and M. Lesieur, Kluwer Academic Pub., 1991, 227-251.
    10. Bardina, J., Ferziger, J. H. & Reynolds, W. C, Improved subgrid scale models for large eddy simulation, 1980, AIAA Paper 80-1357.
    11. Berkooz, Turbulence, coherent structures, and low-dimensional models, Ph. D. dissertation, Cornell Univ., 1991.
    12. Berkooz, G., Holmes, P. & Lumley, J. L., The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 1993, 25, 539-575.
    13. Breuer, K. S. & Sirovich, L., The use of the Karhunen-Loeve procedure for the calculation of linear eigen-functions, J. Comp. Phys., 1991, 96, 277-296.
    14. Breteton, G. J., Stochastic estimation as a statistical tool for approximating turbulent conditional averages, Phys. Fluids, 1982, A 4:2046-2054.
    15. Broadwell, J. E. & Breidenthal, R. E., Structure and mixing of a transverse jet in incompressible flow, J. Fluid Mech., 1984, 148:405-412.
    16. Camussi, R., Guj, G. & Stella, A., Experimental study of a jet in a crossflow at very low Reynolds number, J. Fluid Mech., 2002, 454:113-144.
    17. Carbone, F. & Aubry, N., Hierarchical order in wall-bounded shear turbulence, Phys. Fluids, 1996, 8(4):1061 1075.
    18. Chambers, D. H., Adrian, R. J., Moin, P., Stewart, D. S. & Sung, H. J., Karhunen-Loeve expansion of Burgers' model of turbulence, Phys. Fluids, 1988, 31, 2573-2582.
    19. Chang, Y. K. & Vakili, A. D., Dynamics of vortex rings in crossflow, Phys. Fluids, 1995, 7:1583-1597.
    20. Chernousov, A. A., LES of mixing layer and flow in square duct by the second-order explicit scheme, 1999, http://www.geocities.com/andreLchernousov/mypage.htm.
    
    21. Citrinniti, J., Experimental Investigation into the Dynamics of the Axisymmetric Mixing Layer Utilizing the Proper Orthogonal Decomposition, PhD dissertation, 1996, SUNY Buffalo.
    22. Coelho, S. L. V. & Hunt, J. C. R., The dynamics of the near field of strong jets in crossflows, J. Fluid Mech., 1989, 200:95-120.
    23. Comte, P., Lesieur, M., Laroche, H. & Normand, X., Numerical simulations of turbulent plane shear layers. In Turbulent Shear Flows 6, (ed. J.-C. Andre, J. Cousteix, F. Durst, B. E. Launder, F. W. Schmidt & J. H. Whitelaw), 1989, 361-380, Springer.
    24. Cortelezzi, L. & Karagozian, A. R., On the formation of the counter-rotating vortex pair in transverse jets, J. Fluid Mech., 2001, 446:347-373.
    25. Crow, S. C. & Champagne, F. H., Orderly structure in jet turbulence, J. Fluid Mech., 1971, 48:547.
    26. Dai, Y., Kobayashi, T. & Taniguchi, N., Large eddy simulation of plane turbulent jet flow using a new outflow velocity boundary condition, JSME Intl. J. B Fluids and Thermal Engng., 1994, 37:242-253.
    27. Deane, A. E. & Sirovich, L., A computational study of Rayleigh-Benard convection. Part 1. Rayleigh number scaling, J. Fluid Mech., 1991, 222, 231-250.
    28. Delville, J., Bellin, S. & Bonnet, J. P., Use of the proper orthogonal decomposition in a plane turbulent mixing layer, in: Turbulent and Coherent Structures, eds. O. Metais and M. Lesieur, Kluwer Academic Publishers, 1990.
    29. Eiff, O. S., Kawall, J. G. & Keffer, J. F., Lock-in vortices in the wake of an elevated round turbulent jet in a crossflow, Exps. Fluids, 1995, 19:203-213.
    30. Eiff, O. S. & Keffer, J. F., On the structures in the near wake region of an elevated turbulent jet in a crossflow, J. Fluid Mech., 1997, 333:161-195.
    31. Eroglu, A. & Breidenthal, R. E., Effects of periodic disturbances on structure and flame length of a jet in a cross flow, 1991, AIAA Paper 91-0317.
    32. Favre, A., Equations des gaz turbulents compressible, I, Formes generates, J. de M6canique, 1965, 4:361.
    33. Favre, A., Equations des gaz turbulents compressible, II, Me'thode des vitesses moyennes; me'thode des vitesses macroscopiques ponderees par la mass volumique, J. de Mecanique, 1965, 4:391.
    34. Fearn, R. L. & Weston, R. P., Vorticity associated with a jet in a cross flow, AIAA J., 1974, 12:1666-1671.
    35. Fearn, R. & Weston, R. P., Induced velocity field of a jet in a crossflow, 1978, NASA TP-1087.
    36. Fric, T. F. & Roshko, A., Vortical structure in the wake of a transverse jet, J. Fluid Mech., 1994, 279:1-47.
    37. Germano, M., Piomelli, U., Moin, P. & Cabot, W. H., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids, 1991, A 3:1760-1765.
    38. Glauser, M. N., Coherent Structures in the Axisymmetric Turbulent Jet Mixing Layer, PhD dissertation, 1987, SUNY, Buffalo.
    39. Glauser, M. N. & George, W. K., Orthogonal decomposition of the axisymmetric jet mixing layer including azimuthal dependence, in: Advances in Turbulence, eds. G. Comte-Bellot and J. Mathieu, Springer-Verlag, 1987.
    40. Glauser, M., Zheng, X. & Doering, C. R., The dynamics of organized structures in the axisymmetric jet mixing layer, in: Turbulence and Coherent Structures, eds. O. Metais and M. Lesieur, Kluwer Academic Publishers, 1991, 253-265.
    41. Glezer, A., Kadioglu, Z. & Pearlstein, A. J., Development of an extended proper orthogonal decomposition and its application to a time periodically forced plane mixing layer, Phys. Fluids, 1989, A 1, 1363 1373.
    
    42. Gordeyev, S. V. & Thomas, F. O., Coherent structure in the turbulent planar jet. Part 2. Structural topology via POD eigenmode projection, J. Fluid Mech., 2002, 460:349-380.
    43. 关晖, 《湍流大涡模拟新方法及其并行计算》 , 解放军理工大学硕士研究生学位论文, 2001, 南京.
    44. Gutmark, E. J. & Grinstein, F. F., Flow control with noncircular jets, Annu. Rev. Fluid Mech., 1999, 31:239-272.
    45. Hasselbrink Jr., E. F. & Mungal, M. G., Transverse jets and jet flames. Part 1. Scaling laws for strong transverse jets, J. Fluid Mech., 2001, 443:1-25.
    46. Haven, B. A. & Kurosaka, M., Kidney and anti-kidney vortices in cross ow jets, J. Fluid Mech., 1997, 352:27-64.
    47. Ho, C. M. & Huerre, P., Perturbed free shear layers, Annu. Rev. Fluid Mech , 1984, 16:365-424.
    48. Holmes, P., Can dynamical systems approach turbulence?, in: Whither Turbulence? Turbulence at the Crossroads, ed. J. L. Lumley, Springer-Verlag, 1990.
    49. Holmes, P., Lumley, J. L. & Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Univ. Press, 1996.
    50. Kamotani, Y. & Greber, I., Experiments on a turbulent jet in a cross flow, AIAA J., 1972, 10:1425-1429.
    51. Karagozian, A. R., 1986 Analytical model for the vorticity associated with a transverse jet, AIAA J., 1986, 24:429-436.
    52. Kelso, R. M., Lim, T. T. & Perry, A. E., An experimental study of round jets in cross-flow, J. Fluid Mech., 1996, 306:111-144.
    53. Kelso, R. M. & Smits, A. J., Horseshoe vortex systems resulting from the interaction between a laminar boundary layer and a transverse jet, Phys. Fluids, 1995, 7:153-158.
    54. Kirby, M. & Sirovich, L., Application of the Karhunen-Loeve procedure for the characterization of human faces, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12, 103-108.
    55. Kwasniok, F., Optimal Galerkin approximations of partial differential equations using principal interaction patterns, Phys. Rev. E, 1997, 55(5):5365-5375.
    56. Le Ribault, C, Sarkar, S. & Stanley, S. A., Large eddy simulation of a plane jet, Phys. Fluids, 1999, 11:3069-3083.
    57. Le Ribault, C, Sarkar, S. & Stanley, S. A., Large eddy simulation of the evolution of a passive scalar in a plane jet, 2001, AIAA J., 39:1509-1516.
    58. Lcsieur, M. & Metais, O. New trends in large-eddy simulations of turbulence, Annu. Rev. Fluid Mech., 1996, 28:45-82.
    59. Lilly, D. K., A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids, 1992, A 4:633-635.
    60. Lim, T. T., New, T. H. & Luo, S. C, On the development of large-scale structures of a jet normal to a cross flow, Phys. Fluids, 2001, 13:770-775.
    61. 林建忠, 《流场拟序结构及控制》, 2002, 浙江大学出版社.
    62. Loeve, M., Probability Theory, D. Van Nostrand Co. Inc., Princeton, (third edition), 1963, 477-485.
    63. Lumley, J. L., The structure of inhomogeneous turbulent flows, in: Atmospheric Turbulence and Radio Wave Propagation, eds. A. M. Yaglom and V. I. Tatarski, Moscow: Nauka., 1967, 166-178.
    64. Lumley, J. L., Coherent structures in turbulence, in: Transition and Turbulence, ed. R. E. Meyer, New York: Academic Press, 1981, 215-242.
    
    65. Lumley, J. L., Whither Turbulence? Turbulence at the Crossroads, Springer-Verlag, 1990.
    66. Lumley, J. L., Order and disorder in turbulent flows, in: New Perspective in Turbulence, ed. L. Sirovich, Springer-Verlag, 1991, 105-122.
    67. Margason, R. J., Fifty years of jet in crossflow research, In AGARD Symp. on a Jet in Cross Flow, Winchester, UK, 1993, AGARD CP-534.
    68. Mi, J., Nobes, D. S. & Nathan, G.J., Influence of jet exit conditions on the passive scalar field of an axisym-metric free jet, J. Fluid Mech., 2001, 432:91-125.
    69. M'Closkey, R. T., King, J. M., Cortelezzi, L. & Karagozian, A. R., The actively controlled jet in crossflow, J. Fluid Mech., 2002, 452:325-335.
    70. Meneveau, C. & Katz, J., Scale-invariance and turbulence models for Large-Eddy Simulation, Annu. Rev. Fluid Mech., 2000, 32:1-32.
    71. Moin, P. & Moser, R. D., Characteristic-eddy decomposition of turbulence in a channel, J. Fluid Mech., 1989, 200, 471-509.
    72. Moin, P., Squires, K., Cabot, W. H. & Lee, S., Phys. Fluids, 1991, A 3(11):2746.
    73. Moussa, Z. M., Trischka, J. W. & Eskinazi, S., The near eld in the mixing of a round jet with a cross-stream, J. Fluid Mech., 1977, 80:49-80.
    74. New, T. H., Lim, T. T. & Luo, S. C, On the effects of velocity profiles on the topological structures of a jet in cross flow, TSFP-1 Proc, 1999, 647-652.
    75. New, T. H., Lim, T. T. & Luo, S. C, Elliptic jets in cross-flow, J. Fluid Mech., 2003, 494:119-140.
    76. Nickels, T. B. & Marusic, I., On the different contributions of coherent structures to the spectra of a turbulent round jet and a turbulent boundary layer, J. Fluid Mech., 2001, 448:367-385.
    77. Park, H. & Sirovich, L., Turbulent thermal convection in a finite domain: Part II. Numerical results, Phys. Fluids, 1990, A 2, 1659-1668.
    78. Peyret, R., Computational Fluid Mechanics, 1996, Academic Press.
    79. Piomelli, U., Phys. Fluids, 1993, A 5(6):1484.
    80. Pope, S. B., Turbulent Flows, 2000, Cambridge University Press.
    81. Preisendorfer, R. W., Principal Component Analysis in Meteorology and Oceanography, Amsterdam: Elsevier, 1988.
    82. Reichert, R. S. & Biringen, S., Numerical simulation of compressible plane jets, 1997, AIAA Paper 97-1924.
    83. Reynolds, W. C, Parekh, D. E., Juvet, P. J. D. & Lee, M. J. D., Bifurcating and blooming jets, Annu. Rev. Fluid Mech., 2003, 35:295-315.
    84. Riesz, F. & Nagy, B. Sz., Functional Analysis, New York: Ungar, 1955.
    85. Ruith, M. R., Chen, P., Meiburg, E. & Maxworthy, T., Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation, J. Fluid Mech., 2003, 486:331-378.
    86. Rivero, A., Ferre, J. A. & Giralt, F., Organized motions in a jet in crossflow, J. Fluid Mech., 2001, 444:117-149.
    87. Rodriguez, J. D. & Sirovich, L., Low dimensional dynamics for the complex Ginzburg-Landau equation, Physica D, 1990, 43, 77.
    88. Sanghi, S. & Aubry, N., Mode interaction models for near-wall turbulence, J. Fluid Mech., 1993, 247, 455-488.
    89. Scorer, R. S., Natural Aerodynamics, 1958, Pergamon.
    
    90. 是勋刚, 《湍流》 , 1994, 天津大学出版社.
    91. Sirovich, L., Turbulence and the dynamics of coherent structures, Part I: Coherent structures, Q. Appl. Math., 1987, 45, 561-571.
    92. Sirovich, L., Turbulence and the dynamics of coherent structures, Part II: Dynamics and scaling, Q. Appl. Math., 1987, 45, 583-590.
    93. Sirovich, L., Chaotic dynamics of coherent structures, Physica D, 1989, 37, 126-145.
    94. Sirovich, L., Empirical eigenfunctions and low dimensional system, in: New Perspective in Turbulence, ed. L. Sirovich, Springer-Verlag, 1991.
    95. Sirovich, L., Analysis of turbulent flows by means of the empirical eigenfunctions, Fluid Dyn. Res., 1991, 8, 85-100.
    96. Sirovich, L., Ball, K. S. & Keefe, L. R., Plane waves and structures in turbulent channel flow, Phys. Fluids, 1990, A 2, 2217-2226.
    97. Sirovich, L. & Deane, A. E., A computational study of Rayleigh-Benard convection. Part 2. Dimension considerations, J. Fluid Mech., 1991, 222, 251-265.
    98. Sirovich, L. & Kirby, M., Low-dimensional procedure for the characterization of human faces, J. Opt. Soc. Am., 1987, A 4, 519-524.
    99. Sirovich, L., Kirby, M. & Winter, M., An eigenfunction approach to large scale transitional structures in jet flow, Phys. Fluids, 1990, A 2, 127 136.
    100. Sirovich, L., Knight, B. W. & Rodriguez, J. D., Optimal low dimensional dynamical approximations, Q. Appl. Math., 1990, 48, 535-548.
    101. Sirovich, L. & Park, H., Turbulent thermal convection in a finite domain: Part I. Theory, Phys. Fluids, 1990, A 2, 1649-1658.
    102. Sirovich, L. & Rodriguez, J. D., Coherent structures and chaos: A model problem, Phys. Lett., 1987, A 120, 211.
    103. Sirovich, L., Rodriguez, J. D. & Knight, B., Two boundary value problem for Ginzburg Landau equation, Physica D, 1990, 43, 63.
    104. Smagorinsky, U., General circulation experiments with the primitive equations. I. The basic experiment, Mon. Weath. Rev., 1963, 91:99-164.
    105. Stanley, S. & Sarkar, S., Simulations of spatially developing plane jets, 1997, AIAA Paper 97-1922.
    106. Stanley, S. & Sarkar, S., Simulations of spatially developing two-dimensional shear layers and jets, Theor. Comput. Fluid Dyn., 1997, 9:121-147.
    107. Stanley, S. A., Sarkar, S. & Mellado, J. P., A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation, J. Fluid Mech., 2002, 450:377-407.
    108. Sykes, W., Lewellen, W. & Parker, S., On the vorticity dynamics of a turbulent jet in a crossflow, J. Fluid Mech., 1986, 168:393-413.
    109. Weinberger, C, Rewerts, J. & Janicka, J., The influence of inlet conditions on a large eddy simulation of a turbulent plane jet, In Proc. Eleventh Symp. on Turbulent Shear Flows, 1997, 3:25.17-25.22. Springer.
    110. Winter, M., Barber, T. J., Everson, R. M. & Sirovich, L., Eigenfunction analysis of turbulent mixing phenomena, AIAA J., 1992, 30, 1681-1688.
    111. Wu, C. J., Optimal truncated low-dimensional dynamical systems, Discrete and Continuous Dynamical Systems, 1996, 2(4):559-583.
    
    112.吴锤结,湍流研究的低维动力系统方法,《力学-现代工程技术的支柱》(赵光恒主编),河海大学出版社,2001,385-420.
    113. Yuan, L. L., Street, R. L. & Ferziger, J. H., Large-eddy simulations of a round jet in crossflow, J. Fluid Mech., 1999, 379: 71-104.
    114.赵红亮,《尾迹型剪切流中的漩涡位错研究》,中国科学院研究生院博士学位论文,2003年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700